1
|
Mizuno H, Nakazawa H, Miyagawa A, Yakiyama Y, Sakurai H, Fukuhara G. Amplification sensing manipulated by a sumanene-based supramolecular polymer as a dynamic allosteric effector. Sci Rep 2024; 14:12534. [PMID: 38822045 PMCID: PMC11143208 DOI: 10.1038/s41598-024-63304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
The synthesis of signal-amplifying chemosensors induced by various triggers is a major challenge for multidisciplinary sciences. In this study, a signal-amplification system that was flexibly manipulated by a dynamic allosteric effector (trigger) was developed. Herein, the focus was on using the behavior of supramolecular polymerization to control the degree of polymerization by changing the concentration of a functional monomer. It was assumed that this control was facilitated by a gradually changing/dynamic allosteric effector. A curved-π buckybowl sumanene and a sumanene-based chemosensor (SC) were employed as the allosteric effector and the molecular binder, respectively. The hetero-supramolecular polymer, (SC·(sumanene)n), facilitated the manipulation of the degree of signal-amplification; this was accomplished by changing the sumanene monomer concentration, which resulted in up to a 62.5-fold amplification of a steroid. The current results and the concept proposed herein provide an alternate method to conventional chemosensors and signal-amplification systems.
Collapse
Affiliation(s)
- Hiroaki Mizuno
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8551, Japan
| | - Hironobu Nakazawa
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yumi Yakiyama
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- Division of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
- Division of Applied Chemistry, Graduate School of Engineering and Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-Ku, Tokyo, 152-8551, Japan.
| |
Collapse
|
2
|
Kanai H, Yamada K, Salikolimi K, Kodama K, Ishida Y. Supramolecular Architecture of an Amphiphilic Amino Alcohol as a Versatile Chiral Environment for Stereocontrolled Photoreaction of Various Anthracenes. Chemistry 2022; 28:e202201940. [DOI: 10.1002/chem.202201940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Hayato Kanai
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Kuniyo Yamada
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | | | - Koichi Kodama
- Department of Applied Chemistry Graduate School of Science and Engineering Saitama University 255 Shimo-Okubo, Sakura-ku Saitama 338-8570 Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
3
|
Rao M, Fan C, Ji J, Liang W, Wei L, Zhang D, Yan Z, Wu W, Yang C. Catalytic Chiral Photochemistry Sensitized by Chiral Hosts-Grafted Upconverted Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21453-21460. [PMID: 35486103 DOI: 10.1021/acsami.2c02313] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Singlet chiral photocatalysis is highly challenging. Herein, we report fluorescence resonance energy transfer (FRET)-based chiral photocatalysis with γ-cyclodextrin (CD)-grafted lanthanide-doped upconverted nanoparticles (UCNP). The CD-modified UCNP strongly emits in the UV wavelength region upon excitation with a 980 nm laser, which selectively sensitizes the photosubstrates complexed by CD on the surface of UCNP through FRET. Therefore, enantiodifferentiating photocyclodimerization of anthracene or naphthalene derivatives sensitized by the CD-modified UCNP gives photoproducts in good enantioselectivity even in the presence of a catalytic amount of CD-modified UCNP. Moreover, the photocatalysts are readily separated and could be reused for at least six cycles without decreasing the enantioselectivity.
Collapse
Affiliation(s)
- Ming Rao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Chunying Fan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wenting Liang
- Institute of Environmental Science, Department of Chemistry, Shanxi University, Taiyuan 030006, China
| | - Lingling Wei
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Dongjing Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Zhiqiang Yan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Rao M, Wu W, Yang C. Recent progress on the enantioselective excited-state photoreactions by pre-arrangement of photosubstrate(s). GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
5
|
Bai S, Ma LL, Yang T, Wang F, Wang LF, Hahn FE, Wang YY, Han YF. Supramolecular-induced regiocontrol over the photochemical [4 + 4] cyclodimerization of NHC- or azole-substituted anthracenes. Chem Sci 2020; 12:2165-2171. [PMID: 34163981 PMCID: PMC8179318 DOI: 10.1039/d0sc06017h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Thanks to the impressive control that microenvironments within enzymes can have over substrates, many biological reactions occur with high regio- and stereoselectivity. However, comparable regio- and stereoselectivity is extremely difficult to achieve for many types of reactions, particularly photochemical cycloaddition reactions in homogeneous solutions. Here, we describe a supramolecular templating strategy that enables photochemical [4 + 4] cycloaddition of 2,6-difunctionalized anthracenes with unique regio- and stereoselectivity and reactivity using a concept known as the supramolecular approach. The reaction of 2,6-azolium substituted anthracenes H4-L(PF6)2 (L = 1a–1c) with Ag2O yielded complexes anti-[Ag2L2](PF6)4 featuring an antiparallel orientation of the anthracene groups. Irradiation of complexes anti-[Ag2L2](PF6)4 proceeded under [4 + 4] cycloaddition linking the two anthracene moieties to give cyclodimers anti-[Ag2(2)](PF6)2. Reaction of 2,6-azole substituted anthracenes with a dinuclear complex [Cl-Au-NHC–NHC-Au-Cl] yields tetranuclear assemblies with the anthracene moieties oriented in syn-fashion. Irradiation and demetallation gives a [4 + 4] syn-photodimer of two anthracenes. The stereoselectivity of the [4 + 4] cycloaddition between two anthracene moieties is determined by their orientation in the metallosupramolecular assemblies. A supramolecular templating strategy that enables the photochemical [4 + 4] cycloaddition of 2,6-difunctionalized anthracene derivatives with unique stereoselectivity has been developed based on metal-NHC units.![]()
Collapse
Affiliation(s)
- Sha Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Li-Li Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Tao Yang
- School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Fang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Li-Feng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - F Ekkehardt Hahn
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster Corrensstraße 30 48149 Münster Germany
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
6
|
Taura D, Urushima A, Sugioka Y, Ousaka N, Yashima E. Remote-controlled regio- and diastereodifferentiating photodimerization of a dynamic helical peptide-bound 2-substituted anthracene. Chem Commun (Camb) 2020; 56:13433-13436. [PMID: 33043943 DOI: 10.1039/d0cc06164f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photodimerization of a novel 2-substituted anthracene linked to a right-handed 310-helical nonapeptide induced by long-range chiral information transfer from the remote chiral l-Val residue through a chiral domino effect proceeded in a highly regio- and diastereo-differentiating manner to produce the chiral head-to-head anti-photodimer in 90% relative yield with up to 97% diastereomeric excess.
Collapse
Affiliation(s)
- Daisuke Taura
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Akio Urushima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Yusuke Sugioka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Naoki Ousaka
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Eiji Yashima
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
7
|
Ji J, Wu W, Wei X, Rao M, Zhou D, Cheng G, Gong Q, Luo K, Yang C. Synergetic effects in the enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by β-cyclodextrin-pillar[5]arene-hybridized hosts. Chem Commun (Camb) 2020; 56:6197-6200. [PMID: 32396589 DOI: 10.1039/d0cc02055a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tri-cavity hosts consisting of one pillar[5]arene (P5) sandwiched by two β-cyclodextrins (CDs) were synthesized, and their diastereoseparation was successfully accomplished. Photocyclodimerization of 2-anthracenecarboxylate with these hybrid hosts demonstrated the critical dependence of stereoselectivity on the absolute configuration of the central P5 and the conjugating positions on the β-CD, and gave the non-classical HT photodimers in up to 87% ee.
Collapse
Affiliation(s)
- Jiecheng Ji
- Department of Radiology, Huaxi MR Research Center (HMRRC), West China Hospital, Healthy Food Evaluation Research Center and College of Chemistry, Sichuan University, Chengdu 610041, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Muto T, Harada M, Fukuhara G, Okada T. Ice Confinement-Induced Solubilization and Aggregation of Cyanonaphthol Revealed by Fluorescence Spectroscopy and Lifetime Measurements. J Phys Chem B 2020; 124:3734-3742. [PMID: 32295346 DOI: 10.1021/acs.jpcb.0c01451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When an aqueous salt solution freezes, a freeze-concentrated solution (FCS) separates from the ice. The properties of the FCS may differ from those of a supercooled bulk solution of the same ionic strength at the same temperature. The fluorescence and lifetime characteristics of 6-cyano-2-naphthol (6CN) were studied in frozen NaCl solutions in order to provide insight into the solution properties of the FCS. While the photoacidity of 6CN in an FCS is similar to that in solution, several anomalous behaviors are observed. Fluorescence spectra indicate that the solubility of 6CN is significantly enhanced in the FCS (50 mM or higher) compared to that in the bulk NaCl solution where the solubility limit is 250 μM. The high solubility induces the aggregation of 6CN in the FCS, which is not detected in bulk solutions. This trend becomes marked as the initial NaCl concentration decreases and the FCS is confined in a small space. The fluorescence lifetimes of 6CN in the FCS support the spectroscopy results. In addition to the species identified by fluorescence spectroscopy, excimers are assigned from lifetime measurements in the FCS. The excimer formation is also a result of the enhanced solubility of 6CN in the FCS.
Collapse
Affiliation(s)
- Tomoya Muto
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Makoto Harada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| | - Gaku Fukuhara
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan.,Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Tetsuo Okada
- Department of Chemistry, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
9
|
Mizuno H, Kitamatsu M, Imai Y, Fukuhara G. Smart Fluorescence Materials that Are Controllable by Hydrostatic Pressure: Peptide−Pyrene Conjugates. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hiroaki Mizuno
- Department of ChemistryTokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
| | - Mizuki Kitamatsu
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Yoshitane Imai
- Department of Applied ChemistryFaculty of Science and EngineeringKindai University 3-4-1 Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Gaku Fukuhara
- Department of ChemistryTokyo Institute of Technology 2-12-1 Ookayama, Meguro-ku Tokyo 152-8551 Japan
- JST, PRESTO 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
10
|
Urushima A, Taura D, Tanaka M, Horimoto N, Tanabe J, Ousaka N, Mori T, Yashima E. Enantiodifferentiating Photodimerization of a 2,6‐Disubstituted Anthracene Assisted by Supramolecular Double‐Helix Formation with Chiral Amines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akio Urushima
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Daisuke Taura
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Makoto Tanaka
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Naomichi Horimoto
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Junki Tanabe
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Tadashi Mori
- Department of Applied ChemistryGraduate School of EngineeringOsaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
11
|
Urushima A, Taura D, Tanaka M, Horimoto N, Tanabe J, Ousaka N, Mori T, Yashima E. Enantiodifferentiating Photodimerization of a 2,6‐Disubstituted Anthracene Assisted by Supramolecular Double‐Helix Formation with Chiral Amines. Angew Chem Int Ed Engl 2020; 59:7478-7486. [DOI: 10.1002/anie.201916103] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/16/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Akio Urushima
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Daisuke Taura
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Makoto Tanaka
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Naomichi Horimoto
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Junki Tanabe
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Naoki Ousaka
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| | - Tadashi Mori
- Department of Applied ChemistryGraduate School of EngineeringOsaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Eiji Yashima
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
- Department of Molecular Design and EngineeringGraduate School of EngineeringNagoya University Chikusa-ku Nagoya 464-8603 Japan
| |
Collapse
|
12
|
Wei X, Raj AM, Ji J, Wu W, Veerakanellore GB, Yang C, Ramamurthy V. Reversal of Regioselectivity during Photodimerization of 2-Anthracenecarboxylic Acid in a Water-Soluble Organic Cavitand. Org Lett 2019; 21:7868-7872. [DOI: 10.1021/acs.orglett.9b02860] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xueqin Wei
- School of Pharmacy, Guangxi Medical University, Nanning 530021, China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - A. Mohan Raj
- Department of Chemistry, University of Miami, Coral Cables, Florida 33124, , United States
| | - Jiecheng Ji
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | - Wanhua Wu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | | | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, State Key Laboratory of Biotherapy, and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610064, China
| | | |
Collapse
|
13
|
Das S, Okamura N, Yagi S, Ajayaghosh A. Supramolecular Gel Phase Controlled [4 + 2] Diels–Alder Photocycloaddition for Electroplex Mediated White Electroluminescence. J Am Chem Soc 2019; 141:5635-5639. [DOI: 10.1021/jacs.9b00955] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Satyajit Das
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naoki Okamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5999-8531, Japan
| | - Shigeyuki Yagi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 5999-8531, Japan
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Chen H, Yin L, Liu M, Wang L, Fujiki M, Zhang W, Zhu X. Aggregation-induced chiroptical generation and photoinduced switching of achiral azobenzene- alt-fluorene copolymer endowed with left- and right-handed helical polysilanes. RSC Adv 2019; 9:4849-4856. [PMID: 35514644 PMCID: PMC9060682 DOI: 10.1039/c8ra09345h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 01/22/2019] [Indexed: 11/21/2022] Open
Abstract
The left and right helicities of azobenzene (Azo)-containing main-chain polymer (PF8Azo) were successfully controlled with an enantiomeric pair of rigid rod-like helical polysilanes carrying (S)- and (R)-2-methylbutyl groups (PSi-S and PSi-R, respectively) as their hetero-aggregates in a mixture of chloroform and methanol solvents and in the solid state. Optimizing the good and poor cosolvents and their volume fractions showed that the molar ratio of PF8Azo to PSi-S/-R and the molecular weight of PF8Azo were crucial to boost the CD amplitudes of PF8Azo/PSi-S and PF8Azo/PSi-R hetero-aggregates. The photoresponsive trans-cis transformation caused noticeable changes in the sign and magnitude of the chiroptical behavior due to the hetero-aggregates. Moreover, the optically active PF8Azo homo-aggregates were produced by complete photoscissoring reactions at 313 nm, which could be assigned to the Siσ-Siσ* transitions of PSi-S and PSi-R.
Collapse
Affiliation(s)
- Hailing Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Meng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Laibing Wang
- Division of Materials Science, Nara Institute of Science and Technology 8946-5, Takayama Ikoma Nara 630-0192 Japan
| | - Michiya Fujiki
- Division of Materials Science, Nara Institute of Science and Technology 8946-5, Takayama Ikoma Nara 630-0192 Japan
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University Suzhou Industrial Park Suzhou 215123 China
- Global Institute of Software Technology No. 5 Qingshan Road, Suzhou National Hi-Tech District Suzhou 215163 China
| |
Collapse
|
15
|
|
16
|
Wei X, Wu W, Matsushita R, Yan Z, Zhou D, Chruma JJ, Nishijima M, Fukuhara G, Mori T, Inoue Y, Yang C. Supramolecular Photochirogenesis Driven by Higher-Order Complexation: Enantiodifferentiating Photocyclodimerization of 2-Anthracenecarboxylate to Slipped Cyclodimers via a 2:2 Complex with β-Cyclodextrin. J Am Chem Soc 2018; 140:3959-3974. [PMID: 29437396 DOI: 10.1021/jacs.7b12085] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chiral slipped 5,8:9',10'-cyclodimers were preferentially produced over classical 9,10:9',10'-cyclodimers upon supramolecular photocyclodimerization of 2-anthracenecarboxylate (AC) mediated by β-cyclodextrin (β-CD). This photochirogenic route to the slipped cyclodimers, exclusively head-to-tail (HT) and highly enantioselective, has long been overlooked in foregoing studies but is dominant in reality and is absolutely supramolecularly activated by 2:2 complexation of AC with β-CD. The intricate structural and photophysical aspects of this higher-order complexation-triggered process have been comprehensively elucidated, while the absolute configurations of the slipped cyclodimers have been unambiguously assigned by comparing the experimental and theoretical circular dichroism spectra. In the 2:2 complex, two ACs packed in a dual β-CD capsule are not fully overlapped with each other but are only partially stacked in a slipped anti- or syn-HT manner. Hence, they do not spontaneously cyclodimerize upon photoexcitation but instead emit long-lived excimer fluorescence at wavelengths slightly longer than the monomer fluorescence, indicating that the slipped excimer is neither extremely reactive nor completely relaxed in conformation and energy. Because of the slipped conformation of the AC pair in the soft capsule, the subsequent photocyclodimerization becomes manipulable by various internal or external factors, such as temperature, pressure, added salt, and host modification, enabling us to exclusively obtain the slipped cyclodimers with high regio- and enantioselectivities. In this supramolecularly driven photochirogenesis, the dual β-CD capsule functions as a chiral organophotocatalyst to trigger and accelerate the nonclassical photochirogenic route to slipped cyclodimers by preorganizing the conformation of the encapsulated AC pair, formally mimicking a catalytic antibody.
Collapse
Affiliation(s)
| | | | | | | | - Dayang Zhou
- Comprehensive Analysis Center, ISIR , Osaka University , Mihogaoka , Ibaraki 567-0047 , Japan
| | | | | | - Gaku Fukuhara
- Department of Chemistry , Tokyo Institute of Technology , 2-12-1 Ookayama , Meguro-ku , Tokyo 152-8551 , Japan
| | | | | | | |
Collapse
|
17
|
Wei P, Zhang JX, Zhao Z, Chen Y, He X, Chen M, Gong J, Sung HHY, Williams ID, Lam JWY, Tang BZ. Multiple yet Controllable Photoswitching in a Single AIEgen System. J Am Chem Soc 2018; 140:1966-1975. [PMID: 29332386 DOI: 10.1021/jacs.7b13364] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Seeking new methods to obtain elaborate artificial on-demand photoswitching with multiple functionalities remains challenging. Most of the systems reported so far possess only one specific function and their nonemissive nature in the aggregated state inevitably limit their applications. Herein, a tailored cyanostilbene-based molecule with aggregation-induced emission characteristic was synthesized and was found to exhibit efficient, multiple and controllable photoresponsive behaviors under different conditions. Specifically, three different reactions were involved: (i) reversible Z/E isomerization under room light and thermal treatment in CH3CN, (ii) UV-induced photocyclization with a concomitant dramatic fluorescence enhancement, and (iii) regio- and stereoselective photodimerization in aqueous medium with microcrystal formation. Experimental and theoretical analyses gave visible insights and detailed mechanisms of the photoreaction processes. Fluorescent 2D photopattern with enhanced signal-to-background ratio was fabricated based on the controllable "turn-on" and "turn-off" photobehaviors in different states. The present study thus paves an easy yet efficient way to construct smart multiphotochromes for unique applications.
Collapse
Affiliation(s)
- Peifa Wei
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Jing-Xuan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Zheng Zhao
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuncong Chen
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuewen He
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ming Chen
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Junyi Gong
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Herman H-Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W Y Lam
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- HKUST-Shenzhen Research Institute , No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute of Molecular Functional Materials, Institute for Advanced Study, Division of Biomedical Engineering and Division of Life Science, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon, Hong Kong, China.,NSFC Center for Luminescence from Molecular Aggregates, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology , Guangzhou 510640, China
| |
Collapse
|
18
|
Tanabe J, Taura D, Ousaka N, Yashima E. Chiral Template-Directed Regio-, Diastereo-, and Enantioselective Photodimerization of an Anthracene Derivative Assisted by Complementary Amidinium-Carboxylate Salt Bridge Formation. J Am Chem Soc 2017; 139:7388-7398. [PMID: 28485968 DOI: 10.1021/jacs.7b03317] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A series of optically active amidine dimers composed of m-terphenyl backbones joined by a variety of linkers, such as achiral and chiral p-phenylene and chiral amide linkers, were synthesized and used as templates for the regio- (head-to-tail (HT) or head-to-head (HH)), diastereo- (anti or syn), and enantioselective [4 + 4] photocyclodimerization of an achiral m-terphenyl-based carboxylic acid monomer bearing a prochiral 2-substituted anthracene at one end (1) through complementary amidinium-carboxylate salt bridges. The amidine dimers linked by p-phenylene linkages almost exclusively afforded the chiral syn-HT and anti-HH dimers at 25 °C, while those joined by amide linkers produced all four dimers. The p-phenylene-linked templates tended to enhance the syn-HT-photodimer formation at high temperatures with no significant changes in the product enantiomeric excess (ee), while the anti-HH-photodimer formation remarkably increased with the decreasing temperature accompanied by a significant enhancement of the product ee up to -86% at -50 °C. Temperature-dependent inversion of the chirality of the anti-HH dimer was observed when the chiral phenylene-linked amidine dimer was used and the product ee was changed from 22% at 50 °C to -86% at -50 °C. A similar enhancement of the enantioselectivity of the anti-HH dimer was also observed for the chiral amide-linked template, producing the anti-HH dimer with up to -88% ee at -50 °C. The observed difference in the regio-, diastereo-, and enantioselectivities due to the difference in the linker structures of the amidine dimers during the template-directed photodimerization of 1 was discussed on the basis of a reversible conformational change in the amidine dimers complexed with 1.
Collapse
Affiliation(s)
- Junki Tanabe
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| | - Eiji Yashima
- Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University , Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
19
|
Mori T, Fukuhara G, Wada T. Yoshihisa Inoue—A researcher’s quest for photochirogenesis. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Fukuhara G, Iida K, Mori T, Inoue Y. Critical control by scaffold flexibility achieved in diastereodifferentiating photocyclodimerization of 2-anthracenecarboxylate. J Photochem Photobiol A Chem 2016. [DOI: 10.1016/j.jphotochem.2016.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Huang ZA, Chen C, Yang XD, Fan XB, Zhou W, Tung CH, Wu LZ, Cong H. Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization–Cycloreversion Strategy. J Am Chem Soc 2016; 138:11144-7. [DOI: 10.1021/jacs.6b07673] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ze-Ao Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Chen Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao-Di Yang
- Laboratory
of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Xiang-Bing Fan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Zhou
- Beijing
National Laboratory for Molecular Sciences (BNLMS), College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
22
|
Tanabe J, Taura D, Ousaka N, Yashima E. Remarkable acceleration of template-directed photodimerisation of 9-phenylethynylanthracene derivatives assisted by complementary salt bridge formation. Org Biomol Chem 2016; 14:10822-10832. [DOI: 10.1039/c6ob02087a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The photodimerisation of 9-phenylethynylanthracene-bound carboxylic acid monomers was remarkably accelerated in the presence of the complementary amidine dimer template.
Collapse
Affiliation(s)
- Junki Tanabe
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Daisuke Taura
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Naoki Ousaka
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Eiji Yashima
- Department of Molecular Design and Engineering
- Graduate School of Engineering
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
23
|
Abdul Rahim NA, Fujiki M. Aggregation-induced scaffolding: photoscissable helical polysilane generates circularly polarized luminescent polyfluorene. Polym Chem 2016. [DOI: 10.1039/c6py00595k] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An enantiopair of rigid rod-like helical polysilanes as a photoscissible scaffold allowed the production of CPL- and CD-active dioctylpolyfluorene aggregates associated with complete removal by a polysilane-selective photoscissoring reaction at 313 nm.
Collapse
Affiliation(s)
- Nor Azura Abdul Rahim
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
- School of Materials Engineering
| | - Michiya Fujiki
- Graduate School of Materials Science
- Nara Institute of Science and Technology
- Ikoma
- Japan
| |
Collapse
|