1
|
Biskup D, Schnakenburg G, Espinosa Ferao A, Streubel R. A metal and a metalloid Lewis acid bridged by a μ 2-phosphinidene. Dalton Trans 2024; 53:9670-9674. [PMID: 38819077 DOI: 10.1039/d4dt01276c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Dinuclear phosphinidene complexes bridging two transition metal centres are now well established. However, a phosphinidene bridging a metal centre and a main group Lewis acid has not yet been reported. Herein, we describe the generation of a highly reactive phosphinidene complex bridging a tungsten and a boron centre. Furthermore, the synthesis and dyotropic rearrangement of a P-borane adduct of an N-methylimidazole-stabilized neutral, electrophilic terminal phosphinidene complex is reported.
Collapse
Affiliation(s)
- David Biskup
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str.1, 53121 Bonn, Germany.
| | - Gregor Schnakenburg
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str.1, 53121 Bonn, Germany.
| | - Arturo Espinosa Ferao
- Departamento de Química Orgánica, Facultad de Química, Campus de Espinardo, Universidad de Murcia, 30100 Murcia, Spain.
| | - Rainer Streubel
- Institut für Anorganische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str.1, 53121 Bonn, Germany.
| |
Collapse
|
2
|
Nguyen JQ, Wedal JC, Ziller JW, Furche F, Evans WJ. Investigating Steric and Electronic Effects in the Synthesis of Square Planar 6d 1 Th(III) Complexes. Inorg Chem 2024; 63:6217-6230. [PMID: 38502000 DOI: 10.1021/acs.inorgchem.3c04462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The factors affecting the formation and crystal structures of unusual 6d1 Th(III) square planar aryloxide complexes, as exemplified by [Th(OArMe)4]1- (OArMe = OC6H2tBu2-2,6-Me-4), were explored by synthetic and reduction studies of a series of related Th(IV) tetrakis(aryloxide) complexes, Th(OArR)4 (OArR = OC6H2tBu2-2,6-R-4). Specifically, electronic, steric, and countercation effects were explored by varying the aryloxide ligand, the alkali metal reducing agent, and the alkali metal chelating agent. Salt metathesis reactions between ThBr4(DME)2 (DME = 1,2-dimethoxyethane) and 4 equiv of the appropriate potassium aryloxide salt were used to prepare a series of Th(IV) aryloxide complexes in high yields: Th(OArH)4 (OArH = OC6H3tBu2-2,6), Th(OArtBu)4 (OArtBu = OC6H2tBu3-2,4,6), Th(OArOMe)4 (OArOMe = OC6H2tBu2-2,6-OMe-4), and Th(OArPh)4 (OArPh = OC6H2tBu2-2,6-Ph-4). Th(OArH)4 can be reduced by KC8, Na, or Li in the absence or presence of 2.2.2-cryptand (crypt) or 18-crown-6 (crown) to form dark purple solutions that have EPR and UV-visible spectra similar to those of the square planar Th(III) complex, [Th(OArMe)4]1-. Hence, the para position of the aryloxide ligand does not have to be alkylated to obtain the Th(III) complexes. Furthermore, reduction of Th(OArOMe)4, Th(OArtBu)4, and Th(OArPh)4 with KC8 in THF generated purple solutions with EPR and UV-visible spectra that are similar to those of the previously reported Th(III) anion, [Th(OArMe)4]1-. Although many of these reduction reactions did not produce single crystals suitable for study by X-ray diffraction, reduction of Th(OArH)4, Th(OArtBu)4, and Th(OArOMe)4 with Li provided X-ray quality crystals whose structures had square planar coordination geometries. Reduction of Th(OArPh)4 with Li also gave a product with EPR and UV-visible spectra that matched those of [Th(OArMe)4]1-, but X-ray quality crystals of the reduction product were too unstable to provide data. Neither Th(Odipp)4(THF)2 (Odipp = OC6H3iPr2-2,6) nor Th(Odmp)4(THF)2 (Odmp = OC6H3Me2-2,6) could be reduced to Th(III) products under similar conditions. Reduction of U(OArH)3(THF) with KC8 in the presence of 2.2.2-cryptand (crypt) was examined for comparison and formed [K(crypt)][U(OArH)4], which has a tetrahedral arrangement of the aryloxide ligands. Moreover, no further reduction was observed when either [K(crypt)][U(OArH)4] or [K(crown)(THF)2][U(OArH)4] were treated with KC8 or Li.
Collapse
Affiliation(s)
- Joseph Q Nguyen
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Justin C Wedal
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - Filipp Furche
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| | - William J Evans
- Department of Chemistry, University of California, Irvine, Irvine, California 92697-2025, United States
| |
Collapse
|
3
|
Du J, Cobb PJ, Ding J, Mills DP, Liddle ST. f-Element heavy pnictogen chemistry. Chem Sci 2023; 15:13-45. [PMID: 38131077 PMCID: PMC10732230 DOI: 10.1039/d3sc05056d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The coordination and organometallic chemistry of the f-elements, that is group 3, lanthanide, and actinide ions, supported by nitrogen ligands, e.g. amides, imides, and nitrides, has become well developed over many decades. In contrast, the corresponding f-element chemisty with the heavier pnictogen analogues phosphorus, arsenic, antimony, and bismuth has remained significantly underdeveloped, due largely to a lack of suitable synthetic methodologies and also the inherent hard(f-element)-soft(heavier pnictogen) acid-base mismatch, but has begun to flourish in recent years. Here, we review complexes containing chemical bonds between the f-elements and heavy pnictogens from phosphorus to bismuth that spans five decades of endeavour. We focus on complexes whose identity has been unambiguously established by structural authentication by single-crystal X-ray diffraction with respect to their synthesis, characterisation, bonding, and reactivity, in order to provide a representative overview of this burgeoning area. By highlighting that much has been achieved but that there is still much to do this review aims to inspire, focus and guide future efforts in this area.
Collapse
Affiliation(s)
- Jingzhen Du
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J Cobb
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Junru Ding
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - David P Mills
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
4
|
Du J, Hurd J, Seed JA, Balázs G, Scheer M, Adams RW, Lee D, Liddle ST. 31P Nuclear Magnetic Resonance Spectroscopy as a Probe of Thorium-Phosphorus Bond Covalency: Correlating Phosphorus Chemical Shift to Metal-Phosphorus Bond Order. J Am Chem Soc 2023; 145:21766-21784. [PMID: 37768555 PMCID: PMC10571089 DOI: 10.1021/jacs.3c02775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Indexed: 09/29/2023]
Abstract
We report the use of solution and solid-state 31P Nuclear Magnetic Resonance (NMR) spectroscopy combined with Density Functional Theory calculations to benchmark the covalency of actinide-phosphorus bonds, thus introducing 31P NMR spectroscopy to the investigation of molecular f-element chemical bond covalency. The 31P NMR data for [Th(PH2)(TrenTIPS)] (1, TrenTIPS = {N(CH2CH2NSiPri3)3}3-), [Th(PH)(TrenTIPS)][Na(12C4)2] (2, 12C4 = 12-crown-4 ether), [{Th(TrenTIPS)}2(μ-PH)] (3), and [{Th(TrenTIPS)}2(μ-P)][Na(12C4)2] (4) demonstrate a chemical shift anisotropy (CSA) ordering of (μ-P)3- > (═PH)2- > (μ-PH)2- > (-PH2)1- and for 4 the largest CSA for any bridging phosphido unit. The B3LYP functional with 50% Hartree-Fock mixing produced spin-orbit δiso values that closely match the experimental data, providing experimentally benchmarked quantification of the nature and extent of covalency in the Th-P linkages in 1-4 via Natural Bond Orbital and Natural Localized Molecular Orbital analyses. Shielding analysis revealed that the 31P δiso values are essentially only due to the nature of the Th-P bonds in 1-4, with largely invariant diamagnetic but variable paramagnetic and spin-orbit shieldings that reflect the Th-P bond multiplicities and s-orbital mediated transmission of spin-orbit effects from Th to P. This study has permitted correlation of Th-P δiso values to Mayer bond orders, revealing qualitative correlations generally, but which should be examined with respect to specific ancillary ligand families rather than generally to be quantitative, reflecting that 31P δiso values are a very sensitive reporter due to phosphorus being a soft donor that responds to the rest of the ligand field much more than stronger, harder donors like nitrogen.
Collapse
Affiliation(s)
- Jingzhen Du
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Joseph Hurd
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - John A. Seed
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Gábor Balázs
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute
of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| | - Ralph W. Adams
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel Lee
- Department
of Chemical Engineering, The University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Stephen T. Liddle
- Department
of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
5
|
Neururer F, Huter K, Seidl M, Hohloch S. Reactivity and Structure of a Bis-phenolate Niobium NHC Complex. ACS ORGANIC & INORGANIC AU 2022; 3:59-71. [PMID: 36748079 PMCID: PMC9896488 DOI: 10.1021/acsorginorgau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
We report the facile synthesis of a rare niobium(V) imido NHC complex with a dianionic OCO-pincer benzimidazolylidene ligand (L 1 ) with the general formula [NbL 1 (N t Bu)PyCl] 1-Py. We achieved this by in situ deprotonation of the corresponding azolium salt [H 3 L 1 ][Cl] and subsequent reaction with [Nb(N t Bu)Py 2 Cl 3 ]. The pyridine ligand in 1-Py can be removed by the addition of B(C6F5)3 as a strong Lewis acid leading to the formation of the pyridine-free complex 1. In contrast to similar vanadium(V) complexes, complex 1-Py was found to be a good precursor for various salt metathesis reactions, yielding a series of chalcogenido and pnictogenido complexes with the general formula [ NbL 1 (N t Bu)Py(EMes)] (E = O (2), S (3), NH (4), and PH (5)). Furthermore, complex 1-Py can be converted to alkyl complex (6) with 1 equiv of neosilyl lithium as a transmetallation agent. Addition of a second equivalent yields a new trianionic supporting ligand on the niobium center (7) in which the benzimidazolylidene ligand is alkylated at the former carbene carbon atom. The latter is an interesting chemically "noninnocent" feature of the benzimidazolylidene ligand potentially useful in catalysis and atom transfer reactions. Addition of mesityl lithium to 1-Py gives the pyridine-free aryl complex 8, which is stable toward "overarylation" by an additional equivalent of mesityl lithium. Electrochemical investigation revealed that complexes 1-Py and 1 are inert toward reduction in dichloromethane but show two irreversible reduction processes in tetrahydrofuran as a solvent. However, using standard reduction agents, e.g., KC8, K-mirror, and Na/Napht, no reduced products could be isolated. All complexes have been thoroughly studied by various techniques, including 1H-, 13C{1H}-, and 1H-15N HMBC NMR spectroscopy, IR spectroscopy, and X-ray diffraction analysis.
Collapse
|
6
|
Goodwin CAP, Janicke MT, Scott BL, Gaunt AJ. [AnI 3(THF) 4] (An = Np, Pu) Preparation Bypassing An 0 Metal Precursors: Access to Np 3+/Pu 3+ Nonaqueous and Organometallic Complexes. J Am Chem Soc 2021; 143:20680-20696. [PMID: 34854294 DOI: 10.1021/jacs.1c07967] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Direct comparison of homologous molecules provides a foundation from which to elucidate both subtle and patent changes in reactivity patterns, redox processes, and bonding properties across a series of elements. While trivalent molecular U chemistry is richly developed, analogous Np or Pu research has long been hindered by synthetic routes often requiring scarcely available metallic-phase source material, high-temperature solid-state reactions producing poorly soluble binary halides, or the use of pyrophoric reagents. The development of routes to nonaqueous Np3+/Pu3+ from widely available precursors can potentially transform the scope and pace of research into actinide periodicity. Here, aqueous stocks of An4+ (An = Np, Pu) are dehydrated to well-defined [AnCl4(DME)2] (DME = 1,2-dimethoxyethane), and then a single-step halide exchange/reduction employing Me3SiI produces [AnI3(THF)4] (THF = tetrahydrofuran) in a high to nearly quantitative crystalline yield (with I2 and Me3SiCl as easily removed byproducts). We demonstrate the synthetic utility of these An-iodide molecules, prepared by metal0-free routes, through characterization of archetypal complexes including the tris-silylamide, [Np{N(SiMe3)2}3], and bent metallocenes, [An(C5Me5)2(I)(THF)] (An = Np, Pu)─chosen because both motifs are ubiquitous in Th, U, and lanthanide research. The synthesis of [Np{N(Se═PPh2)2}3] is also reported, completing an isomorphous series that now extends from U to Am and is the first characterized Np3+-Se bond.
Collapse
Affiliation(s)
- Conrad A P Goodwin
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Michael T Janicke
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Brian L Scott
- Materials Physics & Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew J Gaunt
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
7
|
Tarlton ML, Vilanova SP, Kaumini MG, Kelley SP, Huang P, Walensky JR. Structural, Spectroscopic, and Computational Analysis of Heterometallic Thorium Phosphinidiide Complexes. Inorg Chem 2021; 60:14932-14943. [PMID: 34528785 DOI: 10.1021/acs.inorgchem.1c02308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To synthesize complexes with thorium-phosphorus multiple-bond character, reactions of (C5Me5)2Th[P(H)Mes]2 with monovalent alkali-metal bases, MN(SiMe3)2, as well as CuMes, have been investigated. The results with MN(SiMe3)2 are phosphinidiide complexes of the form {(C5Me5)2Th[μ2-P(Mes)][μ2-P(H)Mes]M(L)n}2 (M = Na, n = 0; M = K, L = THF, n = 1; M = Rb, L = THF, n = 1; M = Cs, L = Et2O, n = 1). With CuMes, the product is a Th2Cu3P5 heterometallic structure, {(C5Me5)2Th[(μ2-P(H)Mes)P(Mes)]Cu}2Cu[μ2-P(H)Mes]. All complexes have been characterized using heteronuclear NMR and IR spectroscopy, density functional theory calculations, and their solid-state structure identified by X-ray crystallography. We also report the structure of {(C5Me5)2Th[(μ2-As(H)Mes)As(Mes)]Cu}2Cu[μ2-As(H)Mes] obtained from (C5Me5)2Th[As(H)Mes]2 with CuMes.
Collapse
Affiliation(s)
- Michael L Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - M Gayanethra Kaumini
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Steven P Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Patrick Huang
- Department of Chemistry and Biochemistry, California State University, East Bay, Hayward, California 94542, United States
| | - Justin R Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
8
|
Tarlton ML, Yang Y, Kelley SP, Maron L, Walensky JR. Formation and Reactivity with tBuCN of a Thorium Phosphinidiide through a Combined Experimental and Computational Analysis. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Yan Yang
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Laurent Maron
- Université de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO, Toulouse 31077, France
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
9
|
Wang S, Heng Y, Li T, Hou G, Zi G, Walter MD. Synthesis and reactivity of the uranium phosphinidene metallocene [η 5-1,3-(Me 3Si) 2C 5H 3] 2U([double bond, length as m-dash]P-2,4,6- iPr 3C 6H 2)(OPMe 3): influence of the coordinated Lewis base. Dalton Trans 2021; 50:12502-12516. [PMID: 34342314 DOI: 10.1039/d1dt02149d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper describes the synthesis and reactivity of [η5-1,3-(Me3Si)2C5H3]2U([double bond, length as m-dash]P-2,4,6-iPr3C6H2)(OPMe3) (6) which is accessible from a ligand exchange reaction between [η5-1,3-(Me3Si)2C5H3]2U([double bond, length as m-dash]P-2,4,6-iPr3C6H2)(OPPh3) (2) and Me3PO at ambient temperature. Phosphinidene 6 exhibits no reactivity towards internal alkynes, but readily reacts with various hetero-unsaturated molecules such as isothiocyanates, aldehydes, nitriles, isonitriles, and organic azides, forming uranium sulfido, oxido, imido, and uranaheterocyclic compounds. Nevertheless, with the bidentate ortho-dicyanobenzene o-C6H4(CN)2 the zwitterionic species [η5-1,3-(Me3Si)2C5H3]2U[NHC(N){C6H4CP(2,4,6-iPr3C6H2)CH2PMe2O}] (13) is isolated in good yield. Moreover, 6 converts with Ph2S2 to the uranium(iii) phenylthiolate compound [η5-1,3-(Me3Si)2C5H3]2USPh(OPMe3) (7) in good isolated yield. Furthermore, the influence of the Lewis base on the reactivity of the uranium phosphinidene metallocenes has also been evaluated.
Collapse
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China.
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany.
| |
Collapse
|
10
|
Tarlton ML, Fajen OJ, Kelley SP, Kerridge A, Malcomson T, Morrison TL, Shores MP, Xhani X, Walensky JR. Systematic Investigation of the Molecular and Electronic Structure of Thorium and Uranium Phosphorus and Arsenic Complexes. Inorg Chem 2021; 60:10614-10630. [DOI: 10.1021/acs.inorgchem.1c01256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Michael L. Tarlton
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - O. Jonathan Fajen
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Steven P. Kelley
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas Malcomson
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Thomas L. Morrison
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Matthew P. Shores
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Xhensila Xhani
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, 601 S. College Avenue, Columbia 65211, Missouri, United States
| |
Collapse
|
11
|
Wang S, Li T, Heng Y, Hou G, Zi G, Walter MD. Influence of the 1,3-Bis(trimethylsilyl)cyclopentadienyl Ligand on the Reactivity of the Uranium Phosphinidene [η5-1,3-(Me3Si)2C5H3]2U(═P-2,4,6-iPr3C6H2)(OPPh3). Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tongyu Li
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yi Heng
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
12
|
Du J, Balázs G, Wooles AJ, Scheer M, Liddle ST. The “Hidden” Reductive [2+2+1]‐Cycloaddition Chemistry of 2‐Phosphaethynolate Revealed by Reduction of a Th‐OCP Linkage. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jingzhen Du
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Ashley J. Wooles
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Stephen T. Liddle
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
13
|
Du J, Balázs G, Wooles AJ, Scheer M, Liddle ST. The "Hidden" Reductive [2+2+1]-Cycloaddition Chemistry of 2-Phosphaethynolate Revealed by Reduction of a Th-OCP Linkage. Angew Chem Int Ed Engl 2021; 60:1197-1202. [PMID: 33051949 PMCID: PMC7839465 DOI: 10.1002/anie.202012506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Indexed: 11/27/2022]
Abstract
The reduction chemistry of the newly emerging 2‐phosphaethynolate (OCP)− is not well explored, and many unanswered questions remain about this ligand in this context. We report that reduction of [Th(TrenTIPS)(OCP)] (2, TrenTIPS=[N(CH2CH2NSiPri3)]3−), with RbC8 via [2+2+1] cycloaddition, produces an unprecedented hexathorium complex [{Th(TrenTIPS)}6(μ‐OC2P3)2(μ‐OC2P3H)2Rb4] (5) featuring four five‐membered [C2P3] phosphorus heterocycles, which can be converted to a rare oxo complex [{Th(TrenTIPS)(μ‐ORb)}2] (6) and the known cyclometallated complex [Th{N(CH2CH2NSiPri3)2(CH2CH2SiPri2CHMeCH2)}] (4) by thermolysis; thereby, providing an unprecedented example of reductive cycloaddition reactivity in the chemistry of 2‐phosphaethynolate. This has permitted us to isolate intermediates that might normally remain unseen. We have debunked an erroneous assumption of a concerted fragmentation process for (OCP)−, rather than cycloaddition products that then decompose with [Th(TrenTIPS)O]− essentially acting as a protecting then leaving group. In contrast, when KC8 or CsC8 were used the phosphinidiide C−H bond activation product [{Th(TrenTIPS)}Th{N(CH2CH2NSiPri3)2[CH2CH2SiPri2CH(Me)CH2C(O)μ‐P]}] (3) and the oxo complex [{Th(TrenTIPS)(μ‐OCs)}2] (7) were isolated.
Collapse
Affiliation(s)
- Jingzhen Du
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Gábor Balázs
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ashley J Wooles
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Stephen T Liddle
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|
14
|
Wang D, Hou G, Zi G, Walter MD. Influence of the Lewis Base Ph3PO on the Reactivity of the Uranium Phosphinidene (η5-C5Me5)2U(═P-2,4,6-iPr3C6H2)(OPPh3). Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
15
|
Wang D, Wang S, Li T, Heng Y, Hou G, Zi G, Walter MD. Reactivity studies involving a Lewis base supported terminal uranium phosphinidene metallocene [η5-1,3-(Me3C)2C5H3]2U(P-2,4,6-iPr3C6H2)(OPMe3). Dalton Trans 2021; 50:8349-8363. [DOI: 10.1039/d1dt00742d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Small variations in the phosphinidene substituents, but significant change the reactivity of the uranium phosphinidene complexes.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Shichun Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Tongyu Li
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yi Heng
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
16
|
Wang D, Ding W, Hou G, Zi G, Walter MD. Experimental and Computational Studies on a Base-Free Terminal Uranium Phosphinidene Metallocene. Chemistry 2020; 26:16888-16899. [PMID: 32744750 PMCID: PMC7756876 DOI: 10.1002/chem.202003465] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 07/31/2020] [Indexed: 12/26/2022]
Abstract
The first stable base‐free terminal uranium phosphinidene metallocene is presented; and its structure and reactivity have been studied in detail and compared to that of the corresponding thorium derivative. Salt metathesis reaction of the methyl iodide uranium metallocene Cp’’’2U(I)Me (2, Cp’’’=η5‐1,2,4‐(Me3C)3C5H2) with Mes*PHK (Mes*=2,4,6‐(Me3C)3C6H2) in THF yields the base‐free terminal uranium phosphinidene metallocene, Cp’’’2U=PMes* (3). In addition, density functional theory (DFT) studies suggest substantial 5f orbital contributions to the bonding within the uranium phosphinidene [U]=PAr moiety, which results in a more covalent bonding between the [Cp’’’2U]2+ and [Mes*P]2− fragments than that for the related thorium derivative. This difference in bonding besides steric reasons causes different reactivity patterns for both molecules. Therefore, the uranium derivative 3 may act as a Cp’’’2U(II) synthon releasing the phosphinidene moiety (Mes*P:) when treated with alkynes or a variety of hetero‐unsaturated molecules such as imines, thiazoles, ketazines, bipy, organic azides, diazene derivatives, ketones, and carbodiimides.
Collapse
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Marc D Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106, Braunschweig, Germany
| |
Collapse
|
17
|
Wang D, Hou G, Zi G, Walter MD. (η5-C5Me5)2U(=P-2,4,6-tBu3C6H2)(OPMe3) Revisited—Its Intrinsic Reactivity toward Small Organic Molecules. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
18
|
Wang D, Wang S, Hou G, Zi G, Walter MD. A Lewis Base Supported Terminal Uranium Phosphinidene Metallocene. Inorg Chem 2020; 59:14549-14563. [DOI: 10.1021/acs.inorgchem.0c02363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Deqiang Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Shichun Wang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
19
|
Watt FA, Krishna A, Golovanov G, Ott H, Schoch R, Wölper C, Neuba AG, Hohloch S. Monoanionic Anilidophosphine Ligand in Lanthanide Chemistry: Scope, Reactivity, and Electrochemistry. Inorg Chem 2020; 59:2719-2732. [PMID: 31961137 DOI: 10.1021/acs.inorgchem.9b03071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We present the synthesis of a series of new lanthanide(III) complexes supported by a monoanionic bidentate anilidophosphine ligand (N-(2-(diisopropylphosphanyl)-4-methylphenyl)-2,4,6-trimethylanilide, short PN-). The work comprises the characterization of a variety of heteroleptic complexes containing either one or two PN ligands as well as a study on further functionalization possibilities. The new heteroleptic complexes cover selected examples over the whole lanthanide(III) series including lanthanum, cerium, neodymium, gadolinium, terbium, dysprosium, and lutetium. In case of the two diamagnetic metal cations lanthanum(III) and lutetium(III), we have furthermore studied the influence of the lanthanide ion (early vs. late) on the reactivity of these complexes. Thereby we found that the radius of the lanthanide ion has a major influence on the reactivity. Using sterically demanding, multidentate ligand systems, e.g., cyclopentadienide (Cp-), we found that the lanthanum complex La(PN)2Cl (1-La) reacts well to the corresponding cyclopentadienide complex, while for Lu(PN)2Cl (1-Lu) no reaction was observed under any conditions tested. On the contrary, employing monodentate ligands such as mesitolate, thiomesitolate, 2,4,6-trimethylanilide or 2,4,6-trimethylphenylphosphide, results in the clean formation of the desired complexes for both lanthanum and lutetium. All complexes have been studied by various techniques, including multi nuclear NMR spectroscopy and X-ray crystallography. 31P NMR spectroscopy was furthermore used to evaluate the presence of open coordination sites on the complexes using coordinating and noncoordinating solvents, and as a probe for estimating the Ce-P distance in the corresponding complexes. Additionally, we present cyclic voltammetry (CV) data for Ce(PN)2Cl (1-Ce), La(PN)2Cl (1-La), Ce(PN)(HMDS)2 (8-Ce) and La(PN)(HMDS)2 (8-La) (with HMDS = hexamethyldisilazide, (Me3Si)2N-) exploring the potential of the anilidophosphane ligand framework to stabilize a potential Ce(IV) ion.
Collapse
Affiliation(s)
- Fabian A Watt
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Athul Krishna
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Grigoriy Golovanov
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Holger Ott
- Training Center, Bruker AXS GmbH, Östliche Rheinbrückenstraße 49, 76187 Karlsruhe, Germany
| | - Roland Schoch
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Christoph Wölper
- Faculty of Chemistry, University of Essen-Duisburg, Universitätsstraße 5-7, 45141 Essen, Germany
| | - Adam G Neuba
- Faculty of Science, Department of Chemistry, Paderborn University, Warburger Straße 100, 33098 Paderborn, Germany
| | - Stephan Hohloch
- Faculty of Chemistry and Pharmacy, Institute of General, Inorganic and Theoretical Chemistry, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
20
|
Varela‐Izquierdo V, Geer AM, Bruin B, López JA, Ciriano MA, Tejel C. Rhodium Complexes in P−H Bond Activation Reactions. Chemistry 2019; 25:15915-15928. [DOI: 10.1002/chem.201903981] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/03/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Víctor Varela‐Izquierdo
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Ana M. Geer
- Department of ChemistryUniversity of Virginia Charlottesville Virginia 22904 USA
| | - Bas Bruin
- University of AmsterdamVan 't Hoff Institute for Molecular Sciences Science park 904 1098 XH Amsterdam The Netherlands
| | - José A. López
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Miguel A. Ciriano
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| | - Cristina Tejel
- Departamento de Química InorgánicaInstituto de Síntesis QuímicayCatálisis Homogénea (ISQCH)CSIC-Universidad de Zaragoza Pedro Cerbuna 12 50009 Zaragoza Spain
| |
Collapse
|
21
|
Abstract
The synthesis of tetravalent thorium and uranium complexes with the phosphaazaallene moiety, [N(tBu)C=P(C6H5)]2−, is described. The reaction of the bis(phosphido) complexes, (C5Me5)2An[P(C6H5)(SiMe3)]2, An = Th, U, with two equivalents of tBuNC produces (C5Me5)2An(CNtBu)[η2-(N,C)-N(tBu)C=P(C6H5)] with concomitant formation of P(SiMe3)2(C6H5) via silyl migration. These complexes are characterized by NMR and IR spectroscopy, as well as structurally determined using X-ray crystallography.
Collapse
|
22
|
Zhang C, Hou G, Zi G, Ding W, Walter MD. An Alkali-Metal Halide-Bridged Actinide Phosphinidiide Complex. Inorg Chem 2019; 58:1571-1590. [DOI: 10.1021/acs.inorgchem.8b03091] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Congcong Zhang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
23
|
Zhao H, Li P, Duan M, Xie F, Ma J. The formation mechanism of uranium and thorium hydride phosphorus: a systematically theoretical study. RSC Adv 2019; 9:17119-17128. [PMID: 35519844 PMCID: PMC9064583 DOI: 10.1039/c9ra02098e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/23/2019] [Indexed: 11/29/2022] Open
Abstract
Activation of prototypical bonds by actinide atoms is an important aspect of material activity, and the results can be used for the study of nuclear material storage. In this study, the activation of the P–H bonds of the PH3 molecule by U or Th to form uranium or thorium hydride phosphorus has been systematically explored using density functional theory. A detailed description of the reaction mechanism which includes the potential energy profiles and the properties of bond evolution is presented. There are two types of reaction channels, isomerization and dehydrogenation in U + PH3 and Th + PH3. The difference between the two reactions is the process of the first P–H bond dissociation. The evolution characteristics of the chemical bonds along reaction pathways is analyzed by using electron localization functions, quantum theory of atoms in molecules, Mayer bond orders and natural bond orbitals. The reaction rate constants are calculated at the variational transition state level, and rate-determining steps are predicted. The reactions of U, Th with PH3 to form the uranium and thorium hydride phosphorus have been systematically explored.![]()
Collapse
Affiliation(s)
- Huifeng Zhao
- School of Physics and Electronics Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Peng Li
- School of Physics and Electronics Engineering
- Shanxi University
- Taiyuan 030006
- China
- Collaborative Innovation Center of Extreme Optics
| | - Meigang Duan
- School of Physics and Electronics Engineering
- Shanxi University
- Taiyuan 030006
- China
| | - Feng Xie
- Institute of Nuclear and New Energy Technology
- Collaborative Innovation Center of Advanced Nuclear Energy Technology
- Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education
- Tsinghua University
- Beijing 100084
| | - Jie Ma
- School of Physics and Electronics Engineering
- Shanxi University
- Taiyuan 030006
- China
- Collaborative Innovation Center of Extreme Optics
| |
Collapse
|
24
|
Zhang C, Wang Y, Hou G, Ding W, Zi G, Walter MD. Experimental and computational studies on a three-membered diphosphido thorium metallaheterocycle [η5-1,3-(Me3C)2C5H3]2Th[η2-P2(2,4,6-iPr3C6H2)2]. Dalton Trans 2019; 48:6921-6930. [DOI: 10.1039/c9dt01160a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
A three-membered diphosphido thorium metallaheterocycle complex was prepared and its reactivity was investigated.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
25
|
Wang Y, Zhang C, Zi G, Ding W, Walter MD. Preparation of a potassium chloride bridged thorium phosphinidiide complex and its reactivity towards small organic molecules. NEW J CHEM 2019. [DOI: 10.1039/c9nj02269d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The steric and electronic properties of the coordinated ligands modulate the reactivity of thorium phosphinidene complexes.
Collapse
Affiliation(s)
- Yongsong Wang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Wanjian Ding
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30
- Braunschweig
- Germany
| |
Collapse
|
26
|
Zhang C, Hou G, Zi G, Walter MD. A base-free terminal thorium phosphinidene metallocene and its reactivity toward selected organic molecules. Dalton Trans 2019; 48:2377-2387. [DOI: 10.1039/c9dt00012g] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule activation mediated by a base-free terminal phosphinidene thorium metallocene is reported.
Collapse
Affiliation(s)
- Congcong Zhang
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guohua Hou
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Guofu Zi
- Department of Chemistry
- Beijing Normal University
- Beijing 100875
- China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie
- Technische Universität Braunschweig
- 38106 Braunschweig
- Germany
| |
Collapse
|
27
|
Vilanova SP, del Rosal I, Tarlton ML, Maron L, Walensky JR. Functionalization of Carbon Monoxide and
tert
‐Butyl Nitrile by Intramolecular Proton Transfer in a Bis(Phosphido) Thorium Complex. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sean P. Vilanova
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Iker del Rosal
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | | - Laurent Maron
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | |
Collapse
|
28
|
Vilanova SP, del Rosal I, Tarlton ML, Maron L, Walensky JR. Functionalization of Carbon Monoxide and
tert
‐Butyl Nitrile by Intramolecular Proton Transfer in a Bis(Phosphido) Thorium Complex. Angew Chem Int Ed Engl 2018; 57:16748-16753. [DOI: 10.1002/anie.201810511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Sean P. Vilanova
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Iker del Rosal
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | | - Laurent Maron
- Universite de Toulouse CNRS INSA, UPS, CNRS, UMR, UMR 5215 LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | |
Collapse
|
29
|
Zhang C, Hou G, Zi G, Ding W, Walter MD. A Base-Free Terminal Actinide Phosphinidene Metallocene: Synthesis, Structure, Reactivity, and Computational Studies. J Am Chem Soc 2018; 140:14511-14525. [DOI: 10.1021/jacs.8b09746] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Congcong Zhang
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wanjian Ding
- Department of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Marc D. Walter
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
30
|
Rungthanaphatsophon P, Duignan TJ, Myers AJ, Vilanova SP, Barnes CL, Autschbach J, Batista ER, Yang P, Walensky JR. Influence of Substituents on the Electronic Structure of Mono- and Bis(phosphido) Thorium(IV) Complexes. Inorg Chem 2018; 57:7270-7278. [DOI: 10.1021/acs.inorgchem.8b00922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
| | - Thomas J. Duignan
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Alexander J. Myers
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Sean P. Vilanova
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Charles L. Barnes
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Yang
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Justin R. Walensky
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
31
|
Altman AB, Brown AC, Rao G, Lohrey TD, Britt RD, Maron L, Minasian SG, Shuh DK, Arnold J. Chemical structure and bonding in a thorium(iii)-aluminum heterobimetallic complex. Chem Sci 2018; 9:4317-4324. [PMID: 29780563 PMCID: PMC5944380 DOI: 10.1039/c8sc01260a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 04/13/2018] [Indexed: 11/27/2022] Open
Abstract
We describe the syntheses of [Th(iii)]–[Al] and [U(iii)]–[Al] bimetallics that demonstrate An→Al interactions where the actinide behaves as an electron donor.
Thorium sits at a unique position on the periodic table. On one hand, there is little evidence that its 5f orbitals engage in bonding as they do in other early actinides; on the other hand, its chemistry is distinct from Lewis acidic transition metals. To gain insight into the underlying electronic structure of Th and develop trends across the actinide series, it is useful to study Th(iii) and Th(ii) systems with valence electrons that may engage in non-electrostatic metal–ligand interactions, although only a handful of such systems are known. To expand the range of low-valent compounds and gain deeper insight into Th electronic structure, we targeted actinide bimetallic complexes containing metal–metal bonds. Herein, we report the syntheses of Th–Al bimetallics from reactions between a di-tert-butylcyclopentadienyl supported Th(iv) dihalide (Cp‡2ThCl2) and an anionic aluminum hydride salt [K(H3AlC(SiMe3)3) (1)]. Reduction of the [Th(iv)](Cl)–[Al] product resulted in a [Th(iii)]–[Al] complex [Cp‡2Th(μ-H3)AlC(SiMe3)3 (4)]. The U(iii) analogue [Cp‡2U(μ-H3)AlC(SiMe3)3 (5)] could be synthesized directly from a U(iii) halide starting material. Electron paramagnetic resonance studies on 4 demonstrate hyperfine interactions between the unpaired electron and the Al atom indicative of spin density delocalization from the Th metal center to the Al. Density functional theory and atom in molecules calculations confirmed the presence of An→Al interactions in 4 and 5, which represents the first examples of An→M interactions where the actinide behaves as an electron donor.
Collapse
Affiliation(s)
- Alison B Altman
- Department of Chemistry , University of California , Berkeley , California 94720 , USA.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA .
| | - Alexandra C Brown
- Department of Chemistry , University of California , Berkeley , California 94720 , USA
| | - Guodong Rao
- Department of Chemistry , University of California , Davis , California 95616 , USA
| | - Trevor D Lohrey
- Department of Chemistry , University of California , Berkeley , California 94720 , USA.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA .
| | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , USA
| | - Laurent Maron
- LPCNO , Université de Toulouse , INAS Toulouse , 135 Avenue de Rangueil , 31077 , Toulouse , France
| | - Stefan G Minasian
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA .
| | - David K Shuh
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA .
| | - John Arnold
- Department of Chemistry , University of California , Berkeley , California 94720 , USA.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA .
| |
Collapse
|
32
|
Settineri NS, Arnold J. Insertion, protonolysis and photolysis reactivity of a thorium monoalkyl amidinate complex. Chem Sci 2018; 9:2831-2841. [PMID: 29732069 PMCID: PMC5914426 DOI: 10.1039/c7sc05328b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 02/09/2018] [Indexed: 11/21/2022] Open
Abstract
The reactivity of the thorium monoalkyl complex Th(CH2SiMe3)(BIMA)3 [1, BIMA = MeC(NiPr)2] with various small molecules is described. While steric congestion prohibits the insertion of N,N'-diisopropylcarbodiimide into the Th-C bond in 1, the first thorium tetrakis(amidinate) complex, Th(BIMA)4 (2), is synthesized via an alternative salt metathesis route. Insertion of p-tolyl azide leads to the triazenido complex Th[(p-tolyl)NNN(CH2SiMe3)-κ2N1,2](BIMA)3 (3), which then undergoes thermal decomposition to the amido species Th[(p-tolyl)N(SiMe3)](BIMA)3 (4). The reaction of 1 with 2,6-dimethylphenylisocyanide results in the thorium iminoacyl complex Th[η2-(C[double bond, length as m-dash]N)-2,6-Me2-C6H3(CH2SiMe3)](BIMA)3 (5), while the reaction with isoelectronic CO leads to the products Th[OC([double bond, length as m-dash]CH2)SiMe3](BIMA)3 (6) and Th[OC(NiPr)C(CH2SiMe3)(C(Me)N(iPr))O-κ2O,O'](BIMA)2 (7), the latter being the result of CO coupling and insertion into an amidinate ligand. Protonolysis is achieved with several substrates, producing amido (9), aryloxide (10), phosphido (11a,b), acetylide (12), and cationic (13) complexes. Ligand exchange with 9-borabicyclo[3.3.1]nonane (9-BBN) results in formation of the thorium borohydride complex (BIMA)3Th(μ-H)2[B(C8H14)] (14). Complex 1 also reacts under photolytic conditions to eliminate SiMe4 and produce Th(BIMA)2(BIMA*) [15, BIMA* = (iPr)NC(CH2)N(iPr)], featuring a rare example of a dianionic amidinate ligand. Complexes 2, 3, 5, 6, 11a, and 12-15 were characterized by 1H and 13C{1H} NMR spectroscopy, FTIR, EA, melting point and X-ray crystallography. All other complexes were identified by one or more of these spectroscopic techniques.
Collapse
Affiliation(s)
- Nicholas S Settineri
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| | - John Arnold
- Department of Chemistry , University of California , Berkeley , California 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , USA
| |
Collapse
|
33
|
Vilanova SP, Tarlton ML, Barnes CL, Walensky JR. Double insertion of benzophenone into thorium-phosphorus bonds. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Andreychuk NR, Emslie DJ, Jenkins HA, Britten JF. Cyclometallation following coordination of anionic and neutral Lewis bases to a uranium(IV) dialkyl complex. J Organomet Chem 2018. [DOI: 10.1016/j.jorganchem.2017.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Rungthanaphatsophon P, Barnes CL, Kelley SP, Walensky JR. Four-electron reduction chemistry using a uranium(iii) phosphido complex. Dalton Trans 2018; 47:8189-8192. [DOI: 10.1039/c8dt01406j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The first uranium(iii) phosphido complex is reported.
Collapse
|
36
|
Feichtner KS, Gessner VH. Cooperative bond activation reactions with carbene complexes. Chem Commun (Camb) 2018; 54:6540-6553. [DOI: 10.1039/c8cc02198h] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent advances in the application of carbene complexes in bond activation reactions via metal–ligand cooperation.
Collapse
Affiliation(s)
- Kai-Stephan Feichtner
- Inorganic Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| | - Viktoria H. Gessner
- Inorganic Chemistry II
- Faculty of Chemistry and Biochemistry
- Ruhr University Bochum
- 44801 Bochum
- Germany
| |
Collapse
|
37
|
Tian H, Hong J, Wang K, del Rosal I, Maron L, Zhou X, Zhang L. Unprecedented Reaction Mode of Phosphorus in Phosphinidene Rare-Earth Complexes: A Joint Experimental–Theoretical Study. J Am Chem Soc 2017; 140:102-105. [DOI: 10.1021/jacs.7b11032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Haiwen Tian
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jianquan Hong
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Kai Wang
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, People’s Republic of China
| | - Iker del Rosal
- LPCNO,
CNRS, and INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Laurent Maron
- LPCNO,
CNRS, and INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse 31077, France
| | - Xigeng Zhou
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai 200032, People’s Republic of China
| | - Lixin Zhang
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
38
|
Vilanova SP, Alayoglu P, Heidarian M, Huang P, Walensky JR. Metal–Ligand Multiple Bonding in Thorium Phosphorus and Thorium Arsenic Complexes. Chemistry 2017; 23:16748-16752. [DOI: 10.1002/chem.201704782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Sean P. Vilanova
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Pinar Alayoglu
- Department of Chemistry California State University East Bay Hayward CA 94542 USA
| | - Mohammad Heidarian
- Department of Chemistry California State University East Bay Hayward CA 94542 USA
| | - Patrick Huang
- Department of Chemistry California State University East Bay Hayward CA 94542 USA
| | | |
Collapse
|
39
|
Rungthanaphatsophon P, Bathelier A, Castro L, Behrle AC, Barnes CL, Maron L, Walensky JR. Formation of Methane versus Benzene in the Reactions of (C
5
Me
5
)
2
Th(CH
3
)
2
with [CH
3
PPh
3
]X (X=Cl, Br, I) Yielding Thorium‐Carbene or Thorium‐Ylide Complexes. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201706496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Adrien Bathelier
- Universite de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | - Ludovic Castro
- Universite de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | - Andrew C. Behrle
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Charles L. Barnes
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Laurent Maron
- Universite de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | |
Collapse
|
40
|
Rungthanaphatsophon P, Bathelier A, Castro L, Behrle AC, Barnes CL, Maron L, Walensky JR. Formation of Methane versus Benzene in the Reactions of (C
5
Me
5
)
2
Th(CH
3
)
2
with [CH
3
PPh
3
]X (X=Cl, Br, I) Yielding Thorium‐Carbene or Thorium‐Ylide Complexes. Angew Chem Int Ed Engl 2017; 56:12925-12929. [DOI: 10.1002/anie.201706496] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/19/2017] [Indexed: 11/10/2022]
Affiliation(s)
| | - Adrien Bathelier
- Universite de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | - Ludovic Castro
- Universite de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | - Andrew C. Behrle
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Charles L. Barnes
- Department of Chemistry University of Missouri Columbia MO 65211 USA
| | - Laurent Maron
- Universite de Toulouse and CNRS, INSA, UPS, CNRS, UMR, UMR 5215, LPCNO 135 Avenue de Rangueil 31077 Toulouse France
| | | |
Collapse
|
41
|
Luo G, Luo Y, Hou Z. E–H (E = N and P) Bond Activation of PhEH2 by a Trinuclear Yttrium Methylidene Complex: Theoretical Insights into Mechanism and Multimetal Cooperation Behavior. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00443] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gen Luo
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
- RIKEN
Center for Sustainable Resource Science and Organometallic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yi Luo
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
| | - Zhaomin Hou
- State
Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, PR China
- RIKEN
Center for Sustainable Resource Science and Organometallic Chemistry
Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
42
|
Garner ME, Arnold J. Reductive Elimination of Diphosphine from a Thorium–NHC–Bis(phosphido) Complex. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00301] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mary E. Garner
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
43
|
Apostolidis C, Walter O, Vogt J, Liebing P, Maron L, Edelmann FT. A Structurally Characterized Organometallic Plutonium(IV) Complex. Angew Chem Int Ed Engl 2017; 56:5066-5070. [PMID: 28371148 PMCID: PMC5485009 DOI: 10.1002/anie.201701858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Indexed: 11/06/2022]
Abstract
The blood-red plutonocene complex Pu(1,3-COT'')(1,4-COT'') (4; COT''=η8 -bis(trimethylsilyl)cyclooctatetraenyl) has been synthesized by oxidation of the anionic sandwich complex Li[Pu(1,4-COT'')2 ] (3) with anhydrous cobalt(II) chloride. The first crystal structure determination of an organoplutonium(IV) complex revealed an asymmetric sandwich structure for 4 where one COT'' ring is 1,3-substituted while the other retains the original 1,4-substitution pattern. The electronic structure of 4 has been elucidated by a computational study, revealing a probable cause for the unexpected silyl group migration.
Collapse
Affiliation(s)
- Christos Apostolidis
- European Commission, Joint Research Centre, Directorate G-Nuclear Safety and Security, P.O. Box 2340, 76125, Karlsruhe, Germany
| | - Olaf Walter
- European Commission, Joint Research Centre, Directorate G-Nuclear Safety and Security, P.O. Box 2340, 76125, Karlsruhe, Germany
| | - Jochen Vogt
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Phil Liebing
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nanoobjets (LPCNO), Université de Toulouse/INSA/CNRS (UMR5215), 135 avenue de Rangueil, 31077, Toulouse cedex 4, France
| | - Frank T Edelmann
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| |
Collapse
|
44
|
Apostolidis C, Walter O, Vogt J, Liebing P, Maron L, Edelmann FT. A Structurally Characterized Organometallic Plutonium(IV) Complex. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christos Apostolidis
- European Commission, Joint Research Centre, Directorate G-Nuclear Safety and Security; P.O. Box 2340 76125 Karlsruhe Germany
| | - Olaf Walter
- European Commission, Joint Research Centre, Directorate G-Nuclear Safety and Security; P.O. Box 2340 76125 Karlsruhe Germany
| | - Jochen Vogt
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg; Universitätsplatz 2 39106 Magdeburg Germany
| | - Phil Liebing
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg; Universitätsplatz 2 39106 Magdeburg Germany
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nanoobjets (LPCNO); Université de Toulouse/INSA/CNRS (UMR5215); 135 avenue de Rangueil 31077 Toulouse cedex 4 France
| | - Frank T. Edelmann
- Chemisches Institut der Otto-von-Guericke-Universität Magdeburg; Universitätsplatz 2 39106 Magdeburg Germany
| |
Collapse
|
45
|
Triamidoamine thorium-arsenic complexes with parent arsenide, arsinidiide and arsenido structural motifs. Nat Commun 2017; 8:14769. [PMID: 28276437 PMCID: PMC5347141 DOI: 10.1038/ncomms14769] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/30/2017] [Indexed: 11/08/2022] Open
Abstract
Despite a major expansion of uranium-ligand multiple bond chemistry in recent years, analogous complexes involving other actinides (An) remain scarce. For thorium, under ambient conditions only a few multiple bonds to carbon, nitrogen, phosphorus and chalcogenides are reported, and none to arsenic are known; indeed only two complexes with thorium-arsenic single bonds have been structurally authenticated, reflecting the challenges of stabilizing polar linkages at the large thorium ion. Here, we report thorium parent-arsenide (ThAsH2), -arsinidiides (ThAs(H)K and ThAs(H)Th) and arsenido (ThAsTh) linkages stabilized by a bulky triamidoamine ligand. The ThAs(H)K and ThAsTh linkages exhibit polarized-covalent thorium-arsenic multiple bonding interactions, hitherto restricted to cryogenic matrix isolation experiments, and the AnAs(H)An and AnAsAn linkages reported here have no precedent in f-block chemistry. 7s, 6d and 5f orbital contributions to the Th-As bonds are suggested by quantum chemical calculations, and their compositions unexpectedly appear to be tensioned differently compared to phosphorus congeners.
Collapse
|
46
|
Andrews L, Cho HG, Thanthiriwatte KS, Dixon DA. Thorium and Uranium Hydride Phosphorus and Arsenic Bearing Molecules with Single and Double Actinide-Pnictogen and Bridged Agostic Hydrogen Bonds. Inorg Chem 2017; 56:2949-2957. [DOI: 10.1021/acs.inorgchem.6b03055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lester Andrews
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
| | - Han-Gook Cho
- Department of Chemistry, University of Virginia, P.O. Box 400319, Charlottesville, Virginia 22904-4319, United States
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 406-772, South Korea
| | - K. Sahan Thanthiriwatte
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0366, United States
| | - David A. Dixon
- Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487-0366, United States
| |
Collapse
|
47
|
Solola LA, Zabula AV, Dorfner WL, Manor BC, Carroll PJ, Schelter EJ. Cerium(IV) Imido Complexes: Structural, Computational, and Reactivity Studies. J Am Chem Soc 2017; 139:2435-2442. [PMID: 28076948 DOI: 10.1021/jacs.6b12369] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of alkali metal capped cerium(IV) imido complexes, [M(solv)x][Ce═N(3,5-(CF3)2C6H3)(TriNOx)] (M = Li, K, Rb, Cs; solv = TMEDA, THF, Et2O, or DME), was isolated and fully characterized. An X-ray structural investigation of the cerium imido complexes demonstrated the impact of the alkali metal counterions on the geometry of the [Ce═N(3,5-(CF3)2C6H3)(TriNOx)]- moiety. Substantial shortening of the Ce═N bond was observed with increasing size of the alkali metal cation. The first complex featuring an unsupported, terminal multiple bond between a Ce(IV) ion and a ligand fragment was also isolated by encapsulation of a Cs+ counterion with 2.2.2-cryptand. This complex shows the shortest recorded Ce═N bond length of 2.077(3) Å. Computational investigation of the cerium imido complexes using DFT methods showed a relatively larger contribution of the cerium 5d orbital than the 4f orbital to the Ce═N bonds. The [K(DME)2][Ce═N(3,5-(CF3)2C6H3)(TriNOx)] complex cleaves the Si-O bond in (Me3Si)2O, yielding the [(Me3SiO)CeIV(TriNOx)] adduct. The reaction of the rubidium capped imido complex with benzophenone resulted in the formation of a rare Ce(IV)-oxo complex, that was stabilized by a supramolecular, tetrameric oligomerization of the Ce═O units with rubidium cations.
Collapse
Affiliation(s)
- Lukman A Solola
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Alexander V Zabula
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Walter L Dorfner
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Brian C Manor
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Eric J Schelter
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania , 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
48
|
|
49
|
|
50
|
Ghatak T, Drucker S, Fridman N, Eisen MS. Thorium complexes possessing expanded ring N-heterocyclic iminato ligands: synthesis and applications. Dalton Trans 2017; 46:12005-12009. [DOI: 10.1039/c7dt02126g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel thorium complexes containing six- and seven-membered rings iminato moieties are disclosed. The complexes are highly active for the Tishchenko and cross-Tishchenko reaction.
Collapse
Affiliation(s)
- Tapas Ghatak
- Schulich Faculty of Chemistry
- Technion − Israel Institute of Technology
- Technion Haifa
- Israel
| | - Shani Drucker
- Schulich Faculty of Chemistry
- Technion − Israel Institute of Technology
- Technion Haifa
- Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry
- Technion − Israel Institute of Technology
- Technion Haifa
- Israel
| | - Moris S. Eisen
- Schulich Faculty of Chemistry
- Technion − Israel Institute of Technology
- Technion Haifa
- Israel
| |
Collapse
|