1
|
Al-Bustami H, Khaldi S, Shoseyov O, Yochelis S, Killi K, Berg I, Gross E, Paltiel Y, Yerushalmi R. Atomic and Molecular Layer Deposition of Chiral Thin Films Showing up to 99% Spin Selective Transport. NANO LETTERS 2022; 22:5022-5028. [PMID: 35679580 DOI: 10.1021/acs.nanolett.2c01953] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Spin electronics is delivering a much desired combination of properties such as high speed, low power, and high device densities for the next generation of memory devices. Utilizing chiral-induced spin selectivity (CISS) effect is a promising path toward efficient and simple spintronic devices. To be compatible with state-of-the-art integrated circuits manufacturing methodologies, vapor phase methodologies for deposition of spin filtering layers are needed. Here, we present vapor phase deposition of hybrid organic-inorganic thin films with embedded chirality. The deposition scheme relies on a combination of atomic and molecular layer deposition (A/MLD) utilizing enantiomeric pure alaninol molecular precursors combined with trimethyl aluminum (TMA) and water. The A/MLD deposition method deliver highly conformal thin films allowing the fabrication of several types of nanometric scale spintronic devices. The devices showed high spin polarization (close to 100%) for 5 nm thick spin filter layer deposited by A/MLD. The procedure is compatible with common device processing methodologies.
Collapse
Affiliation(s)
- H Al-Bustami
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - S Khaldi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - O Shoseyov
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - S Yochelis
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - K Killi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - I Berg
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - E Gross
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| | - Y Paltiel
- Applied Physics Department and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 91904, Israel
| | - R Yerushalmi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem 91904, Israel
| |
Collapse
|
2
|
Stefan M, Leostean C, Toloman D, Popa A, Pana O, Barbu-Tudoran L. Spectroscopic and Morpho-Structural Characterization of Copper Indium Disulfide–Zinc Oxide Nanocomposites with Photocatalytic Properties. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2043887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- M. Stefan
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - C. Leostean
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - D. Toloman
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - A. Popa
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - O. Pana
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
| | - L. Barbu-Tudoran
- National Institute for R & D of Isotopic and Molecular Technologies, Cluj-Napoca, Romania
- Electron Microscopy Center, Faculty of Biology and Geology, “Babes-Bolyai” University, Cluj-Napoca, Romania
| |
Collapse
|
3
|
Ziv A, Shoseyov O, Karadan P, Bloom BP, Goldring S, Metzger T, Yochelis S, Waldeck DH, Yerushalmi R, Paltiel Y. Chirality Nanosensor with Direct Electric Readout by Coupling of Nanofloret Localized Plasmons with Electronic Transport. NANO LETTERS 2021; 21:6496-6503. [PMID: 34297582 DOI: 10.1021/acs.nanolett.1c01539] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The detection of enantiopurity for small sample quantities is crucial, particularly in the pharmaceutical industry; however, existing methodologies rely on specific chiral recognition elements, or complex optical systems, limiting its utility. A nanoscale chirality sensor, for continuously monitoring molecular chirality using an electric circuit readout, is presented. This device design represents an alternative real-time scalable approach for chiral recognition of small quantity samples (less than 103 adsorbed molecules). The active device component relies on a gold nanofloret hybrid structure, i.e., a high aspect ratio semiconductor-metal hybrid nanosystem in which a SiGe nanowire tip is selectively decorated with a gold metallic cap. The tip mechanically touches a counter electrode to generate a nanojunction, and upon exposure to molecules, a metal-molecule-metal junction is formed. Adsorption of chiral molecules at the gold tip induces chirality in the localized plasmonic resonance at the electrode-tip junction and manifests in an enantiospecific current response.
Collapse
Affiliation(s)
- Amir Ziv
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Omer Shoseyov
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Prajith Karadan
- Institute of Chemistry, The Hebrew University, Jerusalem 9290401, Israel
| | - Brian P Bloom
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sharone Goldring
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Tzuriel Metzger
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - Shira Yochelis
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
| | - David H Waldeck
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Roie Yerushalmi
- Institute of Chemistry, The Hebrew University, Jerusalem 9290401, Israel
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem, 9190401 Israel
| | - Yossi Paltiel
- Department of Applied Physics, The Hebrew University, Jerusalem 9190401, Israel
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram Jerusalem, 9190401 Israel
| |
Collapse
|
4
|
Ziv A, Tzaguy A, Sun Z, Yochelis S, Stratakis E, Kenanakis G, Schatz GC, Lauhon LJ, Seidman DN, Paltiel Y, Yerushalmi R. Broad-band high-gain room temperature photodetectors using semiconductor-metal nanofloret hybrids with wide plasmonic response. NANOSCALE 2019; 11:6368-6376. [PMID: 30888369 DOI: 10.1039/c9nr00385a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Semiconducting nanowires are widely studied as building blocks for electro-optical devices; however, their limited cross-section and hence photo-response hinder the utilization of their full potential. Herein, we present an opto-electronic device for broad spectral detection ranging from the visible (VIS) to the short wavelength infra-red (SWIR) regime, using SiGe nanowires coupled to a broadband plasmonic antenna. The plasmonic amplification is obtained by deposition of a metallic nanotip at the edge of a nanowire utilizing a bottom-up synthesis technique. The metallic nanotip is positioned such that both optical plasmonic modes and electrical detection paths are coupled, resulting in a specific detectivity improvement of ∼1000 compared to conventional SiGe NWs. Detectivity and high gain are also measured in the SWIR regime owing to the special plasmonic response. Furthermore, the temporal response is improved by ∼1000. The fabrication process is simple and scalable, and it relies on low-resolution and facile fabrication steps with minimal requirements for top-down techniques.
Collapse
Affiliation(s)
- Amir Ziv
- Department of Applied Physics, the Hebrew University, Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Sun Z, Tzaguy A, Hazut O, Lauhon LJ, Yerushalmi R, Seidman DN. 1-D Metal Nanobead Arrays within Encapsulated Nanowires via a Red-Ox-Induced Dewetting: Mechanism Study by Atom-Probe Tomography. NANO LETTERS 2017; 17:7478-7486. [PMID: 29116798 DOI: 10.1021/acs.nanolett.7b03391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Metal nanoparticle arrays are excellent candidates for a variety of applications due to the versatility of their morphology and structure at the nanoscale. Bottom-up self-assembly of metal nanoparticles provides an important complementary alternative to the traditional top-down lithography method and makes it possible to assemble structures with higher-order complexity, for example, nanospheres, nanocubes, and core-shell nanostructures. Here we present a mechanism study of the self-assembly process of 1-D noble metal nanoparticles arrays, composed of Au, Ag, and AuAg alloy nanoparticles. These are prepared within an encapsulated germanium nanowire, obtained by the oxidation of a metal-germanium nanowire hybrid structure. The resulting structure is a 1-D array of equidistant metal nanoparticles with the same diameter, the so-called nanobead (NB) array structure. Atom-probe tomography and transmission electron microscopy were utilized to investigate the details of the morphological and chemical evolution during the oxidation of the encapsulated metal-germanium nanowire hybrid-structures. The self-assembly of nanoparticles relies on the formation of a metal-germanium liquid alloy and the migration of the liquid alloy into the nanowire, followed by dewetting of the liquid during shape-confined oxidation where the liquid column breaks-up into nanoparticles due to the Plateau-Rayleigh instability. Our results demonstrate that the encapsulating oxide layer serves as a structural scaffold, retaining the overall shape during the eutectic liquid formation and demonstrates the relationship between the oxide mechanical properties and the final structural characteristics of the 1-D arrays. The mechanistic details revealed here provide a versatile tool-box for the bottom-up fabrication of 1-D arrays nanopatterning that can be modified for multiple applications according to the RedOx properties of the material system components.
Collapse
Affiliation(s)
- Zhiyuan Sun
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - Avra Tzaguy
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Ori Hazut
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Lincoln J Lauhon
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| | - Roie Yerushalmi
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem , Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - David N Seidman
- Department of Materials Science and Engineering, Northwestern University , 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
- Northwestern University Center for Atom-Probe Tomography (NUCAPT) , 2220 Campus Drive, Evanston, Illinois 60208-3108, United States
| |
Collapse
|
6
|
Ziv A, Tzaguy A, Hazut O, Yochelis S, Yerushalmi R, Paltiel Y. Self-formed nanogap junctions for electronic detection and characterization of molecules and quantum dots. RSC Adv 2017. [DOI: 10.1039/c7ra04600f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fabrication of self-forming nanojunction devices is demonstrated using positioning of nanofloret-like building blocks that bridge the gap between two large micron scale electrodes.
Collapse
Affiliation(s)
- Amir Ziv
- Department of Applied Physics
- The Hebrew University of Jerusalem
- 9190401 Israel
| | - Avra Tzaguy
- Institute of Chemistry
- The Center for Nanoscience and Nanotechnology
- The Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Ori Hazut
- Institute of Chemistry
- The Center for Nanoscience and Nanotechnology
- The Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Shira Yochelis
- Department of Applied Physics
- The Hebrew University of Jerusalem
- 9190401 Israel
| | - Roie Yerushalmi
- Institute of Chemistry
- The Center for Nanoscience and Nanotechnology
- The Hebrew University of Jerusalem
- Jerusalem
- Israel
| | - Yossi Paltiel
- Department of Applied Physics
- The Hebrew University of Jerusalem
- 9190401 Israel
| |
Collapse
|