1
|
Guha R, Malola S, Rafik M, Khatun M, Gonzàlez-Rosell A, Häkkinen H, Copp SM. Fragmentation patterns of DNA-stabilized silver nanoclusters under mass spectrometry. NANOSCALE 2024; 16:20596-20607. [PMID: 39439283 DOI: 10.1039/d4nr03533j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
DNA-stabilized silver nanoclusters (AgN-DNAs) are emitters with tuneable structures and photophysical properties. While understanding of the sequence-structure-property relationships of AgN-DNAs has advanced significantly, their chemical transformations and degradation pathways are far less understood. To advance understanding of these pathways, we analysed the fragmentation products of 21 different red and NIR AgN-DNAs using negative ion mode electrospray ionization mass spectrometry (ESI-MS). AgN-DNAs were found to lose Ag+ under ESI-MS conditions, and sufficient loss of silver atoms can lead to a transition to a lesser number of effective valence electrons, N0. Of more than 400 mass spectral peaks analysed, only even values of N0 were identified, suggesting that solution-phase AgN-DNAs with odd values of N0 are unlikely to be stable. AgN-DNAs stabilized by three DNA strands were found to fragment significantly more than AgN-DNAs stabilized by two DNA strands. Moreover, the fragmentation behaviour depends strongly on the DNA template sequence, with diverse fragmentation patterns even for AgN-DNAs with similar molecular formulae. Molecular dynamics simulations, with forces calculated from density functional theory, of the fragmentation of (DNA)2(Ag16Cl2)8+ with a known crystal structure show that the 6-electron Ag16Cl2 core fragments into a 4-electron Ag10 and a 2-electron Ag6, preserving electron-pairing rules even at early stages of the fragmentation process, in agreement with experimental observation. These findings provide new insights into the mechanisms by which AgN-DNAs degrade and transform, with relevance for their applications in sensing and biomedical applications.
Collapse
Affiliation(s)
- Rweetuparna Guha
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Sami Malola
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Malak Rafik
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Maya Khatun
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
| | - Hannu Häkkinen
- Departments of Chemistry and Physics, Nanoscience Center, University of Jyväskylä, Jyväskylä 40014, Finland
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Ramazanov RR, Nasibullin RT, Sundholm D, Kurtén T, Valiev RR. Nonradiative Deactivation of the Fluorescent Ag 16-DNA and Ag 10-DNA Emitters: The Role of Water. J Phys Chem Lett 2024; 15:10710-10717. [PMID: 39418079 PMCID: PMC11514010 DOI: 10.1021/acs.jpclett.4c01959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
The luminescent quantum yield of silver-cluster emitters stabilized by short oligonucleotides (AgN-DNA) may be efficiently tuned by replacing nucleobases in their stabilization DNA matrices with analogues. In the present study, we proposed a valuable and straightforward theoretical methodology for assessing the photophysical behaviors emerging in AgN-DNA emitters after excitation. Using green Ag10-DNA and near-IR Ag16-DNA emitters we demonstrate how point guanine/inosine replacement could affect the photophysical rate constants of radiative/nonradiative processes. The main deactivation channel of the fluorescence of Ag16-DNA is intersystem crossing, which is in line with experimental data, whereas for Ag10-DNA the calculations overestimate the intersystem crossing rate possibly due to pure solvent contributions.
Collapse
Affiliation(s)
- Ruslan R. Ramazanov
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Rinat T. Nasibullin
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Dage Sundholm
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Theo Kurtén
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| | - Rashid R. Valiev
- Department of Chemistry, University of Helsinki, P.O. Box 55 (A.I. Virtanens plats 1), University
of Helsinki, FIN-00014, Finland
| |
Collapse
|
3
|
Setzler CJ, Petty JT. Click catalysis and DNA conjugation using a nanoscale DNA/silver cluster pair. NANOSCALE 2024; 16:17868-17876. [PMID: 39257181 DOI: 10.1039/d4nr02938k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
DNA-bound silver clusters are most readily recognized by their strong fluorescence that spans the visible and near-infrared regions. From this suite of chromophores, we chose a green-emitting Ag106+ bound to C4AC4TC3GT4 and describe how this DNA/cluster pair is also a catalyst. A DNA-tethered alkyne conjugates with an azide via cycloaddition, an inherently slow reaction that is facilitated through the joint efforts of the cluster and DNA. The Ag106+ structure is the catalytic core in this complex, and it has three distinguishing characteristics. It facilitates cycloaddition while preserving its stoichiometry, charge, and spectra. It also acidifies its nearby alkyne to promote H/D exchange, suggesting a silver-alkyne complex. Finally, it is markedly more efficient when compared with related multinuclear DNA-silver complexes. The Ag106+ is trapped within its C4AC4TC3GT4 host, which governs the catalytic activity in two ways. The DNA has orthogonal functional groups for both the alkyne and cluster, and these can be systematically separated to quench the click reaction. It is also a polydentate ligand that imprints an elongated shape on its cluster adduct. This extended structure suggests that DNA may pry apart the cluster to open coordination sites for the alkyne and azide reactants. These studies indicate that this DNA/silver cluster pair work together with catalysis directly driven by the silver cluster and indirectly guided by the DNA host.
Collapse
Affiliation(s)
- Caleb J Setzler
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29613, USA.
| |
Collapse
|
4
|
Guo Z, Jiang H, Song A, Liu X, Wang X. Progress and challenges in bacterial infection theranostics based on functional metal nanoparticles. Adv Colloid Interface Sci 2024; 332:103265. [PMID: 39121833 DOI: 10.1016/j.cis.2024.103265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
The rapid proliferation and infection of bacteria, especially multidrug-resistant bacteria, have become a great threat to global public health. Focusing on the emergence of "super drug-resistant bacteria" caused by the abuse of antibiotics and the insufficient and delayed early diagnosis of bacterial diseases, it is of great research significance to develop new technologies and methods for early targeted detection and treatment of bacterial infection. The exceptional effects of metal nanoparticles based on their unique physical and chemical properties make such systems ideal for the detection and treatment of bacterial infection both in vitro and in vivo. Metal nanoparticles also have admirable clinical application prospects due to their broad antibacterial spectrum, various antibacterial mechanisms and excellent biocompatibility. Herein, we summarized the research progress concerning the mechanism of metal nanoparticles in terms of antibacterial activity together with the detection of bacterial. Representative achievements are selected to illustrate the proof-of-concept in vitro and in vivo applications. Based on these observations, we also give a brief discussion on the current problems and perspective outlook of metal nanoparticles in the diagnosis and treatment of bacterial infection.
Collapse
Affiliation(s)
- Zengchao Guo
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Hui Jiang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Aiguo Song
- School of Instrument Science and Engineering, Southeast University, Nanjing, 210023, China
| | - Xiaohui Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
5
|
Yu S, Wang J, Liang M, Shang J, Chen Y, Liu X, Song D, Wang F. Rational Engineering of a Multifunctional DNA Assembly for Enhanced Antibacterial Efficacy and Accelerated Wound Healing. Adv Healthc Mater 2024; 13:e2300694. [PMID: 37846795 DOI: 10.1002/adhm.202300694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Indexed: 10/18/2023]
Abstract
DNA-based assemblies hold immense prospects for antibacterial application, yet are constrained by their poor specificity and deficient antibacterial delivery. Herein, the fabrication of a versatile rolling circle amplification (RCA)-sustained DNA assembly is reported, encoding simultaneously with multivalent aptamers and tandem antibacterial agents, for target-specific and efficient antibacterial application. In the compact RCA-sustained antibacterial platform, the facilely organized multivalent aptamers guarantee the target bacteria-specific delivery of sufficient antibacterial agents which is assembled through DNA-stabilizing silver nanostructures. It is shown that the biocompatible DNA system could enhance bacteria elimination and simultaneously facilitate wound healing in vivo. By virtue of the programmable RCA assembly, the present RCA-sustained system provides a highly modular and scalable approach to design versatile multifunctional therapeutic systems.
Collapse
Affiliation(s)
- Shanshan Yu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Jing Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Meijuan Liang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Jinhua Shang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Yingying Chen
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaoqing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
| | - Dengpeng Song
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Fuan Wang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, College of Chemistry and Molecular Sciences, Research Institute of Shenzhen, Wuhan University, Wuhan, 430072, P. R. China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, 430072, P. R. China
| |
Collapse
|
6
|
Setzler C, Arrington CA, Lewis D, Petty JT. Breaching the Fortress: Photochemistry of DNA-Caged Ag 106. J Phys Chem B 2023; 127:10851-10860. [PMID: 38054435 PMCID: PMC10749453 DOI: 10.1021/acs.jpcb.3c06358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
A DNA strand can encapsulate a silver molecule to create a nanoscale, aqueous stable chromophore. A protected cluster that strongly fluoresces can also be weakly photolabile, and we describe the laser-driven photochemistry of the green fluorophore C4AC4TC3GT4/Ag106+. The embedded cluster is selectively photoexcited at 490 nm and then bleached, and we describe how the efficiency, products, and route of this photochemical reaction are controlled by the DNA cage. With irradiation at 496.5 nm, the cluster absorption progressively drops to give a photodestruction quantum yield of 1.5 (±0.2) × 10-4, ∼103× less efficient than fluorescence. A new λabs = 335 nm chromophore develops because the precursor with 4 Ag0 is converted into a group of clusters with 2 Ag0 - Ag64+, Ag75+, Ag86+, and Ag97+. The 4-7 Ag+ in this series are chemically distinct from the 2 Ag0 because they are selectively etched by iodide. This halide precipitates silver to favor only the smallest Ag64+ cluster, but the larger clusters re-develop when the precipitated Ag+ ions are replenished. DNA-bound Ag106+ decomposes because it is electronically excited and then reacts with oxygen. This two-step process may be state-specific because O2 quenches the red luminescence from Ag106+. However, the rate constant of 2.3 (±0.2) × 106 M-1 s-1 is relatively small, which suggests that the surrounding DNA matrix hinders O2 diffusion. On the basis of analogous photoproducts with methylene blue, we propose that a reactive oxygen species is produced and then oxidizes Ag106+ to leave behind a loose Ag+-DNA skeleton. These findings underscore the ability of DNA scaffolds to not only tune the spectra but also guide the reactions of their molecular silver adducts.
Collapse
Affiliation(s)
- Caleb
J. Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
7
|
Guha R, Gonzàlez-Rosell A, Rafik M, Arevalos N, Katz BB, Copp SM. Electron count and ligand composition influence the optical and chiroptical signatures of far-red and NIR-emissive DNA-stabilized silver nanoclusters. Chem Sci 2023; 14:11340-11350. [PMID: 37886084 PMCID: PMC10599602 DOI: 10.1039/d3sc02931j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/09/2023] [Indexed: 10/28/2023] Open
Abstract
Near-infrared (NIR) emissive DNA-stabilized silver nanoclusters (AgN-DNAs) are promising fluorophores in the biological tissue transparency windows. Hundreds of NIR-emissive AgN-DNAs have recently been discovered, but their structure-property relationships remain poorly understood. Here, we investigate 19 different far-red and NIR emissive AgN-DNA species stabilized by 10-base DNA templates, including well-studied emitters whose compositions and chiroptical properties have never been reported before. The molecular formula of each purified species is determined by high-resolution mass spectrometry and correlated to its optical absorbance, emission, and circular dichroism (CD) spectra. We find that there are four distinct compositions for AgN-DNAs emissive at the far red/NIR spectral border. These emitters are either 8-electron clusters stabilized by two DNA oligomer copies or 6-electron clusters with one of three different ligand compositions: two oligomer copies, three oligomer copies, or two oligomer copies with additional chlorido ligands. Distinct optical and chiroptical signatures of 6-electron AgN-DNAs correlate with each ligand composition. AgN-DNAs with three oligomer ligands exhibit shorter Stokes shifts than AgN-DNAs with two oligomers, and AgN-DNAs with chlorido ligands have increased Stokes shifts and significantly suppressed visible CD transitions. Nanocluster electron count also significantly influences electronic structure and optical properties, with 6-electron and 8-electron AgN-DNAs exhibiting distinct absorbance and CD spectral features. This study shows that the optical and chiroptical properties of NIR-emissive AgN-DNAs are highly sensitive to nanocluster composition and illustrates the diversity of structure-property relationships for NIR-emissive AgN-DNAs, which could be harnessed to precisely tune these emitters for bioimaging applications.
Collapse
Affiliation(s)
- Rweetuparna Guha
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Malak Rafik
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Nery Arevalos
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
| | - Benjamin B Katz
- Department of Chemistry, University of California Irvine CA 92697 USA
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine CA 92697 USA
- Department of Physics and Astronomy, University of California Irvine CA 92697 USA
- Department of Chemical and Biomolecular Engineering, University of California Irvine CA 92697 USA
| |
Collapse
|
8
|
Mastracco P, Copp SM. Beyond nature's base pairs: machine learning-enabled design of DNA-stabilized silver nanoclusters. Chem Commun (Camb) 2023; 59:10360-10375. [PMID: 37575075 DOI: 10.1039/d3cc02890a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sequence-encoded biomolecules such as DNA and peptides are powerful programmable building blocks for nanomaterials. This paradigm is enabled by decades of prior research into how nucleic acid and amino acid sequences dictate biomolecular interactions. The properties of biomolecular materials can be significantly expanded with non-natural interactions, including metal ion coordination of nucleic acids and amino acids. However, these approaches present design challenges because it is often not well-understood how biomolecular sequence dictates such non-natural interactions. This Feature Article presents a case study in overcoming challenges in biomolecular materials with emerging approaches in data mining and machine learning for chemical design. We review progress in this area for a specific class of DNA-templated metal nanomaterials with complex sequence-to-property relationships: DNA-stabilized silver nanoclusters (AgN-DNAs) with bright, sequence-tuned fluorescence colors and promise for biophotonics applications. A brief overview of machine learning concepts is presented, and high-throughput experimental synthesis and characterization of AgN-DNAs are discussed. Then, recent progress in machine learning-guided design of DNA sequences that select for specific AgN-DNA fluorescence properties is reviewed. We conclude with emerging opportunities in machine learning-guided design and discovery of AgN-DNAs and other sequence-encoded biomolecular nanomaterials.
Collapse
Affiliation(s)
- Peter Mastracco
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California, Irvine, California 92697, USA.
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| |
Collapse
|
9
|
Gupta AK, Marshall N, Yourston L, Rolband L, Beasock D, Danai L, Skelly E, Afonin KA, Krasnoslobodtsev AV. Optical, structural, and biological properties of silver nanoclusters formed within the loop of a C-12 hairpin sequence. NANOSCALE ADVANCES 2023; 5:3500-3511. [PMID: 37383066 PMCID: PMC10295035 DOI: 10.1039/d3na00092c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/04/2023] [Indexed: 06/30/2023]
Abstract
Silver nanoclusters (AgNCs) are the next-generation nanomaterials representing supra-atomic structures where silver atoms are organized in a particular geometry. DNA can effectively template and stabilize these novel fluorescent AgNCs. Only a few atoms in size - the properties of nanoclusters can be tuned using only single nucleobase replacement of C-rich templating DNA sequences. A high degree of control over the structure of AgNC could greatly contribute to the ability to fine-tune the properties of silver nanoclusters. In this study, we explore the properties of AgNCs formed on a short DNA sequence with a C12 hairpin loop structure (AgNC@hpC12). We identify three types of cytosines based on their involvement in the stabilization of AgNCs. Computational and experimental results suggest an elongated cluster shape with 10 silver atoms. We found that the properties of the AgNCs depend on the overall structure and relative position of the silver atoms. The emission pattern of the AgNCs depends strongly on the charge distribution, while all silver atoms and some DNA bases are involved in optical transitions based on molecular orbital (MO) visualization. We also characterize the antibacterial properties of silver nanoclusters and propose a possible mechanism of action based on the interactions of AgNCs with molecular oxygen.
Collapse
Affiliation(s)
- Akhilesh Kumar Gupta
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Nolan Marshall
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Liam Yourston
- Department of Physics, University of Nebraska at Omaha Omaha NE 68182 USA +1402-554-3723
| | - Lewis Rolband
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Damian Beasock
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Leyla Danai
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Elizabeth Skelly
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte Charlotte NC 28223 USA
| | | |
Collapse
|
10
|
Liasi Z, Hillers-Bendtsen AE, Jensen L, Mikkelsen KV. Elucidating the Mystery of DNA-Templating Effects on a Silver Nanocluster. J Phys Chem Lett 2023:5727-5733. [PMID: 37318362 DOI: 10.1021/acs.jpclett.3c00977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This presentation considers the effects that DNA-templating has on the optical properties of a 16-atom silver cluster. To accomplish this, hybrid quantum mechanical and molecular mechanical simulations of a Ag16-DNA complex have been carried out and compared with pure time-dependent density functional theory calculations of two Ag16 clusters in vacuum. The presented results show that the templating DNA polymers both red-shift the one-photon absorption of the silver cluster and increase its intensity. This occurs through a change in cluster shape prompted by the structural constraints of the DNA ligands combined with silver-DNA interactions. The overall charge of the cluster also contributes to the observed optical response, as oxidation of the cluster results in a simultaneous blue-shift of the one-photon absorption and a decrease in intensity. Additionally, the changes in shape and environment also lead to a blue-shift and enhancement of the two-photon absorption.
Collapse
Affiliation(s)
- Zacharias Liasi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | - Lasse Jensen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
11
|
Lewis D, Setzler C, Goodwin PM, Thomas K, Branham M, Arrington CA, Petty JT. Interrupted DNA and Slow Silver Cluster Luminescence. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:10574-10584. [PMID: 37313118 PMCID: PMC10258842 DOI: 10.1021/acs.jpcc.3c01050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Indexed: 06/15/2023]
Abstract
A DNA-silver cluster conjugate is a hierarchical chromophore with a partly reduced silver core embedded within the DNA nucleobases that are covalently linked by the phosphodiester backbone. Specific sites within a polymeric DNA can be targeted to spectrally tune the silver cluster. Here, the repeated (C2A)6 strand is interrupted with a thymine, and the resulting (C2A)2-T-(C2A)4 forms only Ag106+, a chromophore with both prompt (∼1 ns) green and sustained (∼102 μs) red luminescence. Thymine is an inert placeholder that can be removed, and the two fragments (C2A)2 and (C2A)4 also produce the same Ag106+ adduct. In relation to (C2A)2T(C2A)4, the (C2A)2 + (C2A)4 pair is distinguished because the red Ag106+ luminescence is ∼6× lower, relaxes ∼30% faster, and is quenched ∼2× faster with O2. These differences suggest that a specific break in the phosphodiester backbone can regulate how a contiguous vs broken scaffold wraps and better protects its cluster adduct.
Collapse
Affiliation(s)
- David Lewis
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb Setzler
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Peter M. Goodwin
- Center
for Integrated Nanotechnologies, Mail Stop K771, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Kirsten Thomas
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Makayla Branham
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| | - Caleb A. Arrington
- Department
of Chemistry, Wofford College, Spartanburg, South Carolina 29303, United States
| | - Jeffrey T. Petty
- Department
of Chemistry, Furman University, Greenville, South Carolina 29163, United States
| |
Collapse
|
12
|
David F, Setzler C, Sorescu A, Lieberman RL, Meilleur F, Petty JT. Mapping H + in the Nanoscale (A 2C 4) 2-Ag 8 Fluorophore. J Phys Chem Lett 2022; 13:11317-11322. [PMID: 36453924 DOI: 10.1021/acs.jpclett.2c03161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
When strands of DNA encapsulate silver clusters, supramolecular optical chromophores develop. However, how a particular structure endows a specific spectrum remains poorly understood. Here, we used neutron diffraction to map protonation in (A2C4)2-Ag8, a green-emitting fluorophore with a "Big Dipper" arrangement of silvers. The DNA host has two substructures with distinct protonation patterns. Three cytosines from each strand collectively chelate handle-like array of three silvers, and calorimetry studies suggest Ag+ cross-links. The twisted cytosines are further joined by hydrogen bonds from fully protonated amines. The adenines and their neighboring cytosine from each strand anchor a dipper-like group of five silvers via their deprotonated endo- and exocyclic nitrogens. Typically, exocyclic amines are strongly basic, so their acidification and deprotonation in (A2C4)2-Ag8 suggest that silvers perturb the electron distribution in the aromatic nucleobases. The different protonation states in (A2C4)2-Ag8 suggest that atomic level structures can pinpoint how to control and tune the electronic spectra of these nanoscale chromophores.
Collapse
Affiliation(s)
- Fred David
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caleb Setzler
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Alexandra Sorescu
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Flora Meilleur
- Department of Molecular and Structural Biochemistry, North Carolina State University, Campus Box 7622, Raleigh, North Carolina 27695, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, United States
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
13
|
Mastracco P, Gonzàlez-Rosell A, Evans J, Bogdanov P, Copp SM. Chemistry-Informed Machine Learning Enables Discovery of DNA-Stabilized Silver Nanoclusters with Near-Infrared Fluorescence. ACS NANO 2022; 16:16322-16331. [PMID: 36124941 PMCID: PMC9620400 DOI: 10.1021/acsnano.2c05390] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DNA can stabilize silver nanoclusters (AgN-DNAs) whose atomic sizes and diverse fluorescence colors are selected by nucleobase sequence. These programmable nanoclusters hold promise for sensing, bioimaging, and nanophononics. However, DNA's vast sequence space challenges the design and discovery of AgN-DNAs with tailored properties. In particular, AgN-DNAs with bright near-infrared luminescence above 800 nm remain rare, placing limits on their applications for bioimaging in the tissue transparency windows. Here, we present a design method for near-infrared emissive AgN-DNAs. By combining high-throughput experimentation and machine learning with fundamental information from AgN-DNA crystal structures, we distill the salient DNA sequence features that determine AgN-DNA color, for the entire known spectral range of these nanoclusters. A succinct set of nucleobase staple features are predictive of AgN-DNA color. By representing DNA sequences in terms of these motifs, our machine learning models increase the design success for near-infrared emissive AgN-DNAs by 12.3 times as compared to training data, nearly doubling the number of known AgN-DNAs with bright near-infrared luminescence above 800 nm. These results demonstrate how incorporating known structure-property relationships into machine learning models can enhance materials study and design, even for sparse and imbalanced training data.
Collapse
Affiliation(s)
- Peter Mastracco
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Anna Gonzàlez-Rosell
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
| | - Joshua Evans
- Chaffey
Community College, Rancho
Cucamonga, California 91737, United States
| | - Petko Bogdanov
- Department
of Computer Science, University at Albany-SUNY, Albany, New York 12222, United States
| | - Stacy M. Copp
- Department
of Materials Science and Engineering, University
of California, Irvine, California 92697, United States
- Department
of Physics and Astronomy, University of
California, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Email
for S.M.C.:
| |
Collapse
|
14
|
Zhang Y, Yang C, He J, Zuo S, Shang X, Gao J, Yuan R, Xu W. Target DNA-Activating Proximity-Localized Catalytic Hairpin Assembly Enables Forming Split-DNA Ag Nanoclusters for Robust and Sensitive Fluorescence Biosensing. Anal Chem 2022; 94:14947-14955. [PMID: 36269062 DOI: 10.1021/acs.analchem.2c02733] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proximity-localized catalytic hairpin assembly (plCHA) is intriguing for rapid and sensitive assay of an HIV-specific DNA segment (T*). Using template-integrated green Ag nanoclusters (igAgNCs) as emitters, herein, we report the first design of a T*-activated plCHA circuit that is confined in a three-way-junction architecture (3WJA) for the fluorescence sensing of T*. To this end, the T*-recognizable complement is programmed in a stem-loop hairpin (H1), and two split template sequences of igAgNCs are separately overhung contiguous to the paired stems of H1 and another hairpin (H2). The hybridization among H1, H2, and two single-stranded linkers (L1 and L2) allows the stable construction of 3WJA. Upon presenting the input T*, the 3WJA-localized plCHA is operated through toehold-mediated strand displacements of H1 and H2 reactants, and T* is rationally displaced and repeatably recycled, analogous to a specific catalyst, inducing more hairpin assembly events. Resultantly, the hybridized products enable the collective combination of two splits in the parent scaffold for hosting igAgNCs, outputting T*-dependent fluorescence response. Because of 3WJA structural confinement, the spatial proximity of two reactive hairpins yielded high local concentrations to manipulate the plCHA operation, achieving rapider reaction kinetics via T*-catalyzed recycling than typical catalytic hairpin assembly (CHA). This simple assay strategy would open the arena to develop various plCHA-based circuits capable of modulating the fluorescence emission of igAgNCs for applicable biosensing and bioanalysis.
Collapse
Affiliation(s)
- Yuqing Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Chunli Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Jiayang He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Siyu Zuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Xin Shang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Jiaxi Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Wenju Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| |
Collapse
|
15
|
Kuo YA, Jung C, Chen YA, Kuo HC, Zhao OS, Nguyen TD, Rybarski JR, Hong S, Chen YI, Wylie DC, Hawkins JA, Walker JN, Shields SWJ, Brodbelt JS, Petty JT, Finkelstein IJ, Yeh HC. Massively Parallel Selection of NanoCluster Beacons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204957. [PMID: 35945159 PMCID: PMC9588665 DOI: 10.1002/adma.202204957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
NanoCluster Beacons (NCBs) are multicolor silver nanocluster probes whose fluorescence can be activated or tuned by a proximal DNA strand called the activator. While a single-nucleotide difference in a pair of activators can lead to drastically different activation outcomes, termed polar opposite twins (POTs), it is difficult to discover new POT-NCBs using the conventional low-throughput characterization approaches. Here, a high-throughput selection method is reported that takes advantage of repurposed next-generation-sequencing chips to screen the activation fluorescence of ≈40 000 activator sequences. It is found that the nucleobases at positions 7-12 of the 18-nucleotide-long activator are critical to creating bright NCBs and positions 4-6 and 2-4 are hotspots to generate yellow-orange and red POTs, respectively. Based on these findings, a "zipper-bag" model is proposed that can explain how these hotspots facilitate the formation of distinct silver cluster chromophores and alter their chemical yields. Combining high-throughput screening with machine-learning algorithms, a pipeline is established to design bright and multicolor NCBs in silico.
Collapse
Affiliation(s)
- Yu-An Kuo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Cheulhee Jung
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Korea
| | - Yu-An Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hung-Che Kuo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Oliver S Zhao
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Trung D Nguyen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - James R Rybarski
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuan-I Chen
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dennis C Wylie
- Computational Biology and Bioinformatics, Center for Biomedical Research Support, University of Texas at Austin, Austin, TX, 78712, USA
| | - John A Hawkins
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Jada N Walker
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Samuel W J Shields
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, SC, 29617, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
- Texas Materials Institute, University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
16
|
Zheng B, Pan B, Xu S, Xu Z, Lu G, Wang F, Fang B, Xu C. Detection of inflammatory bowel disease (IBD)-associated microRNAs by two color DNA-templated silver nanoclusters fluorescent probes. SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121185. [PMID: 35395459 DOI: 10.1016/j.saa.2022.121185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/28/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Researches demonstrated that circulating miRNAs could be used as novel diagnostic and prognostic potential markers for patients with inflammatory bowel diseases (IBD). It is of great significance in clinical to develop rapid and specific detection methods for miRNAs. Herein, we established a fluorescent probe for ulcerative colitis (UC) activity-associated two serum biomarkers (miR-23a and miR-223) simultaneous detection, which used multi-color fluorescent DNA-stabilized silver nanoclusters (DNA-AgNC) illuminated by a close guanine (G)-rich sequence as a signal transducer and two split DNA probes as recognition units. In principle, the two DNA probe sequences containing AgNC nucleation sequence and G-rich sequence respectively, formed a ternary complex when in the presence of target miRNA through base pairing, so as to induce enhancement of fluorescence emission of AgNC by shortening the distance from G-rich sequence. The combined probes for miR-23a and miR-223 detection generated increased fluorescence signals at 460 nm ex/545 nm em and at 560 nm ex/630 nm em, respectively. With this technique, we successfully quantified the two target miRNAs with high selectivity. Furthermore, the potential clinic applicability of this method was verified by testing the spiked standard miRNAs in human serum. Thus, this one-step, low-cost, and homogenous method offers a great opportunity for disease-associated multiplex miRNAs simultaneous detection.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Binhui Pan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Sheng Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Zhihua Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - FangYan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Biyun Fang
- School of Basic Medical Sciences, Xi'an Key Laboratory of Immune Related Diseases, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - ChangLong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
17
|
Petty JT, Lewis D, Carnahan S, Kim D, Couch C. Tug-of-War between DNA Chelation and Silver Agglomeration in DNA-Silver Cluster Chromophores. J Phys Chem B 2022; 126:3822-3830. [PMID: 35594191 DOI: 10.1021/acs.jpcb.2c01054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Supramolecular chromophores form when a DNA traps silvers that then coalesce into clusters with discrete, molecular electronic states. However, DNA strands are polymeric ligands that disperse silvers and thus curb agglomeration. We study this competition using two chromophores that share three common components: a dimeric DNA scaffold, Ag+-nucleobase base pairs, and Ag0 chromophores. The DNA host C4-A2-iC4T mimics structural elements in a DNA-cluster crystal structure using a phosphodiester backbone with combined 5' → 3' and 3' → 5' (indicated by "i") directions. The backbone directions must alternate to form the two silver clusters, and this interdependence supports a silver-linked structure. This template creates two chromophores with distinct sizes, charges, and hence spectra: (C4-A2-iC4T)2/Ag117+ with λabs/λem = 430/520 nm and (C4-A2-iC4T)2/Ag148+ with λabs/λem = 510/630 nm. The Ag+ and Ag0 constituents in these partially oxidized clusters are linked with structural elements in C4-A2-iC4T. Ag+ alone binds sparsely but strongly to form C4-A2-iC4T/3-4 Ag+ and (C4-A2-iC4T)2/7-8 Ag+ complexes, and these stoichiometries suggest that Ag+ cross-links pairs of cytosines to form a hairpin with a metallo-C4/iC4 duplex and an adenine loop. The Ag0 are chemically orthogonal because they can be oxidatively etched without disrupting the underlying Ag+-DNA matrix, and their reactivity is attributed to their valence electrons and weaker chelation by the adenines. These studies suggest that Ag+ disperses with the cytosines to create an adenine binding pocket for the Ag0 cluster chromophores.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - David Lewis
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Savannah Carnahan
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Caroline Couch
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| |
Collapse
|
18
|
Wu Q, Liu C, Cui C, Li L, Yang L, Liu Y, Safari Yazd H, Xu S, Li X, Chen Z, Tan W. Plasmon Coupling in DNA-Assembled Silver Nanoclusters. J Am Chem Soc 2021; 143:14573-14580. [PMID: 34464111 DOI: 10.1021/jacs.1c04949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Quantum-size metal clusters with multiple delocalized electrons could support collective plasmon excitation, and thus, theoretically, coupling of plasmons in the few-atom limit might exist between assembled metal clusters, while currently few experimental observations about this phenomenon have been reported. Here we examined the optical absorption of DNA-templated Ag nanoclusters (DNA-AgNCs) assembled through DNA hybridization and found their absorption peaks were sensitive to the assembled distances, which share common characteristics with classical plasmon coupling. Dipolar charge distribution, multiple transition contributed optical absorption, and strongly enhanced electric field simulated by time-dependent density functional theory (TDDFT) indicated the origin of the absorption of individual DNA-AgNCs is a plasmon. The consistency of the peak-shifting trend between experimental and simulation results for assembled DNA-AgNCs suggested the possible presence of plasmon coupling. Our data imply the possibility for quantum-size structures to support plasmon coupling and also show that DNA-AgNCs possess the potential to be promising materials for construction of plasmon-coupling devices with ultrasmall size, site-specific and stoichiometric binding abilities, and biocompatibility.
Collapse
Affiliation(s)
- Qiong Wu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Chengcheng Liu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Cheng Cui
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Long Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Lu Yang
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yuan Liu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Hoda Safari Yazd
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Shujuan Xu
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Xiang Li
- Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Center for Research at Bio/Nano Interface, Department of Chemistry and Department of Physiology and Functional Genomics, UF Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Zhang Y, He C, de La Harpe K, Goodwin PM, Petty JT, Kohler B. A single nucleobase tunes nonradiative decay in a DNA-bound silver cluster. J Chem Phys 2021; 155:094305. [PMID: 34496579 DOI: 10.1063/5.0056836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
DNA strands are polymeric ligands that both protect and tune molecular-sized silver cluster chromophores. We studied single-stranded DNA C4AC4TC3XT4 with X = guanosine and inosine that form a green fluorescent Ag10 6+ cluster, but these two hosts are distinguished by their binding sites and the brightness of their Ag10 6+ adducts. The nucleobase subunits in these oligomers collectively coordinate this cluster, and fs time-resolved infrared spectra previously identified one point of contact between the C2-NH2 of the X = guanosine, an interaction that is precluded for inosine. Furthermore, this single nucleobase controls the cluster fluorescence as the X = guanosine complex is ∼2.5× dimmer. We discuss the electronic relaxation in these two complexes using transient absorption spectroscopy in the time window 200 fs-400 µs. Three prominent features emerged: a ground state bleach, an excited state absorption, and a stimulated emission. Stimulated emission at the earliest delay time (200 fs) suggests that the emissive state is populated promptly following photoexcitation. Concurrently, the excited state decays and the ground state recovers, and these changes are ∼2× faster for the X = guanosine compared to the X = inosine cluster, paralleling their brightness difference. In contrast to similar radiative decay rates, the nonradiative decay rate is 7× higher with the X = guanosine vs inosine strand. A minor decay channel via a dark state is discussed. The possible correlation between the nonradiative decay and selective coordination with the X = guanosine/inosine suggests that specific nucleobase subunits within a DNA strand can modulate cluster-ligand interactions and, in turn, cluster brightness.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Chen He
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Kimberly de La Harpe
- Department of Physics, United States Air Force Academy, U.S. Air Force Academy, Colorado 80840, USA
| | - Peter M Goodwin
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Mail Stop K771, Los Alamos, New Mexico 87545, USA
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|
20
|
Petty JT, Carnahan S, Kim D, Lewis D. Long-lived Ag 10 6+ luminescence and a split DNA scaffold. J Chem Phys 2021; 154:244302. [PMID: 34241360 DOI: 10.1063/5.0056214] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Molecular silver clusters emit across the visible to near-infrared, and specific chromophores can be formed using DNA strands. We study C4AC4TC3G that selectively coordinates and encapsulates Ag10 6+, and this chromophore has two distinct electronic transitions. The green emission is strong and prompt with ϕ = 18% and τ = 1.25 ns, and the near-infrared luminescence is weaker, slower with τ = 50 µs, and is partly quenched by oxygen, suggesting phosphorescence. This lifetime can be modulated by the DNA host, and we consider two derivatives of C4AC4TC3G with similar sequences but distinct structures. In one variant, thymine was excised to create an abasic gap in an otherwise intact strand. In the other, the covalent phosphate linkage was removed to split the DNA scaffold into two fragments. In relation to the contiguous strands, the broken template speeds the luminescence decay by twofold, and this difference may be due to greater DNA flexibility. These modifications suggest that a DNA can be structurally tuned to modulate metastable electronic states in its silver cluster adducts.
Collapse
Affiliation(s)
- Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Savannah Carnahan
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| | - David Lewis
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, USA
| |
Collapse
|
21
|
Qiao Z, Zhang J, Hai X, Yan Y, Song W, Bi S. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosens Bioelectron 2021; 176:112898. [PMID: 33358287 DOI: 10.1016/j.bios.2020.112898] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/03/2020] [Accepted: 12/03/2020] [Indexed: 12/19/2022]
Abstract
As a kind of promising nanomaterials, metal nanoclusters (MNCs) generally composed of several to hundreds of metal atoms have received increasing interest owing to their unique properties, such as ultrasmall size (<2 nm), fascinating physical and chemical properties, and so on. Recently, template-assisted synthesis of MNCs (e.g., Au, Ag, Cu, Pt and Cd) has attracted extensive attention in biological fields. Up to now, various templates (e.g., dendrimers, polymers, DNAs, proteins and peptides) with different configurations and spaces have been applied to prepare MNCs with the advantages of facile preparation, controllable size, good water-solubility and biocompatibility. Herein, we focus on the recent advances in the template-assisted synthesis of MNCs, including the templates used to synthesize MNCs, and their applications in biosensing, bioimaging, and disease theranostics. Finally, the challenges and future perspectives of template-assisted synthesized MNCs are highlighted. We believe that this review could not only arouse more interest in MNCs but also promote their further development and applications by presenting the recent advances in this area to researchers from various fields, such as chemistry, material science, physiology, biomedicine, and so on.
Collapse
Affiliation(s)
- Zhenjie Qiao
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Jian Zhang
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Xin Hai
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Yongcun Yan
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China
| | - Weiling Song
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Sai Bi
- Research Center for Intelligent and Wearable Technology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, PR China.
| |
Collapse
|
22
|
Gonzàlez-Rosell A, Cerretani C, Mastracco P, Vosch T, Copp SM. Structure and luminescence of DNA-templated silver clusters. NANOSCALE ADVANCES 2021; 3:1230-1260. [PMID: 36132866 PMCID: PMC9417461 DOI: 10.1039/d0na01005g] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/21/2021] [Indexed: 05/05/2023]
Abstract
DNA serves as a versatile template for few-atom silver clusters and their organized self-assembly. These clusters possess unique structural and photophysical properties that are programmed into the DNA template sequence, resulting in a rich palette of fluorophores which hold promise as chemical and biomolecular sensors, biolabels, and nanophotonic elements. Here, we review recent advances in the fundamental understanding of DNA-templated silver clusters (Ag N -DNAs), including the role played by the silver-mediated DNA complexes which are synthetic precursors to Ag N -DNAs, structure-property relations of Ag N -DNAs, and the excited state dynamics leading to fluorescence in these clusters. We also summarize the current understanding of how DNA sequence selects the properties of Ag N -DNAs and how sequence can be harnessed for informed design and for ordered multi-cluster assembly. To catalyze future research, we end with a discussion of several opportunities and challenges, both fundamental and applied, for the Ag N -DNA research community. A comprehensive fundamental understanding of this class of metal cluster fluorophores can provide the basis for rational design and for advancement of their applications in fluorescence-based sensing, biosciences, nanophotonics, and catalysis.
Collapse
Affiliation(s)
- Anna Gonzàlez-Rosell
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Cecilia Cerretani
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Peter Mastracco
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5 2100 Copenhagen Denmark
| | - Stacy M Copp
- Department of Materials Science and Engineering, University of California Irvine California 92697-2585 USA
- Department of Physics and Astronomy, University of California Irvine California 92697-4575 USA
| |
Collapse
|
23
|
Ma J, Niu H, Gu S. The spatial organization of trace silver atoms on a DNA template. RSC Adv 2020; 11:1153-1163. [PMID: 35423706 PMCID: PMC8693506 DOI: 10.1039/d0ra08066g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
DNA with programmable information can be used to encode the spatial organization of silver atoms. Based on the primary structures of a DNA template containing a controllable base arrangement and number, the surrounding environment and cluster together can induce the folding of the DNA template into an appropriate secondary structure for forming AgNCs with different fluorescence emissions, such as i-motif, G-quadruplex, dimeric template, triplex, monomeric or dimeric C-loop, emitter pair, and G-enhancer/template conjugate. Stimuli can induce the dynamic structural transformation of the DNA template with a recognition site for favourably or unfavourably forming AgNCs, along with varied fluorescence intensities and colours. The array of several or more of the same and different clusters can be performed on simple and complex nanostructures, while maintaining their original properties. By sorting out this review, we systematically conclude the link between the performance of AgNCs and the secondary structure of the DNA template, and summarize the precise arrangement of nanoclusters on DNA nanotechnology. This clear review on the origin and controllability of AgNCs based on the secondary structure of the DNA template is beneficial for exploring the new probe and optical devices.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Huawei Niu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
24
|
Zhang Y, He C, Petty JT, Kohler B. Time-Resolved Vibrational Fingerprints for Two Silver Cluster-DNA Fluorophores. J Phys Chem Lett 2020; 11:8958-8963. [PMID: 33030904 DOI: 10.1021/acs.jpclett.0c02486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
DNA-templated silver clusters are chromophores in which the nucleobases encode the cluster spectra and brightness. We describe the coordination environments of two nearly identical Ag106+ clusters that form with 18-nucleotide strands CCCCA CCCCT CCCX TTTT, with X = guanosine and inosine. For the first time, femtosecond time-resolved infrared (TRIR) spectroscopy with visible excitation and mid-infrared probing is used to correlate the response of nucleobase vibrational modes to electronic excitation of the metal cluster. A rich pattern of transient TRIR peaks in the 1400-1720 cm-1 range decays synchronously with the visible emission. Specific infrared signatures associated with the single guanosine/inosine along with a subset of cytidines, but not the thymidines, are observed. These fingerprints suggest that the network of bonds between a silver cluster adduct and its polydentate DNA ligands can be deciphered to rationally tune the coordination and thus spectra of molecular silver chromophores.
Collapse
Affiliation(s)
- Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Chen He
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jeffrey T Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
25
|
Jabed MA, Dandu N, Tretiak S, Kilina S. Passivating Nucleobases Bring Charge Transfer Character to Optically Active Transitions in Small Silver Nanoclusters. J Phys Chem A 2020; 124:8931-8942. [PMID: 33079551 DOI: 10.1021/acs.jpca.0c06974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA-wrapped silver nanoclusters (DNA-AgNCs) are known for their efficient luminescence. However, their emission is highly sensitive to the DNA sequence, the cluster size, and its charge state. To get better insights into photophysics of these hybrid systems, simulations based on density functional theory (DFT) are performed. Our calculations elucidate the effect of the structural conformations, charges, solvent polarity, and passivating bases on optical spectra of DNA-AgNCs containing five and six Ag atoms. It is found that inclusion of water in calculations as a polar solvent media results in stabilization of nonplanar conformations of base-passivated clusters, while their planar conformations are more stable in vacuum, similar to the bare Ag5 and Ag6 clusters. Cytosines and guanines interact with the cluster twice stronger than thymines, due to their larger dipole moments. In addition to the base-cluster interactions, hydrogen bonds between bases notably contribute to the structure stabilization. While the relative intensity, line width, and the energy of absorption peaks are slightly changing depending on the cluster charge, conformations, and base types, the overall spectral shape with five well-resolved bands at 2.5-5.5 eV is consistent for all structures. Independent of the passivating bases and the cluster size and charge, the low energy optical transitions at 2.5-3.5 eV exhibit a metal to ligand charge transfer (MLCT) character with the main contribution emerging from Ag-core to the bases. Cytosines facilitate the MLCT character to a larger degree comparing to the other bases. However, the doublet transitions in clusters with the open shell electronic structure (Ag5 and Ag6+) result in appearance of additional red-shifted (<2.5 eV) and optically weak band with negligible MLCT character. The passivated clusters with the closed shell electronic structure (Ag5+ and Ag6) exhibit higher optical intensity of their lowest transitions with much higher MLCT contribution, thus having better potential for emission, than their open shell counterparts.
Collapse
Affiliation(s)
- Mohammed A Jabed
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Naveen Dandu
- Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sergei Tretiak
- Center for Nonlinear Studies, Center for Integrated Nanotechnologies, and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Svetlana Kilina
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
26
|
Han Z, Dong XY, Luo P, Li S, Wang ZY, Zang SQ, Mak TCW. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. SCIENCE ADVANCES 2020; 6:eaay0107. [PMID: 32083176 PMCID: PMC7007243 DOI: 10.1126/sciadv.aay0107] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/23/2019] [Indexed: 05/21/2023]
Abstract
Monolayer-protected atomically precise silver clusters display low photoluminescence (PL) quantum yield (QY) and susceptibility under ambient conditions, and their chiroptical activities also remain underdeveloped. Here, we report enantiomers of an octahedral Ag6 cluster prepared via one-step synthesis using designed chiral ligands at ambient temperature. These clusters exhibit a highest PLQY (300 K) >95.0% and retain their structural integrity and emission up to 150°C in air. Atomically precise structural determination combined with photophysical and computational analysis revealed that thermally activated delayed fluorescence, observed in silver cluster systems, is responsible for the high PLQY, which combines chirality in excited states to generate strong circularly polarized luminescence. These unprecedented findings open up horizons of investigation of monolayer-protected silver clusters for future luminescence applications.
Collapse
Affiliation(s)
- Zhen Han
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xi-Yan Dong
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Peng Luo
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Si Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhao-Yang Wang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Shuang-Quan Zang
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- Corresponding author.
| | - Thomas C. W. Mak
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
27
|
Cerretani C, Kondo J, Vosch T. Removal of the A10 adenosine in a DNA-stabilized Ag16 nanocluster. RSC Adv 2020; 10:23854-23860. [PMID: 35517326 PMCID: PMC9054913 DOI: 10.1039/d0ra02672g] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/13/2020] [Indexed: 12/18/2022] Open
Abstract
The role of the terminal adenosine (A10) on the spectroscopic and structural properties of a previously described DNA-stabilized Ag16 nanocluster (DNA:Ag16NC) is presented. In the original DNA:Ag16NCs (5′-CACCTAGCGA-3′), the A10 nucleobase was involved in an Ag+-mediated interaction with an A10 in a neighboring asymmetric unit, and did not interact with the Ag16NC. Therefore, we synthesized AgNCs embedded in the corresponding 9-base sequence in order to investigate the crystal structure of these new DNA-A10:Ag16NCs and analyze the photophysical properties of the solution and crystalline state. The X-ray crystallography and spectroscopic measurements revealed that the 3′-end adenosine has little importance with respect to the photophysics and structure of the Ag16NCs. Additionally, the new crystallographic data was recorded with higher spatial resolution leading to a more detailed insight in the interactions between the nucleotides and Ag atoms. We investigated the effect of removing the A10 from 5′-CACCTAGCGA-3′ on the photophysical and structural properties of a DNA-stabilized Ag16NC.![]()
Collapse
Affiliation(s)
- Cecilia Cerretani
- Nanoscience Center and Department of Chemistry
- University of Copenhagen
- Copenhagen 2100
- Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences
- Sophia University
- 102-8554 Tokyo
- Japan
| | - Tom Vosch
- Nanoscience Center and Department of Chemistry
- University of Copenhagen
- Copenhagen 2100
- Denmark
| |
Collapse
|
28
|
Blevins MS, Kim D, Crittenden CM, Hong S, Yeh HC, Petty JT, Brodbelt JS. Footprints of Nanoscale DNA-Silver Cluster Chromophores via Activated-Electron Photodetachment Mass Spectrometry. ACS NANO 2019; 13:14070-14079. [PMID: 31755695 PMCID: PMC7047740 DOI: 10.1021/acsnano.9b06470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
DNA-templated silver clusters (AgC) are fluorescent probes and biosensors whose electronic spectra can be tuned by their DNA hosts. However, the underlying rules that relate DNA sequence and structure to DNA-AgC fluorescence and photophysics are largely empirical. Here, we employ 193 nm activated electron photodetachment (a-EPD) mass spectrometry as a hybrid MS3 approach to gain structural insight into these nanoscale chromophores. Two DNA-AgC systems are investigated with a 20 nt single-stranded DNA (ssDNA) and a 28 nt hybrid hairpin/single-stranded DNA (hpDNA). Both oligonucleotides template Ag10 clusters, but the two complexes are distinct chromophores: the former has a violet absorption at 400 nm with no observable emission, while the latter has a blue-green absorption at 490 nm with strong green emission at 550 nm. Via identification of both apo and holo (AgC-containing) sequence ions generated upon a-EPD and mapping areas of sequence dropout, specific DNA regions that encapsulate the AgC are assigned and attributed to the coordination with the DNA nucleobases. These a-EPD footprints are distinct for the two complexes. The ssDNA contacts the cluster via four nucleobases (CCTT) in the central region of the strand, whereas the hpDNA coordinates the cluster via 13 nucleobases (TTCCCGCCTTTTG) in the double-stranded region of the hairpin. This difference is consistent with prior X-ray scattering spectra and suggests that the clusters can adapt to different DNA hosts. More importantly, the a-EPD footprints directly identify the nucleobases that are in direct contact with the AgC. As these contacting nucleobases can tune the electronic structures of the Ag core and protect the AgC from collisional quenching in solution, understanding the DNA-silver contacts within these complexes will facilitate future biosensor designs.
Collapse
Affiliation(s)
- Molly S. Blevins
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Dahye Kim
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | | | - Soonwoo Hong
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Hsin-Chih Yeh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey T. Petty
- Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
| | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Corresponding Author:.
| |
Collapse
|
29
|
Cerretani C, Kanazawa H, Vosch T, Kondo J. Crystal structure of a NIR‐Emitting DNA‐Stabilized Ag
16
Nanocluster. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Cecilia Cerretani
- Department of Chemistry and NanoScience CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Hiroki Kanazawa
- Department of Materials and Life SciencesSophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
- Present address: IBMC-CNRSUniversité de Strasbourg 2 allée Konrad Roentgen 67084 Strasbourg France
| | - Tom Vosch
- Department of Chemistry and NanoScience CenterUniversity of Copenhagen Universitetsparken 5 2100 Copenhagen Denmark
| | - Jiro Kondo
- Department of Materials and Life SciencesSophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
30
|
Cerretani C, Kanazawa H, Vosch T, Kondo J. Crystal structure of a NIR-Emitting DNA-Stabilized Ag 16 Nanocluster. Angew Chem Int Ed Engl 2019; 58:17153-17157. [PMID: 31411360 DOI: 10.1002/anie.201906766] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/29/2019] [Indexed: 12/15/2022]
Abstract
DNA has been used as a scaffold to stabilize small, atomically monodisperse silver nanoclusters, which have attracted attention due to their intriguing photophysical properties. Herein, we describe the X-ray crystal structure of a DNA-encapsulated, near-infrared emitting Ag16 nanocluster (DNA-Ag16 NC). The asymmetric unit of the crystal contains two DNA-Ag16 NCs and the crystal packing between the DNA-Ag16 NCs is promoted by several interactions, such as two silver-mediated base pairs between 3'-terminal adenines, two phosphate-Ca2+ -phosphate interactions, and π-stacking between two neighboring thymines. Each Ag16 NC is confined by two DNA decamers that take on a horse-shoe-like conformation and is almost fully shielded from the solvent environment. This structural insight will aid in the determination of the structure/photophysical property relationship for this class of emitters and opens up new research opportunities in fluorescence imaging and sensing using noble-metal clusters.
Collapse
Affiliation(s)
- Cecilia Cerretani
- Department of Chemistry and NanoScience Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Hiroki Kanazawa
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan.,Present address: IBMC-CNRS, Université de Strasbourg, 2 allée Konrad Roentgen, 67084, Strasbourg, France
| | - Tom Vosch
- Department of Chemistry and NanoScience Center, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Jiro Kondo
- Department of Materials and Life Sciences, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, 102-8554, Tokyo, Japan
| |
Collapse
|
31
|
Shi C, Xing Y, Patil A, Meng Z, Yu R, Lin N, Qiu W, Hu F, Liu XY. Primary and Secondary Mesoscopic Hybrid Materials of Au Nanoparticles@Silk Fibroin and Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30125-30136. [PMID: 31368691 DOI: 10.1021/acsami.9b07846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, we demonstrate the principle of mesoscopic construction of silk fibroin (SF) hybrid materials, which endows the materials with new performance. In implementing this strategy, mediating molecules, wool keratin (WK) molecules, were adopted to in-line synthesize Au nanoparticles (WK@AuNPs), which further create the stable linkage of AuNPs with SF nanofibril networks via templated β-crystallization. Fourier transform infrared spectroscopy, X-ray diffraction, and atomic force microscopy demonstrate that the mesoscopic hybrid network structure of the hybrid materials is different from neat SF materials, which gives rise to various new performances, that is, long-stable fluorescence emission. As the fluorescence emission can be characteristically annealed by Cu ions, therefore be adopted as the highly selective ion probes. Moreover, as WK@AuNPs are homogeneously connected to SF nanofibril networks, the carbonization of the materials leads to secondary hybrid materials of carbon-Au, where nano-sized Au particles are well distributed in carbonized mesoscopic conductive carbon networks. Such hybrid materials of carbon-Au can be further fabricated into electrochemical (i.e., dopamine) sensors, which are demonstrated to have excellent sensing performance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Fan Hu
- Advanced Soft Matter Group, Department of Chemical Engineering , Delft University of Technology , Vander Maasweg 9 , Delft 2629 HZ , The Netherlands
| | - Xiang Yang Liu
- Department of Physics , National University of Singapore , 2 Science Drive 3 , 117542 , Singapore
| |
Collapse
|
32
|
Snyder JA, Charnay AP, Kohl FR, Zhang Y, Kohler B. DNA-like Photophysics in Self-Assembled Silver(I)–Nucleobase Nanofibers. J Phys Chem B 2019; 123:5985-5994. [PMID: 31283245 DOI: 10.1021/acs.jpcb.9b00660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Joshua A. Snyder
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Aaron P. Charnay
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Forrest R. Kohl
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
33
|
Aires A, Llarena I, Moller M, Castro‐Smirnov J, Cabanillas‐Gonzalez J, Cortajarena AL. A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antonio Aires
- CIC biomaGUNE, Parque Tecnológico de San Sebastián Paseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Irantzu Llarena
- CIC biomaGUNE, Parque Tecnológico de San Sebastián Paseo Miramón 182 20014 Donostia-San Sebastián Spain
| | - Marco Moller
- CIC biomaGUNE, Parque Tecnológico de San Sebastián Paseo Miramón 182 20014 Donostia-San Sebastián Spain
| | | | | | - Aitziber L. Cortajarena
- CIC biomaGUNE, Parque Tecnológico de San Sebastián Paseo Miramón 182 20014 Donostia-San Sebastián Spain
- Ikerbasque, Basque Foundation for Science Ma Díaz de Haro 3 48013 Bilbao Spain
| |
Collapse
|
34
|
Aires A, Llarena I, Moller M, Castro‐Smirnov J, Cabanillas‐Gonzalez J, Cortajarena AL. A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. Angew Chem Int Ed Engl 2019; 58:6214-6219. [PMID: 30875448 PMCID: PMC6617723 DOI: 10.1002/anie.201813576] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/19/2019] [Indexed: 12/24/2022]
Abstract
Metal nanoclusters (NCs) are considered ideal nanomaterials for biological applications owing to their strong photoluminescence (PL), excellent photostability, and good biocompatibility. This study presents a simple and versatile strategy to design proteins, via incorporation of a di-histidine cluster coordination site, for the sustainable synthesis and stabilization of metal NCs with different metal composition. The resulting protein-stabilized metal NCs (Prot-NCs) of gold, silver, and copper are highly photoluminescent and photostable, have a long shelf life, and are stable under physiological conditions. The biocompatibility of the clusters was demonstrated in cell cultures in which Prot-NCs showed efficient cell internalization without affecting cell viability or losing luminescence. Moreover, the approach is translatable to other proteins to obtain Prot-NCs for various biomedical applications such as cell imaging or labeling.
Collapse
Affiliation(s)
- Antonio Aires
- CIC biomaGUNE, Parque Tecnológico de San SebastiánPaseo Miramón 18220014Donostia-San SebastiánSpain
| | - Irantzu Llarena
- CIC biomaGUNE, Parque Tecnológico de San SebastiánPaseo Miramón 18220014Donostia-San SebastiánSpain
| | - Marco Moller
- CIC biomaGUNE, Parque Tecnológico de San SebastiánPaseo Miramón 18220014Donostia-San SebastiánSpain
| | | | | | - Aitziber L. Cortajarena
- CIC biomaGUNE, Parque Tecnológico de San SebastiánPaseo Miramón 18220014Donostia-San SebastiánSpain
- Ikerbasque, Basque Foundation for ScienceM Díaz de Haro 348013BilbaoSpain
| |
Collapse
|
35
|
Cerretani C, Vosch T. Switchable Dual-Emissive DNA-Stabilized Silver Nanoclusters. ACS OMEGA 2019; 4:7895-7902. [PMID: 31459877 PMCID: PMC6693819 DOI: 10.1021/acsomega.9b00614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/19/2019] [Indexed: 05/10/2023]
Abstract
We investigated an ss-DNA sequence that can stabilize a red- and a green-emissive silver nanocluster (DNA-AgNC). These two emitters can convert between each other in a reversible way. The change from red- to green-emitting DNA-AgNCs can be triggered by the addition of H2O2, while the opposite conversion can be achieved by the addition of NaBH4. Besides demonstrating the switching between red- and green-emissive DNA-AgNCs and determining the recoverability, we fully characterized the photophysical properties, such as steady-state emission, quantum yield, fluorescence lifetime, and anisotropy of the two emissive species. Understanding the mechanism behind the remarkable conversion between the two emitters could lead to the development of a new range of DNA-AgNC-based ratiometric sensors.
Collapse
|
36
|
Linares F, García-Fernández E, López-Garzón FJ, Domingo-García M, Orte A, Rodríguez-Diéguez A, Galindo MA. Multifunctional behavior of molecules comprising stacked cytosine-Ag I-cytosine base pairs; towards conducting and photoluminescence silver-DNA nanowires. Chem Sci 2019; 10:1126-1137. [PMID: 30774910 PMCID: PMC6346629 DOI: 10.1039/c8sc04036b] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/04/2018] [Indexed: 12/20/2022] Open
Abstract
DNA molecules containing a 1D silver array may be applied for nanotechnology applications, but first their conducting and photoluminescence behavior must be enhanced. Here we have synthesized and characterized three new helical compounds based on stacked silver-mediated cytosine base pairs [Ag(mC)2]X (mC = N1-methylcytosine; X = NO3 (1), BF4 (2) and ClO4 (3)), that contain uninterrupted polymeric AgI chains that run through the center of the helixes, comparable to related silver-DNA structures. The exposure of nanostructures of [Ag(mC)2]BF4 (2) to cold hydrogen plasma stimulates the reduction of the prearranged AgI polymeric chains to metallic silver along the material. This solvent-free reduction strategy leads to the compound [AgI(mC)2]X@Ag0 (2H) that contains uniformly well-distributed silver metallic nanostructures that are responsible for the new conducting and photoluminescence properties of the material. The presence of silver nanostructures alongside compound 2H has been evaluated by means of X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, and X-ray powder diffraction (XRPD). The conducting and photoactive properties of 2H were studied by electrostatic force microscopy (EFM) and conducting-AFM (c-AFM), and photoluminescence microscopy (PL), respectively. The results demonstrate that the presence of well-organized metallic silver nanoentities on the material is responsible for the novel conductivity and photoactive properties of the material. This methodology can be employed for the generation of multifunctional silver-DNA related materials with tailored properties.
Collapse
Affiliation(s)
- Fátima Linares
- Unidad de Microscopía de Fuerza Atómica , Centro de Instrumentación Científica , Universidad de Granada , Paseo Prof. Juan Osorio s/n , 18003 , Granada , Spain .
| | - Emilio García-Fernández
- Departamento de Fisicoquímica , Facultad de Farmacia , Universidad de Granada , Campus Cartuja , 18071 , Granada , Spain
| | - F Javier López-Garzón
- Departamento de Química Inorgánica , Facultad de Ciencias , Universidad de Granada , Avd. Fuentenueva s/n , 18071 , Granada , Spain .
| | - María Domingo-García
- Departamento de Química Inorgánica , Facultad de Ciencias , Universidad de Granada , Avd. Fuentenueva s/n , 18071 , Granada , Spain .
| | - Angel Orte
- Departamento de Fisicoquímica , Facultad de Farmacia , Universidad de Granada , Campus Cartuja , 18071 , Granada , Spain
| | - Antonio Rodríguez-Diéguez
- Departamento de Química Inorgánica , Facultad de Ciencias , Universidad de Granada , Avd. Fuentenueva s/n , 18071 , Granada , Spain .
| | - Miguel A Galindo
- Departamento de Química Inorgánica , Facultad de Ciencias , Universidad de Granada , Avd. Fuentenueva s/n , 18071 , Granada , Spain .
| |
Collapse
|
37
|
Huard DJE, Demissie A, Kim D, Lewis D, Dickson RM, Petty JT, Lieberman RL. Atomic Structure of a Fluorescent Ag 8 Cluster Templated by a Multistranded DNA Scaffold. J Am Chem Soc 2019; 141:11465-11470. [PMID: 30562465 DOI: 10.1021/jacs.8b12203] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multinuclear silver clusters encapsulated by DNA exhibit size-tunable emission spectra and rich photophysics, but their atomic organization is poorly understood. Herein, we describe the structure of one such hybrid chromophore, a green-emitting Ag8 cluster arranged in a Big Dipper-shape bound to the oligonucleotide A2C4. Three 3' cytosine metallo-base pairs stabilize a parallel A-form-like duplex with a 5' adenine-rich pocket, which binds a metallic, trapezoidal-shaped Ag5 moiety via Ag-N bonds to endo- and exocyclic nitrogens of cytosine and adenine. The unique DNA configuration, constrained coordination environment, and templated Ag8 cluster arrangement highlight the reciprocity between the silvers and DNA in adopting this structure. These first atomic details of a DNA-encapsulated Ag cluster fluorophore illuminate many aspects of biological assembly, nanoscience, and metal cluster photophysics.
Collapse
Affiliation(s)
- Dustin J E Huard
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Aida Demissie
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Dahye Kim
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - David Lewis
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Robert M Dickson
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Jeffrey T Petty
- Department of Chemistry , Furman University , Greenville , South Carolina 29613 , United States
| | - Raquel L Lieberman
- School of Chemistry & Biochemistry and Parker H. Petit Institute for Bioengineering and Bioscience , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
38
|
Wang Z, Yang FL, Yang Y, Liu QY, Sun D. Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag 6 kernels. Chem Commun (Camb) 2019; 55:10296-10299. [PMID: 31397445 DOI: 10.1039/c9cc05044b] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Hierarchical nano structures are hard to fabircate. Here, we present three novel hierarchical multi-shell 66-nuclei silver nanoclusters, trapping ultrasmall Ag64+ nano-fragments by nine MoO42- ions. This Ag6@(MoO4)9 core is further wrapped by an outer Ag60 shell. The Ag6 kernel evolves from reduction involving DMF solvent. Carboxylate ligands are very important in the modulation of the polygon patterns on the Ag60 shell.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Jiangsu Normal University, Xuzhou 221116, China.
| | | | | | | | | |
Collapse
|
39
|
Chen Y, Phipps ML, Werner JH, Chakraborty S, Martinez JS. DNA Templated Metal Nanoclusters: From Emergent Properties to Unique Applications. Acc Chem Res 2018; 51:2756-2763. [PMID: 30339358 DOI: 10.1021/acs.accounts.8b00366] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metal nanoclusters containing a few to several hundred atoms with sizes ranging from sub-nanometer to ∼2 nm occupy an intermediate size regime that bridges larger plasmonic nanoparticles and smaller metal complexes. With strong quantum confinement, metal nanoclusters exhibit molecule-like properties. This Account focuses on noble metal nanoclusters that are synthesized within a single stranded DNA template. Compared to other ligand protected metal nanoclusters, DNA-templated metal nanoclusters manifest intriguing physical and chemical properties that are heavily influenced by the design of DNA templates. For example, DNA-templated silver nanoclusters can show bright fluorescence, tunable emission colors, and enhanced stability by tuning the sequence of the encapsulating DNA template. DNA-templated gold nanoclusters can also serve as excellent cocatalysts, which are integratable with other biocatalysts such as enzymes. In this Account, DNA-templated silver and gold nanoclusters are selected as paradigm systems to showcase their emergent properties and unique applications. We first discuss the DNA-templated silver nanoclusters with a focus on the creation of a complementary palette of emission colors, which has potential applications for multiplex assays. The importance of the DNA template toward enhanced stability of silver nanoclusters is also demonstrated. We then introduce a special class of activable fluorescence probes that are based on the fluorescence turn-on phenomena of DNA-templated silver nanoclusters, which are named nanocluster beacons (NCBs). NCBs have distinct advantages over molecular beacons for nucleic acid detection, and their emission mechanisms are also discussed in detail. We then discuss a universal method of creating novel DNA-silver nanocluster aptamers for protein detection with high specificity. The remainder of the Account is devoted to the DNA-templated gold nanoclusters. We demonstrate that DNA-gold nanoclusters can serve as enhancers for enzymatic reduction of oxygen, which is one of the most important reactions in biofuel cells. Although DNA-templated metal nanoclusters are still in their infancy, we anticipate they will emerge as a new type of functional nanomaterial with wide applications in biology and energy science. Future research will focus on the synthesis of size selected DNA-metal nanoclusters with atomic monodispersity, structural determination of different sized DNA-metal nanoclusters, and establishment of structure-property correlations. Some long-standing mysteries, such as the origin of fluorescence and mechanism for emission color tunability, constitute the central questions regarding the photophysical properties of DNA-metal nanoclusters. On the application side, more studies are required to understand the interaction between nanocluster and biological systems. In the foreseeable future, one can expect that new biosensors, catalysts, and functional devices will be invented based on the intriguing properties of well-designed DNA-metal nanoclusters and their composites. Overall, DNA-metal nanoclusters can add additional spotlights into the highly vibrant field of ligand protected, quantum sized metal nanoclusters.
Collapse
Affiliation(s)
- Yuxiang Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - M. Lisa Phipps
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - James H. Werner
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Saumen Chakraborty
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, Mississippi 38677, United States
| | - Jennifer S. Martinez
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, Arizona 86011, United States
| |
Collapse
|
40
|
Cook AW, Hayton TW. Case Studies in Nanocluster Synthesis and Characterization: Challenges and Opportunities. Acc Chem Res 2018; 51:2456-2464. [PMID: 30240192 DOI: 10.1021/acs.accounts.8b00329] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomically precise nanoclusters (APNCs) are an emerging area of nanoscience. Their monodispersity and well-defined arrangement of capping ligands facilitates the interrogation of their fundamental physical properties, allowing for the development of structure-function relationships, as well as their optimization for a variety of applications, including quantum computing, solid-state memory, catalysis, sensing, and imaging. However, APNCs present several unique synthetic and characterization challenges. For example, nanocluster syntheses are infamously low yielding and often generate complicated mixtures. This combination of factors makes nanocluster purification and characterization more difficult than that of typical inorganic or organometallic complexes. Yet, while this fact is undoubtedly true, the past lessons learned from the characterization of inorganic complexes are still useful today. In this Account, we discuss six case studies taken from the recent literature in an attempt to identify common challenges and pitfalls encountered in APNC synthesis and characterization. For example, we show that several reducing agents employed in APNC synthesis, including the commonly used reagent NaBH4, do not always behave as anticipated. Indeed, we highlight one case where NaBH4 reduces the ligand and not the metal center, and other cases where NaBH4 acts as a Brønstead base instead of a reducing agent. In addition, we have identified several instances where the use of phase transfer agents, which were added to mediate APNC formation, played no role in the nanocluster synthesis, and likely made the isolation of pure material more difficult. We have also identified several cases of cluster misidentification driven by spurious or ambiguous characterization data, most commonly collected by mass spectrometry. To address these challenges, we propose that the nanocluster community adopt a standard protocol of characterization, similar to those used by the organometallic and coordination chemistry communities. This protocol requires that many complementary techniques be used in concert to confirm formulation, structure, and analytical purity of APNC samples. Two techniques that are underutilized in this regard are combustion analysis and NMR spectroscopy. NMR spectroscopy, in particular, can provide information on purity and formulation that are difficult to collect with any other technique. X-ray absorption spectroscopy is another powerful method of nanocluster characterization, especially in cases where single crystals for X-ray diffraction are not forthcoming. Chromatographic techniques can also be extremely valuable for assessing purity, but are rarely used during APNC characterization. Our goal with this Account is to begin a discussion with respect to the best protocols for nanocluster synthesis and characterization. We believe that embracing a standard characterization protocol would make APNC synthesis more reliable, thereby accelerating their integration into a variety of technologies.
Collapse
Affiliation(s)
- Andrew W. Cook
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Trevor W. Hayton
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
41
|
Ang Y, Woon W, Yung LYL. The role of spacer sequence in modulating turn-on fluorescence of DNA-templated silver nanoclusters. Nucleic Acids Res 2018; 46:6974-6982. [PMID: 29982768 PMCID: PMC6101541 DOI: 10.1093/nar/gky521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 12/18/2022] Open
Abstract
Guanine activation of fluorescence in DNA templated silver nanoclusters (AgNCs) is an interesting physical phenomenon which has yet to be fully understood to date. While the individual role of cytosine and guanine has been established, there is still a knowledge gap on how the AgNC-DNA system switches from dark to bright state. Here, we present evidence on the universal role of the DNA spacer sequence in physically separating two Ag+-binding cytosine sites to maintain the dark state while holding them together for structural re-organization by the guanine-rich strand to activate the bright state. The extent of turn-on signal could be modulated by adjusting the spacer length and composition. The ATATA spacer sequence was found to have negligible dark state fluorescence and a turn-on effect of 2440-fold, which was almost five times of the highest factor reported to date.
Collapse
Affiliation(s)
- Yan Shan Ang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Wei Wen Elvin Woon
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| | - Lin-Yue Lanry Yung
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585
| |
Collapse
|
42
|
Chen X, Makkonen E, Golze D, Lopez-Acevedo O. Silver-Stabilized Guanine Duplex: Structural and Optical Properties. J Phys Chem Lett 2018; 9:4789-4794. [PMID: 30079734 DOI: 10.1021/acs.jpclett.8b01908] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent experimental duplexes of DNA stabilized by Ag cations, pairing homostrands of guanine-guanine, cytosine-cytosine, adenine-thymine, and thymine-thymine, display much higher stability than the Watson-Crick paired DNA duplexes; these broaden the range of applications for DNA nanotechnology. Here we focus on silver-stabilized guanine duplexes in water. Using hybrid quantum mechanics/molecular mechanics simulations, we propose an atomic structure for the Ag+-mediated guanine duplex with two nucleobases per strand, G2-Ag2+-G2. We then compare experimental and time-dependent density functional theory-simulated electronic circular dichroism (ECD) spectra to validate our results. Both experimental and simulated ECD share two negative peaks around 220 and 280 nm, with no positive signal in the measured wavelength range. We found that the left- or right-handed disposition of bases in the structure has a decisive effect on the signs of the ECD. We conclude that G2-Ag2+-G2 is left-hand-oriented, and extrapolation of this orientation to longer strands gives rise to a left-hand-oriented parallel helix stabilized by interplanar H bonds.
Collapse
Affiliation(s)
- Xi Chen
- Department of Applied Physics , Aalto University , Otakaari 1 , FI-02150 Espoo , Finland
| | - Esko Makkonen
- Department of Applied Physics , Aalto University , Otakaari 1 , FI-02150 Espoo , Finland
| | - Dorothea Golze
- Department of Applied Physics , Aalto University , Otakaari 1 , FI-02150 Espoo , Finland
- Department of Electrical Engineering and Automation , Aalto University , P.O. Box 13500, 00076 Aalto , Finland
| | - Olga Lopez-Acevedo
- Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales , Universidad de Antioquia UdeA ; Calle 70 No. 52-21 , 050010 Medellín , Colombia
| |
Collapse
|
43
|
Jiang X, Du B, Huang Y, Zheng J. Ultrasmall Noble Metal Nanoparticles: Breakthroughs and Biomedical Implications. NANO TODAY 2018; 21:106-125. [PMID: 31327979 PMCID: PMC6640873 DOI: 10.1016/j.nantod.2018.06.006] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a bridge between individual atoms and large plasmonic nanoparticles, ultrasmall (core size <3 nm) noble metal nanoparticles (UNMNPs) have been serving as model for us to fundamentally understand many unique properties of noble metals that can only be observed at an extremely small size scale. With decades'efforts, many significant breakthroughs in the synthesis, characterization and functionalization of UNMNPs have laid down a solid foundation for their future applications in the healthcare. In this review, we aim to tightly correlate these breakthroughs with their biomedical applications and illustrate how to utilize these breakthroughs to address long-standing challenges in the clinical translation of nanomedicines. In the end, we offer our perspective on the remaining challenges and opportunities at the frontier of biomedical-related UNMNPs research.
Collapse
Affiliation(s)
- Xingya Jiang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Bujie Du
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, USA
| |
Collapse
|
44
|
Léon JC, González-Abradelo D, Strassert CA, Müller J. Fluorescent DNA-Templated Silver Nanoclusters from Silver(I)-Mediated Base Pairs. Chemistry 2018; 24:8320-8324. [DOI: 10.1002/chem.201801858] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Indexed: 12/19/2022]
Affiliation(s)
- J. Christian Léon
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstrasse 28/30 48149 Münster Germany
| | - Darío González-Abradelo
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Cristian A. Strassert
- CeNTech and Physikalisches Institut; Westfälische Wilhelms-Universität Münster; Heisenbergstrasse 11 48149 Münster Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie; Westfälische Wilhelms-Universität Münster; Corrensstrasse 28/30 48149 Münster Germany
| |
Collapse
|
45
|
Turnbull MJ, Vaccarello D, Wong J, Yiu YM, Sham TK, Ding Z. Probing the CZTS/CdS heterojunction utilizing photoelectrochemistry and x-ray absorption spectroscopy. J Chem Phys 2018; 148:134702. [PMID: 29626909 DOI: 10.1063/1.5016351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The importance of renewable resources is becoming more and more influential on research due to the depletion of fossil fuels. Cost-effective ways of harvesting solar energy should also be at the forefront of these investigations. Cu2ZnSnS4 (CZTS) solar cells are well within the frame of these goals, and a thorough understanding of how they are made and processed synthetically is crucial. The CZTS/CdS heterojunction was examined using photoelectrochemistry and synchrotron radiation (SR) spectroscopy. These tools provided physical insights into this interface that was formed by the electrophoretic deposition of CZTS nanocrystals and chemical bath deposition (CBD) of CdS for the respective films. It was discovered that CBD induced a change in the local and long range environment of the Zn in the CZTS lattice, which was detrimental to the photoresponse. X-ray absorption near-edge structures and extended X-ray absorption fine structures (EXAFSs) of the junction showed that this change was at an atomic level and was associated with the coordination of oxygen to zinc. This was confirmed through FEFF fitting of the EXAFS and through IR spectroscopy. It was found that this change in both photoresponse and the Zn coordination can be reversed with the use of low temperature annealing. Investigating CZTS through SR techniques provides detailed structural information of minor changes from the zinc perspective.
Collapse
Affiliation(s)
- Matthew J Turnbull
- Department of Chemistry and Soochow University-Western University Centre for Synchrotron Radiation Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Daniel Vaccarello
- Department of Chemistry and Soochow University-Western University Centre for Synchrotron Radiation Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Jonathan Wong
- Department of Chemistry and Soochow University-Western University Centre for Synchrotron Radiation Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Yun Mui Yiu
- Department of Chemistry and Soochow University-Western University Centre for Synchrotron Radiation Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Tsun-Kong Sham
- Department of Chemistry and Soochow University-Western University Centre for Synchrotron Radiation Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| | - Zhifeng Ding
- Department of Chemistry and Soochow University-Western University Centre for Synchrotron Radiation Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
| |
Collapse
|
46
|
Dong F, Feng E, Zheng T, Tian Y. In Situ Synthesized Silver Nanoclusters for Tracking the Role of Telomerase Activity in the Differentiation of Mesenchymal Stem Cells to Neural Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2051-2057. [PMID: 29271193 DOI: 10.1021/acsami.7b16949] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human mesenchymal stem cells (hMSCs) have potential use in cell replacement therapy for central nervous system disorders. However, the factors that impacted the differentiation process are unclear at the present stage because the powerful analytical method is the bottleneck. Herein, a novel strategy was developed for self-imaging and biosensing of telomerase activity in stem cells, using in situ biosynthesized silver nanoclusters (AgNCs) full of C bases. The present AgNCs possess synthetic convenience, long-time stability, and cytocompatibility. The weak fluorescence of these AgNCs is quickly turned on when approaching telomerase because of the strong interaction between C bases on AgNCs and G bases in telomerase, resulting in telomerase-dependent fluorescent signals. The developed method demonstrated high sensitivity and selectivity and broad dynamic linear range with a low detection limit. Using this powerful tool, it was first discovered that telomerase activity plays important roles in the proliferation of hMSCs and neural stem cells (NSCs) as well as during the differentiation processes from hMSCs to NSCs.
Collapse
Affiliation(s)
- Fangyuan Dong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University , Dongchuan Road 500, Shanghai 200241, China
| | - Enduo Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University , Dongchuan Road 500, Shanghai 200241, China
| | - Tingting Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University , Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University , Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
47
|
Xiong R, Die D, Xiao L, Xu YG, Shen XY. Probing the Structural, Electronic, and Magnetic Properties of Ag n V (n = 1-12) Clusters. NANOSCALE RESEARCH LETTERS 2017; 12:625. [PMID: 29247393 PMCID: PMC5732125 DOI: 10.1186/s11671-017-2394-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/30/2017] [Indexed: 05/12/2023]
Abstract
The structural, electronic, and magnetic properties of Ag n V (n = 1-12) clusters have been studied using density functional theory and CALYPSO structure searching method. Geometry optimizations manifest that a vanadium atom in low-energy AgnV clusters favors the most highly coordinated location. The substitution of one V atom for an Ag atom in Ag n + 1 (n ≥ 5) cluster modifies the lowest energy structure of the host cluster. The infrared spectra, Raman spectra, and photoelectron spectra of Ag n V (n = 1-12) clusters are simulated and can be used to determine the most stable structure in the future. The relative stability, dissociation channel, and chemical activity of the ground states are analyzed through atomic averaged binding energy, dissociation energy, and energy gap. It is found that V atom can improve the stability of the host cluster, Ag2 excepted. The most possible dissociation channels are Ag n V = Ag + Ag n - 1V for n = 1 and 4-12 and Ag n V = Ag2 + Ag n - 2V for n = 2 and 3. The energy gap of Ag n V cluster with odd n is much smaller than that of Ag n + 1 cluster. Analyses of magnetic property indicate that the total magnetic moment of Ag n V cluster mostly comes from V atom and varies from 1 to 5 μ B. The charge transfer between V and Ag atoms should be responsible for the change of magnetic moment.
Collapse
Affiliation(s)
- Ran Xiong
- School of Science, Xihua University, Chengdu, 610039 China
| | - Dong Die
- School of Science, Xihua University, Chengdu, 610039 China
| | - Lu Xiao
- School of Science, Xihua University, Chengdu, 610039 China
| | - Yong-Gen Xu
- School of Science, Xihua University, Chengdu, 610039 China
| | - Xu-Ying Shen
- School of Science, Xihua University, Chengdu, 610039 China
| |
Collapse
|
48
|
Bogh S, Cerretani C, Kacenauskaite L, Carro-Temboury MR, Vosch T. Excited-State Relaxation and Förster Resonance Energy Transfer in an Organic Fluorophore/Silver Nanocluster Dyad. ACS OMEGA 2017; 2:4657-4664. [PMID: 31457751 PMCID: PMC6641894 DOI: 10.1021/acsomega.7b00582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/03/2017] [Indexed: 05/21/2023]
Abstract
A single-stranded DNA-based (ssDNA) dyad was constructed comprising 15 silver atoms stabilized by a ssDNA scaffold (DNA-AgNC) and an Alexa 546 fluorophore bound to the 5' end. The Alexa 546 was chosen to function as a Förster resonance energy transfer (FRET) donor for the AgNC. Time-correlated single photon counting (TCSPC) experiments allowed unraveling the excited-state relaxation processes of the purified DNA-AgNC-only system. The TCSPC results revealed slow relaxation dynamics and a red shift of the emission spectrum during the excited-state lifetime. The results from the model systems were needed to understand the more complicated decay pathways present in the collected high-performance liquid chromatography fraction, which contained the dyad (37% of the emissive population). In the dyad system, the FRET efficiency between donor and acceptor was determined to be 94% using TCSPC, yielding a center-to-center distance of 4.6 nm. To date, only limited structural information on DNA-AgNCs is available and the use of TCSPC and FRET can provide information on the center-to-center distance between chromophores and provide positional information in nanostructures composed of AgNCs.
Collapse
Affiliation(s)
| | | | - Laura Kacenauskaite
- Nanoscience Center and Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Miguel R. Carro-Temboury
- Nanoscience Center and Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Tom Vosch
- Nanoscience Center and Department
of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
49
|
Srivastava R. Complexes of DNA bases and Watson–Crick base pairs interaction with neutral silver Agn (n = 8, 10, 12) clusters: a DFT and TDDFT study. J Biomol Struct Dyn 2017; 36:1050-1062. [DOI: 10.1080/07391102.2017.1310059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Ruby Srivastava
- Center for Molecular Modeling, CSIR-Indian Institute of Chemical Technology, Hyderabad 500607, India
| |
Collapse
|
50
|
Volkov IL, Smirnova A, Makarova AA, Reveguk ZV, Ramazanov RR, Usachov DY, Adamchuk VK, Kononov AI. DNA with Ionic, Atomic, and Clustered Silver: An XPS Study. J Phys Chem B 2017; 121:2400-2406. [DOI: 10.1021/acs.jpcb.6b11218] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ivan L. Volkov
- Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | | | - Anna A. Makarova
- Institut
für Festkörperphysik, Technische Universität Dresden, 01062 Dresden, Germany
| | | | | | | | - Vera K. Adamchuk
- Saint-Petersburg State University, 199034 St. Petersburg, Russia
| | | |
Collapse
|