1
|
Xu W, Chen Y, Shi L, Wang L, Peng DL. Bi-magnetic Mn 3O 4@Ni core-shell binary superparticles: Self-assembly preparation and magnetic behaviors. J Colloid Interface Sci 2024; 673:517-526. [PMID: 38879993 DOI: 10.1016/j.jcis.2024.06.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Binary superparticles formed by self-assembling two different types of nanoparticles may utilize the synergistic interactions and create advanced multifunctional materials. Bi-magnetic superparticles with a core-shell structure have unique properties due to their specific spatial configurations. Herein, we built Mn3O4@Ni core-shell binary superparticles via an emulsion self-assembly technique. The superparticles are generated with a spherical morphology, and have a typical average size of about 240 nm. By altering the ratio of the two magnetic nanoparticles, the thickness of Ni shells can be adjusted. Oleic acid ligands are crucial for the formation of core-shell structure. Magnetic analysis suggests that core-shell superparticles display dual-phase magnetic interactions, contrasting with the single-phase magnetic behaviors of commonly core-shell magnetic nanoparticles. The calculation on the effective magnetic anisotropy constants indicates that the presence of Ni shell layers reduces the dipole interactions among the Mn3O4 core particles. Due to the presence of Ni nanoparticle shells, the blocking temperature of Mn3O4 is reduced, while the Curie temperature of Mn3O4 is independent on Ni content. Tunable magnetic properties can be achieved by modulating the Ni nanoparticle shell thickness. This study offers insights for the development of core-shell superparticles with varied magnetic characteristics.
Collapse
Affiliation(s)
- Wanjie Xu
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yuanzhi Chen
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China.
| | - Liubin Shi
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Laisen Wang
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dong-Liang Peng
- Department of Materials Science and Engineering, State Key Lab of Physical Chemistry of Solid Surface, Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
2
|
Marino E, LaCour RA, Kodger TE. Emergent Properties from Three-Dimensional Assemblies of (Nano)particles in Confined Spaces. CRYSTAL GROWTH & DESIGN 2024; 24:6060-6080. [PMID: 39044735 PMCID: PMC11261636 DOI: 10.1021/acs.cgd.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 07/25/2024]
Abstract
The assembly of (nano)particles into compact hierarchical structures yields emergent properties not found in the individual constituents. The formation of these structures relies on a profound knowledge of the nanoscale interactions between (nano)particles, which are often designed by researchers aided by computational studies. These interactions have an effect when the (nano)particles are brought into close proximity, yet relying only on diffusion to reach these closer distances may be inefficient. Recently, physical confinement has emerged as an efficient methodology to increase the volume fraction of (nano)particles, rapidly accelerating the time scale of assembly. Specifically, the high surface area of droplets of one immiscible fluid into another facilitates the controlled removal of the dispersed phase, resulting in spherical, often ordered, (nano)particle assemblies. In this review, we discuss the design strategies, computational approaches, and assembly methods for (nano)particles in confined spaces and the emergent properties therein, such as trigger-directed assembly, lasing behavior, and structural photonic color. Finally, we provide a brief outlook on the current challenges, both experimental and computational, and farther afield application possibilities.
Collapse
Affiliation(s)
- Emanuele Marino
- Department
of Physics and Chemistry, Università
degli Studi di Palermo, Via Archirafi 36, Palermo 90123, Italy
| | - R. Allen LaCour
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Thomas E. Kodger
- Physical
Chemistry and Soft Matter, Wageningen University
and Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| |
Collapse
|
3
|
Pileni MP. "Nano-egg" superstructures of hydrophobic nanocrystals dispersed in water. Phys Chem Chem Phys 2024; 26:16931-16941. [PMID: 38835199 DOI: 10.1039/d4cp01299b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In this feature article, we use hydrophobic ferrite (Fe3O4) nanocrystal shells filled with Au nanocrystals self-assembled into 3D superlattices and dispersed in water. These superstructures act as nano-heaters. The stability of such superstructures is very high, even for several years, when stored at room temperature. When subjected to an electron beam, the inverted structure of Fe3O4 structures is gradually dissolved due to the formation of hydrated electrons and hydroxyl radicals.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université, Department of Chemistry, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
4
|
Luo D, Shi M, Guo S, Lin W, Wei J, Ni Y. On-Demand Assembly of Nanocrystals into a Superstructure Library in Co(OH) 2 Single-Walled Nanotubes. NANO LETTERS 2023. [PMID: 37967165 DOI: 10.1021/acs.nanolett.3c03009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The hierarchical self-assembly of colloidal particles facilitates the bottom-up manufacturing of metamaterials with synergistically integrated functionalities. Here, we define a modular assembly methodology that enables multinary co-assembly of nanoparticles in one-dimensional confined space. A series of isotropic and anisotropic nanocrystals such as plasmonic, metallic, visible, and near-infrared responsive nanoparticles as well as transition-metal phosphides can be selectively assembled within the single-walled Co(OH)2 nanotubes to achieve various increasingly sophisticated assembly systems, including unary, binary, ternary, and quaternary superstructures. Moreover, the selective assembly of distinct functional nanoparticles produces different integrated functional superstructures. This generalizable methodology provides predictable pathways to complex architectures with structural programming and customization that are otherwise inaccessible.
Collapse
Affiliation(s)
- Dian Luo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Manman Shi
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Saiya Guo
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Wentao Lin
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Jieding Wei
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| | - Yonghong Ni
- College of Chemistry and Materials Science, Anhui Normal University, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Laboratory of Molecule-Based Materials, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
- Anhui Key Laboratory of Functional Molecular Solids, 189 Jiuhua Southern Road, Wuhu 241002, P. R. China
| |
Collapse
|
5
|
Pileni MP. Superstructures of water-dispersive hydrophobic nanocrystals: specific properties. MATERIALS HORIZONS 2023; 10:4746-4756. [PMID: 37740284 DOI: 10.1039/d3mh00949a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Here, we describe water-soluble superstructures of hydrophobic nanocrystals that have been developed in recent years. We will also report on some of their properties which are still in their infancy. One of these structures, called "cluster structures", consists of hydrophobic 3D superlattices of Co or Au nanocrystals, covered with organic molecules acting like parachutes. The magnetic properties of Co "cluster structures" a retained when the superstructures is dispersed in aqueous solution. With Au "cluster structures", the longer wavelength optical scattered spectra are very broad and red-shifted, while at shorter wavelengths the localized surface plasmonic resonance of the scattered nanocrystals is retained. Moreover, the maximum of the long-wavelength signal spectra is linearly dependent on the increase in assembly size. The second superstructure was based on liquid-liquid instabilities favoring the formation of Fe3O4 nanocrystal shells (colloidosomes) filled or unfilled with Au 3D superlattices and also spherical solid crystal structures are called supraballs. Colloidosomes and supraballs in contact with cancer cells increase the density of nanocrystals in lysosomes and near the lysosomal membrane. Importantly, the structure of their organization is maintained in lysosomes for up to 8 days after internalization, while the initially dispersed hydrophilic nanocrystals are randomly aggregated. These two structures act as nanoheaters. Indeed, due to the dilution of the metallic phase, the penetration depth of visible light is much greater than that of homogeneous metallic nanoparticles of similar size. This allows for a high average heat load overall. Thus, the organic matrix acts as an internal reservoir for efficient energy accumulation within a few hundred picoseconds. A similar behavior was observed with colloidosomes, supraballs and "egg" structures, making these superstructures universal nanoheaters, and the same behavior is not observed when they are not dispersed in water (dried and deposited on a substrate). Note that colloidosomes and supraballs trigger local photothermal damage inaccessible to isolated nanocrystals and not predicted by global temperature measurements.
Collapse
Affiliation(s)
- M P Pileni
- Sorbonne Université département de chimie, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
6
|
Li G, Zuo YY. Molecular and colloidal self-assembly at the oil–water interface. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Xi X, Wan S, Deng Y, Xia Y, Xiao J, Cao Y, Huang X, Li Z, Yang D, Dong A, Li T. Amphiphilic Self-Assembly of Nanocrystals at Emulsion Interface Renders Fast and Scalable Quasi-Nanosheet Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50354-50362. [PMID: 36315871 DOI: 10.1021/acsami.2c14274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Scalable assembly of nanocrystals (NCs) into two-dimensional (2D) nanosheets has aroused great interest, yet it remains under-explored. This is because current 2D assembly methods rely mainly on the use of solid- or liquid-air interfaces, which are inherently difficult for upscaling and thus lack practicability. Here, with a microemulsion-based amphiphilic assembly technique, we achieve a fast and scalable preparation of free-standing nanosheets comprising few-layer, tightly packed NCs, namely, quasi-nanosheets (quasi-NSs). Acetic acid, acting as both solvent and surface-treatment agent, is used to render the initially hydrophobic NCs amphiphilic, while simultaneously inducing the interfacial instability right after the assembly of NCs at the emulsion interface to afford quasi-NSs. This amphiphilic assembly method is applicable to a variety of NCs, and multicomponent quasi-NSs are also attainable upon coassembly of different types of NCs. In addition, the structural advantages of quasi-NSs in catalysis are showcased by using NiFe2O4 quasi-NSs as electrocatalysts for the oxygen evolution reaction. This work opens a new route for the scalable construction of 2D NC sheets with designated components and functions.
Collapse
Affiliation(s)
- Xiangyun Xi
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, iCHEM, Fudan University, Shanghai 200433, China
| | - Siyu Wan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Yuwei Deng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Yan Xia
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, iCHEM, Fudan University, Shanghai 200433, China
| | - Jingyu Xiao
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, iCHEM, Fudan University, Shanghai 200433, China
| | - Yangfei Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Xianwu Huang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, iCHEM, Fudan University, Shanghai 200433, China
| | - Zhicheng Li
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, iCHEM, Fudan University, Shanghai 200433, China
| | - Dong Yang
- State Key Laboratory of Molecule Engineering of Polymers and Department of Macromolecular science, iCHEM, Fudan University, Shanghai 200433, China
| | - Angang Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| | - Tongtao Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iCHEM, Fudan University, Shanghai 200433, China
| |
Collapse
|
8
|
Self-assembled artificial enzyme from hybridized porous organic cages and iron oxide nanocrystals. J Colloid Interface Sci 2022; 621:331-340. [DOI: 10.1016/j.jcis.2022.04.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/23/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022]
|
9
|
Zhang F, Zhang Z, Liu R, Wei J, Yang Z. Functional Droplets Stabilized by Interfacially Self‐Assembled Chiral Nanocomposites. Angew Chem Int Ed Engl 2022; 61:e202206520. [DOI: 10.1002/anie.202206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Fenghua Zhang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Zongze Zhang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P.R. China
| |
Collapse
|
10
|
Zhang F, Zhang Z, Liu R, Wei J, Yang Z. Functional Droplets Stabilized by Interfacially Self‐Assembled Chiral Nanocomposites. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fenghua Zhang
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Zongze Zhang
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Rongjuan Liu
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Jingjing Wei
- Shandong University School of Chemistry and Chemical Engineering CHINA
| | - Zhijie Yang
- Shandong University School of Chemistry and Chemical Engineering 27 Shanda Nanlu 250100 Jinan CHINA
| |
Collapse
|
11
|
Schirato A, Moretti L, Yang Z, Mazzanti A, Cerullo G, Pileni MP, Maiuri M, Della Valle G. Chemically-Controlled Ultrafast Photothermal Response in Plasmonic Nanostructured Assemblies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:6308-6317. [PMID: 35449522 PMCID: PMC9014708 DOI: 10.1021/acs.jpcc.2c00364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Plasmonic nanoparticles are renowned as efficient heaters due to their capability to resonantly absorb and concentrate electromagnetic radiation, trigger excitation of highly energetic (hot) carriers, and locally convert their excess energy into heat via ultrafast nonradiative relaxation processes. Furthermore, in assembly configurations (i.e., suprastructures), collective effects can even enhance the heating performance. Here, we report on the dynamics of photothermal conversion and the related nonlinear optical response from water-soluble nanoeggs consisting of a Au nanocrystal assembly trapped in a water-soluble shell of ferrite nanocrystals (also called colloidosome) of ∼250-300 nm in size. This nanoegg configuration of the plasmonic assembly enables control of the size of the gold suprastructure core by changing the Au concentration in the chemical synthesis. Different metal concentrations are analyzed by means of ultrafast pump-probe spectroscopy and semiclassical modeling of photothermal dynamics from the onset of hot-carrier photogeneration (few picosecond time scale) to the heating of the matrix ligands in the suprastructure core (hundreds of nanoseconds). Results show the possibility to design and tailor the photothermal properties of the nanoeggs by acting on the core size and indicate superior performances (both in terms of peak temperatures and thermalization speed) compared to conventional (unstructured) nanoheaters of comparable size and chemical composition.
Collapse
Affiliation(s)
- Andrea Schirato
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
Italiano di Tecnologia, via Morego 30, I-16163 Genova, Italy
| | - Luca Moretti
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | - Zhijie Yang
- Key
Laboratory of Colloid and Interface Chemistry, Ministry of Education,
School of Chemistry and Chemical Engineering, Shandong University, 250100 Jinan, China
| | - Andrea Mazzanti
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | - Giulio Cerullo
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | | | - Margherita Maiuri
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| | - Giuseppe Della Valle
- Dipartimento
di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
- Istituto
di Fotonica e Nanotecnologie - Consiglio Nazionale delle Ricerche, Piazza Leonardo da Vinci, 32, I-20133 Milano, Italy
| |
Collapse
|
12
|
Liu J, Liu R, Yang Z, Wei J. Folding of two-dimensional nanoparticle superlattices enabled by emulsion-confined supramolecular co-assembly. Chem Commun (Camb) 2022; 58:3819-3822. [PMID: 35234238 DOI: 10.1039/d2cc00330a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Folding of two-dimensional nanoparticle superlattices is achieved through templated assembly on as-formed supramolecular nanosheets, which undergo a folding process within the emulsion droplets during the evaporation of the inner phase liquid. Building the folded nanoparticle superlattices opens a new gateway to reshape the properties of inorganic solids.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
13
|
Liu J, Wei J, Yang Z. Building ordered nanoparticle assemblies inspired by atomic epitaxy. Phys Chem Chem Phys 2021; 23:20028-20037. [PMID: 34498628 DOI: 10.1039/d1cp02373j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Self-assembly of inorganic nanoparticles into mesoscopic or macroscopic nanoparticle assemblies is an efficient strategy to fabricate advanced devices with emergent nanoscale functionalities. Furthermore, assembly of nanoparticles onto substrates may enable the fabrication of substrate-integrated devices, akin to atomic crystal growth on a substrate. Recent progress in nanoparticle assembly suggests that ordered nanoparticle assemblies could be well produced on a selected substrate, referred to as soft epitaxial growth. Herein, recent advances in soft epitaxial growth of a nanoparticle assembly are presented, including the assembly strategies, the choice of substrate and the epitaxial modes. Perspectives are also discussed for the material design based on substrate-integrated soft epitaxial growth.
Collapse
Affiliation(s)
- Jiaming Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China.
| |
Collapse
|
14
|
Fortes Martín R, Thünemann AF, Stockmann JM, Radnik J, Koetz J. From Nanoparticle Heteroclusters to Filament Networks by Self-Assembly at the Water-Oil Interface of Reverse Microemulsions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:8876-8885. [PMID: 34255529 DOI: 10.1021/acs.langmuir.1c01348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface self-assembly of spherical nanoparticles of sizes below 10 nm into hierarchical heterostructures is under arising development despite the inherent difficulties of obtaining complex ordering patterns on a larger scale. Due to template-mediated interactions between oil-dispersible superparamagnetic nanoparticles (MNPs) and polyethylenimine-stabilized gold nanoparticles (Au(PEI)NPs) at the water-oil interface of microemulsions, complex nanostructured films can be formed. Characterization of the reverse microemulsion phase by UV-vis absorption revealed the formation of heteroclusters from Winsor type II phases (WPII) using Aerosol-OT (AOT) as the surfactant. SAXS measurements verify the mechanism of initial nanoparticle clustering in defined dimensions. XPS suggested an influence of AOT at the MNP surface. Further, cryo-SEM and TEM visualization demonstrated the elongation of the reverse microemulsions into cylindrical, wormlike structures, which subsequently build up larger nanoparticle superstructure arrangements. Such WPII phases are thus proven to be a new form of soft template, mediating the self-assembly of different nanoparticles in hierarchical network-like filaments over a substrate during solvent evaporation.
Collapse
Affiliation(s)
- Rebeca Fortes Martín
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Jörg M Stockmann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Jörg Radnik
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany
| | - Joachim Koetz
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14476 Potsdam, Germany
| |
Collapse
|
15
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin-Based Supramolecular Structures. Angew Chem Int Ed Engl 2021; 60:14671-14678. [PMID: 33843119 DOI: 10.1002/anie.202103809] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
Herein, we show that chiral metal nanoparticle superlattices can be produced through coassembly of achiral metal nanoparticles and porphyrin-based organic molecules. This chirality transfer from molecules to nanoparticle superstructures across three orders of magnitude in length scale is enabled by the hetero chain-chain van der Waals interactions. As far as we know, these are the first chiral nanoparticle assemblies based on chirality transfer through weak van der Waals forces. The dimensionality of the nanoparticle superlattices (1D chiral chains, 2D chiral sheets (cones), and 3D chiral particles) can be controlled based on a same synthetic chiral porphyrin molecule. Metalation of these porphyrin molecules with zinc cations results in the switching of molecular packing from J-type to H-type, which thereby produces 1D chiral nanoparticle chains. Functionalization of these zinc porphyrins with oleylamine can induce the assembly of nanoparticles into 2D chiral nanoparticle sheets.
Collapse
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
16
|
Yang F, Liu X, Yang Z. Chiral Metal Nanoparticle Superlattices Enabled by Porphyrin‐Based Supramolecular Structures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103809] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fei Yang
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Xinyong Liu
- School of Pharmaceutical Sciences Shandong University Jinan 250012 P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 P. R. China
| |
Collapse
|
17
|
Dynamic emulsion droplets enabled by interfacial assembly of azobenzene-functionalized nanoparticles under light and magnetic field. J Colloid Interface Sci 2021; 583:586-593. [PMID: 33038608 DOI: 10.1016/j.jcis.2020.09.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The ability to control the assembly of micro/nanosized particles at liquid-liquid interface with external inputs promises new opportunities in nanofabrication and biomedicines. This work aims to demonstrate a way to control of dynamic assembly of nanoparticles at liquid-liquid interface by light and magnetic field, which consequently enables the formation of dynamic emulsion droplets. EXPERIMENTS Magnetic Fe3O4 nanoparticles functionalized with azobenzene moieties (Fe3O4@AZO) were synthesized and were dispersed in toluene/(N,N-dimethylformamide, DMF) binary solvent. After irradiation with UV or visible light, the assembly behavior of these Fe3O4 nanoparticles were evaluated by electron microscopy and fluorescent microscopy. FINDINGS Under UV light, Fe3O4@AZO nanoparticles were self-assembled due to the increase of dipolar interaction from the photoisomerization of azobenzene and polar molecules, DMF, were harvested from a binary solvent of DMF/toluene. While under visible light, a relief of dipolar interactions between Fe3O4@AZO nanoparticles can induce the secondary assembly of these Fe3O4@AZO nanoparticles at DMF-toluene interface, resulting in DMF droplets covered by a layer of nanoparticle superlattices. More importantly, coupled with a magnetic field, these emulsion droplets can be shaped into one dimensional ones during the interfacial assembly process, thereby giving rise to dynamic emulsions controlled by light and magnetic field.
Collapse
|
18
|
Template-mediated self-assembly of magnetite-gold nanoparticle superstructures at the water-oil interface of AOT reverse microemulsions. J Colloid Interface Sci 2021; 581:44-55. [PMID: 32771751 DOI: 10.1016/j.jcis.2020.07.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 12/19/2022]
Abstract
HYPOTHESIS Bimetallic magnetite-gold nanostructures are interesting candidates to combine and enhance individual properties of each metal element in catalytic and analytical applications. Microemulsions have been employed in templated synthesis of nanoparticles, and their combination with different types of nanoparticles can further mediate interactions at the water-oil interface, providing new forms of hybrid nanostructures. EXPERIMENTS Reverse water-in-oil microemulsions of droplet sizes below 50 nm were prepared from ternary mixtures of Aerosol-OT (AOT) as surfactant, incorporating 4 nm sized superparamagnetic nanoparticles (MNPs) to the hexane-pentanol oil phase and 5 nm sized polyethyleneimine-stabilized gold nanoparticles (Au(PEI)-NPs) to the water phase. The resulting isotropic L2 phase, Winsor phases and organized nanostructures were investigated using conductometry, calorimetry, UV-Vis spectroscopy, cryo-SEM and HRTEM. FINDINGS Droplet-droplet interactions, morphology and surfactant film properties of AOT microemulsions could be modulated in different ways by the presence of the different nanoparticles from each liquid phase. Additionally, phase separation into Winsor phases allows the formation upon solvent evaporation of films with bimetallic heterostructures on the micrometer scale. This demonstrates a new way of nanoparticle templated assembly at liquid interfaces by assisted interactions between microemulsions and nanoparticles, as a promising strategy to obtain thin films of small, isotropic nanoparticles with hierarchical ordering.
Collapse
|
19
|
Zhang W, Zhao Y, Wang W, Peng J, Li Y, Shangguan Y, Ouyang G, Xu M, Wang S, Wei J, Wei H, Li W, Yang Z. Colloidal Surface Engineering: Growth of Layered Double Hydroxides with Intrinsic Oxidase-Mimicking Activities to Fight Against Bacterial Infection in Wound Healing. Adv Healthc Mater 2020; 9:e2000092. [PMID: 32729238 DOI: 10.1002/adhm.202000092] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/07/2020] [Indexed: 11/08/2022]
Abstract
Colloidal surface engineering is of particular importance to impart modular functionalities to the colloidal systems. Here, a layer of Mn/Ni layered hydroxides (Mn/Ni(OH)x LDHs) can be successfully coated on various colloidal particles, such as silica spheres, silica rods, ferrite nanocrystal supraparticles, as well as FeOOH nanorods. Such layered hydroxides have intrinsic oxidase-mimetic activities, as demonstrated by catalytic oxidation of tetramethyl benzidine in the presence of oxygen. Furthermore, Mn/Ni(OH)x LDHs structure seems to capture bacteria (both Gram positive and Gram negative) and exhibit antibacterial properties in vitro. Moreover, local delivery of Mn/Ni-LDH structure fights against infection and reverses delayed wound healing procedures in mice models. Importantly, such hierarchical structures may have strong adhesive properties to the bacteria, which may maximize the contact between Mn/Ni(OH)x LDHs and the bacteria's surface. Overall, the present versatile colloidal surface engineering strategy will bring new insights in the field of antibiotics for its high efficiency toward antibacterial activity.
Collapse
Affiliation(s)
- Wendi Zhang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Yunpeng Zhao
- Department of Orthopedics Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Wenhan Wang
- Department of Orthopedics Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
- Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Jiangfan Peng
- Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Yuanming Li
- Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Yangtao Shangguan
- Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Gege Ouyang
- Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Mingyang Xu
- Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Shuping Wang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Huiying Wei
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| | - Weiwei Li
- Department of Pathology Qilu Hospital, Cheeloo College of Medicine Shandong University Jinan Shandong 250012 P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China
| |
Collapse
|
20
|
Zheng D, Zhang K, Chen B, Zhao N, Xu FJ. Flexible Photothermal Assemblies with Tunable Gold Patterns for Improved Imaging-Guided Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002790. [PMID: 32696542 DOI: 10.1002/smll.202002790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Indexed: 05/18/2023]
Abstract
Self-assembly of gold nanoparticles demonstrates a promising approach to realize enhanced photoacoustic imaging (PAI) and photothermal therapy (PTT) for accurate diagnosis and efficient cancer therapy. Herein, unique photothermal assemblies with tunable patterns of gold nanoparticles (including arcs, rings, ribbons, and vesicles) on poly(lactic-co-glycolic acid) (PLGA) spheres are constructed taking advantage of emulsion-confined and polymer-directed self-assembly strategies. The influencing factors and formation mechanism to produce the assemblies are investigated in details. Both the emulsion structure and migration behaviors of amphiphilic block copolymer tethered gold nanoparticles are found to contribute to the formation of versatile photothermal assemblies. Hyaluronic acid-modified R-PLGA-Au (RPA) exhibits outstanding photothermal performances under NIR laser irradiation, which is induced by strong plasmonic coupling between adjacent gold nanoparticles. It is interesting that secondary assembly of RPA can be triggered by NIR laser irradiation. Prolonged residence time in tumors is achieved after RPA assemblies are fused into superstructures with larger sizes, realizing real-time monitoring of the therapeutic processes via PAI with enhanced photoacoustic signals. Notably, synergistic effect resulting from PTT-enhanced chemotherapy is realized to demonstrate high antitumor performance. This work provides a facile strategy to construct flexible photothermal assemblies with favorable properties for imaging-guided synergistic therapy.
Collapse
Affiliation(s)
- Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kai Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Beibei Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
21
|
Hou Z, Liu Y, Xu J, Zhu J. Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. NANOSCALE 2020; 12:14957-14975. [PMID: 32648868 DOI: 10.1039/d0nr03346d] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) have wide applications in magnetic resonance imaging (MRI), biomedicine, drug delivery, hyperthermia therapy, catalysis, magnetic separation, and others. However, these applications are usually limited by irreversible agglomeration of IONPs in aqueous media because of their dipole-dipole interactions, and their poor stability. A protecting polymeric shell provides IONPs with not only enhanced long-term stability, but also the functionality of polymer shells. Therefore, polymer-grafted IONPs have recently attracted much attention of scientists. In this tutorial review, we will present the current strategies for grafting polymers onto the surface of IONPs, basically including "grafting from" and "grafting to" methods. Available functional groups and chemical reactions, which could be employed to bind polymers onto the IONP surface, are comprehensively summarized. Moreover, the applications of polymer-grafted IONPs will be briefly discussed. Finally, future challenges and perspectives in the synthesis and application of polymer-grafted IONPs will also be discussed.
Collapse
Affiliation(s)
- Zaiyan Hou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Yijing Liu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jiangping Xu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Jintao Zhu
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
22
|
Liber SR, Marin O, Butenko AV, Ron R, Shool L, Salomon A, Deutsch M, Sloutskin E. Polyhedral Water Droplets: Shape Transitions and Mechanism. J Am Chem Soc 2020; 142:8672-8678. [DOI: 10.1021/jacs.0c00184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shir R. Liber
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Orlando Marin
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexander V. Butenko
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Racheli Ron
- Chemistry Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lee Shool
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Adi Salomon
- Chemistry Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Moshe Deutsch
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eli Sloutskin
- Physics Department & Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
23
|
Xie Y, Wang C, Yang Z, Wei H, Wei J. Dimensionality-controlled self-assembly of CdSe nanorods into discrete suprastructures within emulsion droplets. NEW J CHEM 2020. [DOI: 10.1039/d0nj05059h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of inorganic nanocrystals into ordered superlattices is of particular importance for their application in biomedicine and solid-state optoelectronic devices.
Collapse
Affiliation(s)
- Yangen Xie
- School of Chemistry and Chemical Engineering
- Shandong University
- Shandong University
- Jinan 250100
- P. R. China
| | - Chunsheng Wang
- School of Chemistry and Chemical Engineering
- Shandong University
- Shandong University
- Jinan 250100
- P. R. China
| | - Zhijie Yang
- School of Chemistry and Chemical Engineering
- Shandong University
- Shandong University
- Jinan 250100
- P. R. China
| | - Huiying Wei
- School of Chemistry and Chemical Engineering
- Shandong University
- Shandong University
- Jinan 250100
- P. R. China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering
- Shandong University
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
24
|
Cai R, Yang D, Lin KT, Cao TS, Lyv Y, Chen K, Yang Y, Ge J, Xia L, Christou G, Zhao Y, Chen Z, Tan W. 3D halos assembled from Fe 3O 4/Au NPs with enhanced catalytic and optical properties. NANOSCALE 2019; 11:20968-20976. [PMID: 31660559 DOI: 10.1039/c9nr05874e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
3D structures assembled from multiple components have attracted increasing research interest based on their enriched functionalities and broadened applications. Here, we report a bottom-up strategy to fabricate 3D halos through the co-assembly of Fe3O4 and Au nanoparticles (NPs). Typically, Fe3O4 NPs assemble into a 3D core (size around 500 nm) with simultaneous growth of Au NPs on the 3D surface during the assembly process. As a general approach, a variety of 3D halos were fabricated from the co-assembly of Fe3O4 and Au NPs of different sizes and shapes. To demonstrate the advantages of these 3D halo structures, their catalytic activity to mimic natural enzymes was investigated. Compared with Fe3O4 NP building blocks, enhanced catalytic efficiency was achieved by the 3D halos. In addition, the optical behavior of the 3D halos was simulated using a three-dimensional finite-difference time-domain (3D-FDTD) method. As shown in the results, the 3D halos attached to 90 nm Au NPs could absorb more incident light owing to high electric field intensities, making these structures promising for applications in energy harvesting and detection-related fields.
Collapse
Affiliation(s)
- Ren Cai
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China. and Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Dan Yang
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Australia
| | - Keng-Te Lin
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, PO Box 218, Hawthorn, Australia
| | - Thai Son Cao
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Yifan Lyv
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China. and Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kangfu Chen
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida 32611-6250, USA
| | - Yu Yang
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Jia Ge
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Lian Xia
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - George Christou
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| | - Yuliang Zhao
- National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.
| | - Weihong Tan
- Molecular Sciences and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering and College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China. and Institute of Molecular Medicine (IMM), State Key Laboratory of Oncogenes and Related Genes Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China and Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Shands Cancer Center, UF Genetics Institute, McKnight Brain Institute, University of Florida, Gainesville, FL 32611-7200, USA
| |
Collapse
|
25
|
Zhang F, Yang Z, Hao J, Zhao K, Hua M, Yang Y, Wei J. Dynamic covalent chemistry steers synchronizing nanoparticle self-assembly with interfacial polymerization. Commun Chem 2019. [DOI: 10.1038/s42004-019-0222-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
Precise organization of matter across multiple length scales is of particular interest because of its great potential with advanced functions and properties. Here we demonstrate a simple yet versatile strategy that enables the organization of hydrophobic nanoparticles within the covalent organic framework (COF) in an emulsion droplet. The interfacial polymerization takes place upon the addition of Lewis acid in the aqueous phase, which allows the formation of COF after a crystallization process. Meanwhile, the interaction between nanoparticles and COF is realized by the use of amine-aldehyde reactions in the nearest loci of the nanoparticles. Importantly, the competition between the nanoparticle self-assembly and interfacial polymerization allows control over the spatial distribution of nanoparticles within COF. As a general strategy, a wide variety of COF-wrapped nanoparticle assemblies can be synthesized and these hybridized nanomaterials could find applications in optoelectronics, heterogeneous catalysis and energy chemistry.
Collapse
|
26
|
Wang R, Dai X, Duan S, Zhao N, Xu FJ. A flexible bowl-shaped magnetic assembly for multifunctional gene delivery systems. NANOSCALE 2019; 11:16463-16475. [PMID: 31453620 DOI: 10.1039/c9nr04763h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Magnetic assemblies with special morphologies are promising for versatile biomedical applications due to their intriguing properties and performances. In this work, a polycation-functionalized bowl-shaped magnetic assembly (b-MNP-PGEA) was constructed for magnetic resonance imaging (MRI)-guided synergistic cancer therapy. Taking advantage of distinct properties of Fe3O4 nanoparticles, self-assembly concept, morphology control, and appropriate surface functionalization, the as-prepared magnetic assembly with special morphology was expected to work as a multifunctional carrier to realize the combination of magnetofection and photothermal therapy (PTT). The morphology effect of the magnetic assembly on cellular uptake and the subsequent gene transfection were investigated. The feasibility of the magnetic and photothermal carriers for MRI and complementary PTT/gene therapy was also studied. In addition, the excellent in vivo performance of the proposed bowl-shaped multifunctional carriers was demonstrated using a mouse breast cancer model. Interestingly, synergistic effects based on PTT-enhanced gene therapy were achieved. The facile assembly strategy for the development of special bowl-shaped magnetic carriers for synergistic PTT/gene therapy provides a new avenue for the versatile construction of efficient theranostic platforms.
Collapse
Affiliation(s)
- Ranran Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shun Duan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China. and Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
27
|
Song H, Yang Y, Geng J, Gu Z, Zou J, Yu C. Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801564. [PMID: 30160340 DOI: 10.1002/adma.201801564] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Innovations in nanofabrication have expedited advances in hollow-structured nanomaterials with increasing complexity, which, at the same time, set challenges for the precise determination of their intriguing and complicated 3D configurations. Conventional transmission electron microscopy (TEM) analysis typically yields 2D projections of 3D objects, which in some cases is insufficient to reflect the genuine architectures of these 3D nano-objects, providing misleading information. Advanced analytical approaches such as focused ion beam (FIB) and ultramicrotomy enable the real slicing of nanomaterials, realizing the direct observation of inner structures but with limited spatial discrimination. Electron tomography (ET) is a technique that retrieves spatial information from a series of 2D electron projections at different tilt angles. As a unique and powerful tool kit, this technique has experienced great advances in its application in materials science, resolving the intricate 3D nanostructures. Here, the exceptional capability of the ET technique in the structural, chemical, and quantitative analysis of hollow-structured nanomaterials is discussed in detail. The distinct information derived from ET analysis is highlighted and compared with conventional analysis methods. Along with the advances in microscopy technologies, the state-of-the-art ET technique offers great opportunities and promise in the development of hollow nanomaterials.
Collapse
Affiliation(s)
- Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Geng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
28
|
Su M, Jiang Y, Yu F, Yu T, Du S, Xu Y, Yang L, Liu H. Mirrorlike Plasmonic Capsules for Online Microfluidic Raman Analysis of Drug in Human Saliva and Urine. ACS APPLIED BIO MATERIALS 2019; 2:3828-3835. [DOI: 10.1021/acsabm.9b00425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Mengke Su
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yifan Jiang
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Fanfan Yu
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Ting Yu
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Shanshan Du
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yue Xu
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Lina Yang
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Honglin Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei, Anhui 230009, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Life Sciences, and Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai 200050, China
| |
Collapse
|
29
|
Light-heat conversion dynamics in highly diversified water-dispersed hydrophobic nanocrystal assemblies. Proc Natl Acad Sci U S A 2019; 116:8161-8166. [PMID: 30952788 DOI: 10.1073/pnas.1817850116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale. Two-dimensional finite-element method electromagnetic simulations of the composite nanostructure and multitemperature modeling of the energy flow dynamics enable us to identify the key mechanism presiding over the light-heat conversion in these kinds of nanomaterials. We demonstrate that hybrid (organic-inorganic) nanocrystal assemblies can operate as efficient nanoheaters by exploiting the high absorption from the individual nanocrystals, enabled by the dilution of the inorganic phase that is followed by a relatively fast heating of the embedding organic matrix, occurring on the 100-ps timescale.
Collapse
|
30
|
Pileni MP. Au Supracrystal Growth Processes: Unexpected Morphologies. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180310] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- M. P. Pileni
- Sorbonne University, Department of Chemistry, 4 place Jussieu 75005, Paris, France
| |
Collapse
|
31
|
Cai R, Yang D, Lin KT, Lyu Y, Zhu B, He Z, Zhang L, Kitamura Y, Qiu L, Chen X, Zhao Y, Chen Z, Tan W. Generalized Preparation of Two-Dimensional Quasi-nanosheets via Self-assembly of Nanoparticles. J Am Chem Soc 2019; 141:1725-1734. [PMID: 30604974 PMCID: PMC6625513 DOI: 10.1021/jacs.8b12415] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two-dimensional (2D) nanomaterials are attracting increasing research interest because of their unique properties and promising applications. Here, we report a facile method to manipulate the assembly of nanoparticles (NPs) to fabricate free-standing 2D quasi-nanosheets. The as-generated 2D products are composed of few-layer NPs; that is, their thicknesses are only tens of nanometers but lateral dimensions could be up to several micrometers. Therefore, the novel structure was denoted as 2D "quasi-nanosheets (QNS)". Specifically, several types of building blocks could be assembled into 2D unary, binary, ternary, and even quaternary QNS by a universal procedure. The entire assembly process is carried out in solution and mediated simply by tuning the concentration of ligands surrounding the NPs. In contrast to traditional assembly techniques, even without any substrate or template, these QNS showed exceptionally high stability. They can remain intact for several days without any disassembly regardless of the solvent environment (e.g., water, ethanol, methanol, and hexane). In general, our method has effectively tackled several limitations associated with traditional assembly techniques and allows more freedom in manipulating assembly of NPs, which may hold great potential for future fabrication of 2D devices with rich functionalities.
Collapse
Affiliation(s)
- Ren Cai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan 410082, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Dan Yang
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
| | - Keng-Te Lin
- Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122, Australia
| | - Yifan Lyu
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Bowen Zhu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Zhen He
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
- Department of Colorectal Surgery, the Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Er Heng Road, Guangzhou, Guangdong 510655, China
| | - Lili Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan 410082, China
| | - Yusuke Kitamura
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan 410082, China
| | - Xigao Chen
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| | - Yuliang Zhao
- CAS Key Lab for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Department of Chemistry and Department of Physiology and Functional Genomics, Center for Research at the Bio/Nano Interface, Health Cancer Center, UF Genetics Institute and McKnight Brain Institute, University of Florida, Gainesville, Florida 32611-7200, United States
| |
Collapse
|
32
|
Wu G, Liu X, Zhou P, Wang L, Hegazy M, Huang X, Huang Y. A facile approach for the reduction of 4‑nitrophenol and degradation of congo red using gold nanoparticles or laccase decorated hybrid inorganic nanoparticles/polymer-biomacromolecules vesicles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 94:524-533. [DOI: 10.1016/j.msec.2018.09.061] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 02/03/2023]
|
33
|
Zhao N, Yan L, Zhao X, Chen X, Li A, Zheng D, Zhou X, Dai X, Xu FJ. Versatile Types of Organic/Inorganic Nanohybrids: From Strategic Design to Biomedical Applications. Chem Rev 2018; 119:1666-1762. [DOI: 10.1021/acs.chemrev.8b00401] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nana Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liemei Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyi Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xinyan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Aihua Li
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Laboratory of Fiber Materials and Modern Textiles, Growing Base for State Key Laboratory, Collaborative Innovation Center for Marine Biomass Fibers Materials and Textiles of Shandong Province, Qingdao University, Qingdao 266071, China
| | - Di Zheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xin Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoguang Dai
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
34
|
Yang Y, Wang B, Shen X, Yao L, Wang L, Chen X, Xie S, Li T, Hu J, Yang D, Dong A. Scalable Assembly of Crystalline Binary Nanocrystal Superparticles and Their Enhanced Magnetic and Electrochemical Properties. J Am Chem Soc 2018; 140:15038-15047. [DOI: 10.1021/jacs.8b09779] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Zhao W, Sun H, Wang Y, Eastoe J, Dong S, Hao J. Self-Assembled Magnetic Viruslike Particles for Encapsulation and Delivery of Deoxyribonucleic Acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7171-7179. [PMID: 29809016 DOI: 10.1021/acs.langmuir.8b01445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing nontoxic artificial carriers for stimuli-responsive capture, transport, and delivery of biomolecules is of immense scientific interest. Herein, for the first time, we synthesize a double-tailed cationic surfactant, (C16H33)2(CH3)2N+[FeCl3Br]-, which possesses magnetic properties [magnetic surfactants (Mag-Surfs)]. The time-dependent formation of virus-shaped hybrid mixed assemblies of polyoxometalates (POMs) {Mo72Fe30}/Mag-Surf with hollow-shell structures is followed. These structures serve well as robust high-surface-area shuttles, which can be manipulated with applied magnetic fields. By using cationic Mag-Surfs, the anionic POMs and DNA can be complexed in these ternary mixtures. These virus-shaped complexes act as nanoanchors and nanomotors, which can be utilized for binding, anchoring, and delivery of biomolecules, such as DNA. It is found that they have a good absorption capacity for DNA and myoglobin over 24 h, after application of a magnetic field. The realization of magnetic virus-shaped {Mo72Fe30}/Mag-Surf spheres may open possibilities for designing other functional nanoparticles, allowing effective control over the delivery/separation of biomolecules.
Collapse
Affiliation(s)
- Wenrong Zhao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Hong Sun
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Julian Eastoe
- School of Chemistry , University of Bristol , Cantock's Close , Bristol BS8 1TS , U.K
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials , Shandong University, Ministry of Education , Jinan 250100 , P. R. China
| |
Collapse
|
36
|
Montanarella F, Geuchies JJ, Dasgupta T, Prins PT, van Overbeek C, Dattani R, Baesjou P, Dijkstra M, Petukhov AV, van Blaaderen A, Vanmaekelbergh D. Crystallization of Nanocrystals in Spherical Confinement Probed by in Situ X-ray Scattering. NANO LETTERS 2018; 18:3675-3681. [PMID: 29781269 PMCID: PMC6002780 DOI: 10.1021/acs.nanolett.8b00809] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/25/2018] [Indexed: 05/20/2023]
Abstract
We studied the formation of supraparticles from nanocrystals confined in slowly evaporating oil droplets in an oil-in-water emulsion. The nanocrystals consist of an FeO core, a CoFe2O4 shell, and oleate capping ligands, with an overall diameter of 12.5 nm. We performed in situ small- and wide-angle X-ray scattering experiments during the entire period of solvent evaporation and colloidal crystallization. We observed a slow increase in the volume fraction of nanocrystals inside the oil droplets up to 20%, at which a sudden crystallization occurs. Our computer simulations show that crystallization at such a low volume fraction is only possible if attractive interactions between colloidal nanocrystals are taken into account in the model as well. The spherical supraparticles have a diameter of about 700 nm and consist of a few crystalline face-centered cubic domains. Nanocrystal supraparticles bear importance for magnetic and optoelectronic applications, such as color tunable biolabels, color tunable phosphors in LEDs, and miniaturized lasers.
Collapse
Affiliation(s)
| | | | | | | | | | - Rajeev Dattani
- ID-02 , ESRF , 71 Rue des Martyrs , 38000 Grenoble , France
| | | | | | - Andrei V Petukhov
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry , Eindhoven University of Technology , P.O. Box 513, 5600 MB , Eindhoven , Netherlands
| | | | | |
Collapse
|
37
|
Wang L, Wang Y, Dong S, Deng Y, Hao J. Nanocapsules of Magnetic Au Self-Assembly for DNA Migration and Secondary Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5348-5357. [PMID: 29338168 DOI: 10.1021/acsami.7b18689] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To endow valuable responsiveness to self-assemblies of Au nanoparticles (Au NPs), the magnetic Au nanoparticles (Au NPs)/C16H33(CH3)3N+[CeCl3Br]- (CTACe) mixtures were first prepared by using an emulsion self-assembly of a magnetic surfactant, C16H33(CH3)3N+[CeCl3Br]-. A versatile morphology of self-assemblies of Au NPs could be controlled by the counterions in surfactants including [CeCl3Br]-, [FeCl3Br]-, and Br- as well as solvent. In particular, the magnetic counterion, [CeCl3Br]-, can induce self-growth of Au NPs in an emulsion self-assembly process due to the oxidability of [CeCl3Br]-. It enhances the rigidity of Au NPs/CTACe scaffolds template compared with Au NPs/hexadecyltrimethylammonium bromide. [CeCl3Br]- engaged Au NPs/CTACe with fascinating capability of conglutination and targeted migration of DNA (150 μmol/L) under a magnet field. The conglutination capability of the DNA molecules can increase to 39.8% by adopting the magnetic strategy when using Au NPs/CTACe as a magnetic booster. Au NPs/CTACe mixtures can ideally self-assemble to be scaffolds, providing abundant conjugation sites of surface charges. Magnetic Au NPs/CTACe can serve as a template scaffold to secondary self-assemble with DNA (40 mmol/L) outside, producing smooth-faced and hollow DNA nanocapsules. We believe that the creative Au NPs/CTACe/DNA nanocapsules will extend the biological application field of Au NPs assemblies.
Collapse
Affiliation(s)
- Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, P. R. China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, P. R. China
| | - Yongming Deng
- Department of Chemistry, Western Kentucky University , Bowling Green, Kentucky 42101, United States
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Ministry of Education , Jinan 250100, P. R. China
| |
Collapse
|
38
|
Yang N, Deeb C, Pelouard JL, Felidj N, Pileni MP. Water-Dispersed Hydrophobic Au Nanocrystal Assemblies with a Plasmon Fingerprint. ACS NANO 2017; 11:7797-7806. [PMID: 28745866 DOI: 10.1021/acsnano.7b01605] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Hydrophobic Au nanocrystal assemblies (both ordered and amorphous) were dispersed in aqueous solution via the assistance of lipid vesicles. The intertwine between vesicles and Au assemblies was made possible through a careful selection of the length of alkyl chains on Au nanocrystals. Extinction spectra of Au assemblies showed two peaks that were assigned to a scattering mode that red-shifted with increasing the assembly size and an absorption mode associated with localized surface plasmon that was independent of their size. This plasmon fingerprint could be used as a probe for investigating the optical properties of such assemblies. Our water-soluble assemblies enable exploring a variety of potential applications including solar energy and biomedicine.
Collapse
Affiliation(s)
- Nailiang Yang
- Sorbonne Universités , UPMC Univ Paris 06, UMR 8233, MONARIS, F-75005 Paris, France
- CNRS , UMR 8233, MONARIS, F-75005 Paris, France
| | - Claire Deeb
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS, University Paris-Sud, Université Paris-Saclay , 91460 Marcoussis, France
| | - Jean-Luc Pelouard
- MiNaO-Center for Nanoscience and Nanotechnology C2N, CNRS, University Paris-Sud, Université Paris-Saclay , 91460 Marcoussis, France
| | - Nordin Felidj
- Interfaces, Traitements, Organisation et Dynamique des Systèmes, Université Paris Diderot, Sorbonne Paris Cité, CNRS UMR 7086 , 15 rue Jean de Baïf, 75205 Paris Cedex 13, France
| | | |
Collapse
|
39
|
Boles MA, Engel M, Talapin DV. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem Rev 2016; 116:11220-89. [PMID: 27552640 DOI: 10.1021/acs.chemrev.6b00196] [Citation(s) in RCA: 1067] [Impact Index Per Article: 133.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chemical methods developed over the past two decades enable preparation of colloidal nanocrystals with uniform size and shape. These Brownian objects readily order into superlattices. Recently, the range of accessible inorganic cores and tunable surface chemistries dramatically increased, expanding the set of nanocrystal arrangements experimentally attainable. In this review, we discuss efforts to create next-generation materials via bottom-up organization of nanocrystals with preprogrammed functionality and self-assembly instructions. This process is often driven by both interparticle interactions and the influence of the assembly environment. The introduction provides the reader with a practical overview of nanocrystal synthesis, self-assembly, and superlattice characterization. We then summarize the theory of nanocrystal interactions and examine fundamental principles governing nanocrystal self-assembly from hard and soft particle perspectives borrowed from the comparatively established fields of micrometer colloids and block copolymer assembly. We outline the extensive catalog of superlattices prepared to date using hydrocarbon-capped nanocrystals with spherical, polyhedral, rod, plate, and branched inorganic core shapes, as well as those obtained by mixing combinations thereof. We also provide an overview of structural defects in nanocrystal superlattices. We then explore the unique possibilities offered by leveraging nontraditional surface chemistries and assembly environments to control superlattice structure and produce nonbulk assemblies. We end with a discussion of the unique optical, magnetic, electronic, and catalytic properties of ordered nanocrystal superlattices, and the coming advances required to make use of this new class of solids.
Collapse
Affiliation(s)
- Michael A Boles
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander University Erlangen-Nürnberg , 91052 Erlangen, Germany.,Department of Chemical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago , Chicago, Illinois 60637, United States.,Center for Nanoscale Materials, Argonne National Lab , Argonne, Illinois 60439, United States
| |
Collapse
|
40
|
Roland S, Ling X, Pileni MP. N-Heterocyclic Carbene Ligands for Au Nanocrystal Stabilization and Three-Dimensional Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7683-96. [PMID: 27412075 PMCID: PMC4980691 DOI: 10.1021/acs.langmuir.6b01458] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/13/2016] [Indexed: 05/19/2023]
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as a new class of ligands for materials chemistry that appears particularly relevant for the stabilization and functionalization of metal nanoparticles (NPs). The particular properties and high synthetic flexibility of NHCs make them highly attractive tools for the development of new (nano)materials and the fundamental study of their properties. The relationships between the NHC structure and NP structure/properties, including physical, biological, and self-assembly properties, remain largely unknown. In the past decade, many efforts have been made to gain more fundamental understanding in this area. In this feature article, we present our contribution in this field focusing on the formation of NHC-coated Au nanocrystals (NCs), their stability, and their ability to self-assemble into 3D crystalline structures called supracrystals. First, the formation of NHC-stabilized Au NCs is discussed by comparing different NHC structures, NHC-based Au precursors, and synthesis methods. This study shows the major role of the NHC structure in obtaining both stable NHC-coated Au NCs and narrow size distributions. In a second part, a comparative study of the oxygen resistance of NHC- and thiol-coated NCs is presented, demonstrating the enhanced stability of NHC-coated Au NCs to oxygen-based treatments. Finally, the self-assembly of NHC-coated Au NCs into 3D Au superlattices is presented. The formation of large organized domains of several micrometers is described from the design of NHCs tailored with long alkyl chains. In these different contexts, efforts have been made to gain a more in-depth understanding of the behavior of NHC ligands at the surface of NCs. These results show that the NHC-based approach to nanomaterials has many assets for opening a new research area in the supracrystal world.
Collapse
Affiliation(s)
- Sylvain Roland
- Institut Parisien
de Chimie Moléculaire, Sorbonne Universités,
UPMC-Univ Paris 6, UMR CNRS 8232, F-75005 Paris, France
| | - Xiang Ling
- Institut Parisien
de Chimie Moléculaire, Sorbonne Universités,
UPMC-Univ Paris 6, UMR CNRS 8232, F-75005 Paris, France
- MONARIS,Sorbonne Universités, UPMC-Univ Paris 6, UMR CNRS 8233, F-75005 Paris, France
| | - Marie-Paule Pileni
- MONARIS,Sorbonne Universités, UPMC-Univ Paris 6, UMR CNRS 8233, F-75005 Paris, France
- CEA/IRAMIS, CEA
Saclay, 91191 Gif-Sur-Yvette, France
| |
Collapse
|
41
|
Petrosko SH, Johnson R, White H, Mirkin CA. Nanoreactors: Small Spaces, Big Implications in Chemistry. J Am Chem Soc 2016; 138:7443-5. [DOI: 10.1021/jacs.6b05393] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Tan R, Zhu H, Cao C, Chen O. Multi-component superstructures self-assembled from nanocrystal building blocks. NANOSCALE 2016; 8:9944-61. [PMID: 27136751 DOI: 10.1039/c6nr01662f] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
More than three decades of intensive study to make high-quality nanocrystals have created a unique toolbox for building multi-component superstructures, which have been recognized as a new generation of metamaterials important to both fundamental sciences and applied technologies. This minireview summarizes recent advances in this exciting field. We will focus our discussion on the synthetic strategies and superstructures of this multi-component metamaterial, and highlight their novel properties and potential applications. Additionally, some perspectives on possible developments in this field are offered at the end of this review. We hope that this minireview will both inform and stimulate research interests for the design and fabrication of these nanocrystal-based multi-component metamaterials for diverse applications in the future.
Collapse
Affiliation(s)
- Rui Tan
- Department of Chemistry, Brown University, 324 Brook St., Providence, RI 02912, USA.
| | | | | | | |
Collapse
|