1
|
Chang CWM, Wang SC, Wang CH, Pang AH, Yang CH, Chang YK, Wu WJ, Tsai MD. A unified view on enzyme catalysis by cryo-EM study of a DNA topoisomerase. Commun Chem 2024; 7:45. [PMID: 38418525 PMCID: PMC10901890 DOI: 10.1038/s42004-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The theories for substrate recognition in enzyme catalysis have evolved from lock-key to induced fit, then conformational selection, and conformational selection followed by induced fit. However, the prevalence and consensus of these theories require further examination. Here we use cryogenic electron microscopy and African swine fever virus type 2 topoisomerase (AsfvTop2) to demonstrate substrate binding theories in a joint and ordered manner: catalytic selection by the enzyme, conformational selection by the substrates, then induced fit. The apo-AsfvTop2 pre-exists in six conformers that comply with the two-gate mechanism directing DNA passage and release in the Top2 catalytic cycle. The structures of AsfvTop2-DNA-inhibitor complexes show that substantial induced-fit changes occur locally from the closed apo-conformer that however is too far-fetched for the open apo-conformer. Furthermore, the ATPase domain of AsfvTop2 in the MgAMP-PNP-bound crystal structures coexist in reduced and oxidized forms involving a disulfide bond, which can regulate the AsfvTop2 function.
Collapse
Affiliation(s)
- Chiung-Wen Mary Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung, Taiwan
| | - Shun-Chang Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Chun-Hsiung Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Allan H Pang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cheng-Han Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, Taipei, 115, Taiwan.
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int J Mol Sci 2023; 25:363. [PMID: 38203535 PMCID: PMC10779026 DOI: 10.3390/ijms25010363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
DNA polymerases constitute a versatile group of enzymes that not only perform the essential task of genome duplication but also participate in various genome maintenance pathways, such as base and nucleotide excision repair, non-homologous end-joining, homologous recombination, and translesion synthesis. Polymerases catalyze DNA synthesis via the stepwise addition of deoxynucleoside monophosphates to the 3' primer end in a partially double-stranded DNA. They require divalent metal cations coordinated by active site residues of the polymerase. Mg2+ is considered the likely physiological activator because of its high cellular concentration and ability to activate DNA polymerases universally. Mn2+ can also activate the known DNA polymerases, but in most cases, it causes a significant decrease in fidelity and/or processivity. Hence, Mn2+ has been considered mutagenic and irrelevant during normal cellular function. Intriguingly, a growing body of evidence indicates that Mn2+ can positively influence some DNA polymerases by conferring translesion synthesis activity or altering the substrate specificity. Here, we review the relevant literature focusing on the impact of Mn2+ on the biochemical activity of a selected set of polymerases, namely, Polβ, Polλ, and Polµ, of the X family, as well as Polι and Polη of the Y family of polymerases, where congruous data implicate the physiological relevance of Mn2+ in the cellular function of these enzymes.
Collapse
Affiliation(s)
| | - Ildiko Unk
- Institute of Genetics, HUN-REN Biological Research Centre Szeged, H-6726 Szeged, Hungary;
| |
Collapse
|
3
|
Prostova M, Shilkin E, Kulikova AA, Makarova A, Ryazansky S, Kulbachinskiy A. Noncanonical prokaryotic X family DNA polymerases lack polymerase activity and act as exonucleases. Nucleic Acids Res 2022; 50:6398-6413. [PMID: 35657103 PMCID: PMC9226535 DOI: 10.1093/nar/gkac461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/12/2022] Open
Abstract
The X family polymerases (PolXs) are specialized DNA polymerases that are found in all domains of life. While the main representatives of eukaryotic PolXs, which have dedicated functions in DNA repair, were studied in much detail, the functions and diversity of prokaryotic PolXs have remained largely unexplored. Here, by combining a comprehensive bioinformatic analysis of prokaryotic PolXs and biochemical experiments involving selected recombinant enzymes, we reveal a previously unrecognized group of PolXs that seem to be lacking DNA polymerase activity. The noncanonical PolXs contain substitutions of the key catalytic residues and deletions in their polymerase and dNTP binding sites in the palm and fingers domains, but contain functional nuclease domains, similar to canonical PolXs. We demonstrate that representative noncanonical PolXs from the Deinococcus genus are indeed inactive as DNA polymerases but are highly efficient as 3'-5' exonucleases. We show that both canonical and noncanonical PolXs are often encoded together with the components of the non-homologous end joining pathway and may therefore participate in double-strand break repair, suggesting an evolutionary conservation of this PolX function. This is a remarkable example of polymerases that have lost their main polymerase activity, but retain accessory functions in DNA processing and repair.
Collapse
Affiliation(s)
| | - Evgeniy Shilkin
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alexandra A Kulikova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Alena Makarova
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Sergei Ryazansky
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, Moscow 123182, Russia
| | - Andrey Kulbachinskiy
- To whom correspondence should be addressed. Tel: +7 4991960015; Fax: +7 4991960015;
| |
Collapse
|
4
|
LinWu SW, Tu YH, Tsai TY, Maestre-Reyna M, Liu MS, Wu WJ, Huang JY, Chi HW, Chang WH, Chiou CF, Wang AHJ, Lee J, Tsai MD. Thermococcus sp. 9°N DNA polymerase exhibits 3'-esterase activity that can be harnessed for DNA sequencing. Commun Biol 2019; 2:224. [PMID: 31240262 PMCID: PMC6586783 DOI: 10.1038/s42003-019-0458-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/06/2019] [Indexed: 01/06/2023] Open
Abstract
It was reported in 1995 that T7 and Taq DNA polymerases possess 3'-esterase activity, but without follow-up studies. Here we report that the 3'-esterase activity is intrinsic to the Thermococcus sp. 9°N DNA polymerase, and that it can be developed into a continuous method for DNA sequencing with dNTP analogs carrying a 3'-ester with a fluorophore. We first show that 3'-esterified dNTP can be incorporated into a template-primer DNA, and solve the crystal structures of the reaction intermediates and products. Then we show that the reaction can occur continuously, modulated by active site residues Tyr409 and Asp542. Finally, we use 5'-FAM-labeled primer and esterified dNTP with a dye to show that the reaction can proceed to ca. 450 base pairs, and that the intermediates of many individual steps can be identified. The results demonstrate the feasibility of a 3'-editing based DNA sequencing method that could find practical applications after further optimization.
Collapse
Affiliation(s)
| | - Yu-Hsuan Tu
- Personal Genomics, Inc., Zhubei, Hsinchu 30261 Taiwan
| | | | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Mu-Sen Liu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115 Taiwan
| | | | - Hung-Wen Chi
- Personal Genomics, Inc., Zhubei, Hsinchu 30261 Taiwan
| | | | | | - Andrew H.-J. Wang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115 Taiwan
| | - Johnsee Lee
- Personal Genomics, Inc., Zhubei, Hsinchu 30261 Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road Sec. 2, Nankang, Taipei, 115 Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 106 Taiwan
| |
Collapse
|
5
|
Chang YK, Huang YP, Liu XX, Ko TP, Bessho Y, Kawano Y, Maestre-Reyna M, Wu WJ, Tsai MD. Human DNA Polymerase μ Can Use a Noncanonical Mechanism for Multiple Mn 2+-Mediated Functions. J Am Chem Soc 2019; 141:8489-8502. [PMID: 31067051 DOI: 10.1021/jacs.9b01741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent research on the structure and mechanism of DNA polymerases has continued to generate fundamentally important features, including a noncanonical pathway involving "prebinding" of metal-bound dNTP (MdNTP) in the absence of DNA. While this noncanonical mechanism was shown to be a possible subset for African swine fever DNA polymerase X (Pol X) and human Pol λ, it remains unknown whether it could be the primary pathway for a DNA polymerase. Pol μ is a unique member of the X-family with multiple functions and with unusual Mn2+ preference. Here we report that Pol μ not only prebinds MdNTP in a catalytically active conformation but also exerts a Mn2+ over Mg2+ preference at this early stage of catalysis, for various functions: incorporation of dNTP into a single nucleotide gapped DNA, incorporation of rNTP in the nonhomologous end joining (NHEJ) repair, incorporation of dNTP to an ssDNA, and incorporation of an 8-oxo-dGTP opposite template dA (mismatched) or dC (matched). The structural basis of this noncanonical mechanism and Mn2+ over Mg2+ preference in these functions was analyzed by solving 19 structures of prebinding binary complexes, precatalytic ternary complexes, and product complexes. The results suggest that the noncanonical pathway is functionally relevant for the multiple functions of Pol μ. Overall, this work provides the structural and mechanistic basis for the long-standing puzzle in the Mn2+ preference of Pol μ and expands the landscape of the possible mechanisms of DNA polymerases to include both mechanistic pathways.
Collapse
Affiliation(s)
- Yao-Kai Chang
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan.,Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| | - Ya-Ping Huang
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Xiao-Xia Liu
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Yoshitaka Bessho
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan.,RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Yoshiaki Kawano
- RIKEN SPring-8 Center , 1-1-1 Kouto , Sayo , Hyogo 679-5148 , Japan
| | - Manuel Maestre-Reyna
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan
| | - Ming-Daw Tsai
- Institute of Biological Chemistry, Academia Sinica , 128 Academia Road Sec. 2 , Nankang, Taipei 115 , Taiwan.,Institute of Biochemical Sciences , National Taiwan University , Taipei 106 , Taiwan
| |
Collapse
|
6
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
7
|
Raper AT, Reed AJ, Suo Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem Rev 2018; 118:6000-6025. [DOI: 10.1021/acs.chemrev.7b00685] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Austin T. Raper
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew J. Reed
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Pannunzio NR, Watanabe G, Lieber MR. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J Biol Chem 2017; 293:10512-10523. [PMID: 29247009 DOI: 10.1074/jbc.tm117.000374] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Nonhomologous DNA end-joining (NHEJ) is the predominant double-strand break (DSB) repair pathway throughout the cell cycle and accounts for nearly all DSB repair outside of the S and G2 phases. NHEJ relies on Ku to thread onto DNA termini and thereby improve the affinity of the NHEJ enzymatic components consisting of polymerases (Pol μ and Pol λ), a nuclease (the Artemis·DNA-PKcs complex), and a ligase (XLF·XRCC4·Lig4 complex). Each of the enzymatic components is distinctive for its versatility in acting on diverse incompatible DNA end configurations coupled with a flexibility in loading order, resulting in many possible junctional outcomes from one DSB. DNA ends can either be directly ligated or, if the ends are incompatible, processed until a ligatable configuration is achieved that is often stabilized by up to 4 bp of terminal microhomology. Processing of DNA ends results in nucleotide loss or addition, explaining why DSBs repaired by NHEJ are rarely restored to their original DNA sequence. Thus, NHEJ is a single pathway with multiple enzymes at its disposal to repair DSBs, resulting in a diversity of repair outcomes.
Collapse
Affiliation(s)
- Nicholas R Pannunzio
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Go Watanabe
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| | - Michael R Lieber
- From the Departments of Pathology, Biochemistry and Molecular Biology, and Molecular Microbiology and Immunology, Section of Molecular and Computational Biology, Department of Biological Sciences, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California 90033
| |
Collapse
|
9
|
Wu WJ, Yang W, Tsai MD. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0068] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Klvaňa M, Bren U, Florián J. Uniform Free-Energy Profiles of the P-O Bond Formation and Cleavage Reactions Catalyzed by DNA Polymerases β and λ. J Phys Chem B 2016; 120:13017-13030. [PMID: 27992186 PMCID: PMC5217713 DOI: 10.1021/acs.jpcb.6b08581] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Human
X-family DNA polymerases β (Polβ) and λ
(Polλ) catalyze the nucleotidyl-transfer reaction in the base
excision repair pathway of the cellular DNA damage response. Using
empirical valence bond and free-energy perturbation simulations, we
explore the feasibility of various mechanisms for the deprotonation
of the 3′-OH group of the primer DNA strand, and the subsequent
formation and cleavage of P–O bonds in four Polβ, two
truncated Polλ (tPolλ), and two tPolλ Loop1 mutant
(tPolλΔL1) systems differing in the initial X-ray crystal
structure and nascent base pair. The average calculated activation
free energies of 14, 18, and 22 kcal mol–1 for Polβ,
tPolλ, and tPolλΔL1, respectively, reproduce the
trend in the observed catalytic rate constants. The most feasible
reaction pathway consists of two successive steps: specific base (SB)
proton transfer followed by rate-limiting concerted formation and
cleavage of the P–O bonds. We identify linear free-energy relationships
(LFERs) which show that the differences in the overall activation
and reaction free energies among the eight studied systems are determined
by the reaction free energy of the SB proton transfer. We discuss
the implications of the LFERs and suggest pKa of the 3′-OH group as a predictor of the catalytic
rate of X-family DNA polymerases.
Collapse
Affiliation(s)
- Martin Klvaňa
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor , Smetanova ulica 17, 2000 Maribor, Slovenia.,Department of Chemistry and Biochemistry, Loyola University Chicago , 1032 W. Sheridan Road, Chicago, Illinois 60660, United States
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Technology, University of Maribor , Smetanova ulica 17, 2000 Maribor, Slovenia.,Laboratory for Molecular Modeling, National Institute of Chemistry , Hajdrihova ulica 19, 1001 Ljubljana, Slovenia
| | - Jan Florián
- Department of Chemistry and Biochemistry, Loyola University Chicago , 1032 W. Sheridan Road, Chicago, Illinois 60660, United States
| |
Collapse
|