1
|
Espinosa M, Leyva-Pérez A. Domino dehydration/intermolecular (enantioselective) ketone-ene reactions catalysed by a simple solid in batch and in flow. RSC Adv 2024; 14:32944-32957. [PMID: 39429935 PMCID: PMC11487643 DOI: 10.1039/d4ra06449f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
The intermolecular carbonyl-ene reaction of ketones is still considered a challenge in organic chemistry, particularly with reusable solid catalysts, and implemented in a domino reaction. Herein, we show that the extremely cheap and non-toxic solid salt MgCl2 catalyzes the reaction of trifluoromethyl pyruvates not only during the conventional carbonyl-ene reaction with various aromatic and alkyl alkenes (in very high yields, up to >99%) but also in a domino reaction with the corresponding alcohols (precursors to the alkenes) in similar good yields. The solid can be reused in both cases without any erosion of the catalytic activity and can be employed in an in-flow process to maximize the reaction throughput. Besides, the reaction can be performed under solventless reaction conditions. Addition of a catalytic amount of chiral binaphthyl hydrogen phosphate allows carrying out the reaction with a reasonable enantiomeric excess (up to >70%) and in flow, in a rare example of enantioselective solid-catalyzed domino carbonyl-ene reaction using a cheap, simple, readily available and physically mixed catalytic solid. The MgCl2-catalytic system is also active in the industrially relevant citronellal-to-isopulegol carbonyl-ene reaction. These results pave the way to design sustainable domino carbonyl-ene reactions with extremely cheap solid catalysts.
Collapse
Affiliation(s)
- Miguel Espinosa
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química (UPV-CSIC), Universidad Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas Avda. de los Naranjos s/n 46022 Valencia Spain
| |
Collapse
|
2
|
Lu H, Bao L, Dong Q, Li X, Dong J. Coal-Based Branched Vicinal Diol Ethoxylates Versus Guerbet Alcohol Ethoxylates: Role of Tertiary Hydroxyl Groups. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12539-12552. [PMID: 38842621 DOI: 10.1021/acs.langmuir.4c00965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Branched surfactants exhibit a lower surface tension, excellent low defoaming performance, and better wetting ability compared with linear surfactants, making them promising for applications in industrial cleaning. In this study, 2-hexyl-1-decene (C8 olefin dimer), obtained from the dimerization of 1-octene, was used as the hydrophobe to synthesize branched nonionic surfactants via hydroxylation and ethoxylation. The hydroxylation of the C8 olefin dimer to synthesize 2-hexyldecane-1,2-diol (C8 BD) using H2O2 and HCOOH was investigated systematically. Under the optimal reaction conditions (H2O2/C8 olefin dimer molar ratio: 1.5, HCOOH/C8 olefin dimer molar ratio: 4.0, reaction time: 10 h, reaction temperature: 50 °C), the conversion of the C8 olefin dimer and selectivity toward C8 BD were found to reach 99.96 and 79.89%, respectively. Further, branched nonionic surfactants (C8 BDEn) were synthesized via ethoxylation of C8 BD with ethylene oxide and characterized using FTIR, LCMS, 1H NMR, and 13C NMR techniques. The presence of a tertiary hydroxyl group in C8 BD increases the reactivity of the primary hydroxyl group, leading to a narrower range of products and lower residual substrate content. The physicochemical properties and surface properties of C8 BDEn with different degrees of ethoxylation at various concentrations were investigated and compared with those of commercially available Guerbet alcohol polyoxyethylene ethers (C8 GAEO9 and C6 GAEO9). The results show that, compared with C8 GAEO9 and C6 GAEO9, C8 BDE6 displayed a higher surface activity with a lower equilibrium surface tension (27.14 mN·m-1), superior wettability with a smaller contact angle (39.2°), better emulsification performance with a longer emulsification time of 548 s, and excellent foaming properties (initial foam volume of 11.6 mL). This strategy of utilizing coal-based α-olefins for the synthesis of branched nonionic surfactants presents a route to prepare value-added fine chemicals from coal-based resources.
Collapse
Affiliation(s)
- Haochuan Lu
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Lining Bao
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qingwen Dong
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Xu Li
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Jinxiang Dong
- College of Chemical Engineering and Technology, Shanxi Key Laboratory of Chemical Product Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
3
|
Morimoto Y, Shimaoka Y, Fukui K, Itoh S. Selective Alkane Hydroxylation in a Fluorous Solvent System Catalyzed by a Fluorocarbon-Soluble Transition-Metal Catalyst. ACS OMEGA 2024; 9:23624-23633. [PMID: 38854554 PMCID: PMC11154937 DOI: 10.1021/acsomega.4c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/11/2024]
Abstract
Hydroxylation of aliphatic hydrocarbons requires highly reactive oxidants, but their strength can lead to undesired oxidation of the initially formed alcohols and solvents, undermining the product selectivity. To address these problems, we developed a novel catalytic system using fluorocarbon solvents. A cobalt complex supported by the fluorinated ligand, N,N,N',N',N″-pentakis-[CF3(CF2)7(CH2)3]-diethylenetriamine (Rf-deta), acts as an efficient catalyst [turnover number (TON) = 1203, turnover frequency = 51 ± 1 min-1] for cyclohexane hydroxylation with the m-chloroperbenzoic acid oxidant, achieving high alcohol selectivity (96%). Overoxidation to form cyclohexanone is minimized due to the separation of cyclohexanol from the reaction phase, comprising perfluoromethylcyclohexane and α,α,α-trifluorotoluene. The catalyst hydroxylates primary carbons (5 examples) and exhibits significant reactivity toward the terminal C-H bond of normal hexane (TON = 13). This system extends to the hydroxylation of the gaseous substrate butane, yielding the corresponding alcohols.
Collapse
Affiliation(s)
| | - Yuki Shimaoka
- Department of Molecular Chemistry,
Division of Advanced Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Kosuke Fukui
- Department of Molecular Chemistry,
Division of Advanced Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Molecular Chemistry,
Division of Advanced Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Zhu N, Yao H, Zhang X, Bao H. Metal-catalyzed asymmetric reactions enabled by organic peroxides. Chem Soc Rev 2024; 53:2326-2349. [PMID: 38259195 DOI: 10.1039/d3cs00735a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
As a class of multifunctional reagents, organic peroxides play vital roles in the chemical industry, pharmaceutical synthesis and polymerization reactions. Metal-catalyzed asymmetric catalysis has emerged as one of the most straightforward and efficient strategies to construct enantioenriched molecules, and an increasing number of metal-catalyzed asymmetric reactions enabled by organic peroxides have been disclosed by researchers in recent years. Despite remarkable progress, the types of asymmetric reactions facilitated by organic peroxides remain limited and the catalysis systems need to be further broadened. To the best of our knowledge, there is still no review devoted to summarizing the reactions from this perspective. In this review, we will endeavor to highlight the advances in metal-catalyzed asymmetric reactions enabled by organic peroxides. We hope that this survey will summarize the functions of organic peroxides in catalytic reactions, improve the understanding of these compounds and inspire future developments in this area.
Collapse
Affiliation(s)
- Nengbo Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
| | - Huijie Yao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| | - Xiyu Zhang
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China.
- Fujian College, University of Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
5
|
Wei S, Li K, Zhong S, Zhang R, Wang G, Liu R. Prussian Blue Analogue-Derived Co 3O 4 as Catalysts for Enhanced Selective Oxidation of Cyclohexane Using Molecular Oxygen. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7252-7264. [PMID: 38300279 DOI: 10.1021/acsami.3c17478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Selective conversion of inert C-H bonds in alkanes into high-value-added functional groups (alcohols, ketones, carboxylic acids, etc.) plays a vital role in establishing a green and sustainable chemical industry. Catalytic selective oxidation of cyclohexane to KA oil (cyclohexanol and cyclohexanone) is a typical representative of alkane functionalization. In this work, hollow cage-like Co3O4 (Co3O4-C) and particle Co3O4 (Co3O4-P) were synthesized by calcining two types of Prussian blue analogues (PBAs), which were used to catalyze the selective oxidation of cyclohexane. The Co3O4-C predominantly exposed (311) crystal plane is easier to adsorb cyclohexane than Co3O4-P, which is beneficial to shorten the induction period, accelerate the reaction rate, and improve the conversion. Consequently, Co3O4-C displayed a 10% conversion of cyclohexane within 1 h, and the KA oil selectivity reached 90%. The Co3O4-P exposed (220) crystal plane has a higher molar percentage of oxygen vacancies and more active oxygen species, as well as a strong cyclohexanone adsorption capacity, which is conducive to the deep oxidation of cyclohexanone to adipic acid and other diacid products. The mechanism analysis of cyclohexane oxidation catalyzed by PBA-based Co3O4 shows that it exemplifies the feasibility to tailor the surface of catalysts by modulating the PBAs, which ultimately influences their reaction performance for accelerating the reaction and maintaining high cyclohexane conversion and KA oil selectivity.
Collapse
Affiliation(s)
- Shuang Wei
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Kexin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, P. R. China
| | - Sheng Zhong
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, P. R. China
| | - Ruirui Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, P. R. China
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China
| | - Ruixia Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing 100190, P. R. China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Wang R, Pan Y, Feng S, Liang C, Xie J, Lau TC, Liu Y. Structure and reactivity of a seven-coordinate ruthenium acylperoxo complex. Chem Commun (Camb) 2024; 60:312-315. [PMID: 38063010 DOI: 10.1039/d3cc04751b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The use of metal-acylperoxo complexes as oxidants has been little explored. Herein we report the synthesis and characterization of the first seven-coordinate Ru-acylperoxo complex, [RuIV(bdpm)(pic)2(mCPBA)]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline; HmCPBA = m-chloroperbenzoic acid). This complex is a highly reactive oxidant for C-H bond activation and O-atom transfer reactions.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Science Island Branch, Graduate School of USTC, Hefei 230026, P. R. China
| | - Yunling Pan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Sushan Feng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Chenyi Liang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Science Island Branch, Graduate School of USTC, Hefei 230026, P. R. China
| | - Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
7
|
Heim P, Spedalotto G, Lovisari M, Gericke R, O'Brien J, Farquhar ER, McDonald AR. Synthesis and Characterization of a Masked Terminal Nickel-Oxide Complex. Chemistry 2023; 29:e202203840. [PMID: 36696360 PMCID: PMC10101870 DOI: 10.1002/chem.202203840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In exploring terminal nickel-oxo complexes, postulated to be the active oxidant in natural and non-natural oxidation reactions, we report the synthesis of the pseudo-trigonal bipyramidal NiII complexes (K)[NiII (LPh )(DMF)] (1[DMF]) and (NMe4 )2 [NiII (LPh )(OAc)] (1[OAc]) (LPh =2,2',2''-nitrilo-tris-(N-phenylacetamide); DMF=N,N-dimethylformamide; - OAc=acetate). Both complexes were characterized using NMR, FTIR, ESI-MS, and X-ray crystallography, showing the LPh ligand to bind in a tetradentate fashion, together with an ancillary donor. The reaction of 1[OAc] with peroxyphenyl acetic acid (PPAA) resulted in the formation of [(LPh )NiIII -O-H⋅⋅⋅OAc]2- , 2, that displays many of the characteristics of a terminal Ni=O species. 2 was characterized by UV-Vis, EPR, and XAS spectroscopies and ESI-MS. 2 decayed to yield a NiII -phenolate complex 3 (through aromatic electrophilic substitution) that was characterized by NMR, FTIR, ESI-MS, and X-ray crystallography. 2 was capable of hydroxylation of hydrocarbons and epoxidation of olefins, as well as oxygen atom transfer oxidation of phosphines at exceptional rates. While the oxo-wall remains standing, this complex represents an excellent example of a masked metal-oxide that displays all of the properties expected of the ever elusive terminal M=O beyond the oxo-wall.
Collapse
Affiliation(s)
- Philipp Heim
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Giuseppe Spedalotto
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Marta Lovisari
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Robert Gericke
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
- Current address: Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Resource Ecology, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - John O'Brien
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| | - Erik R Farquhar
- Center for Synchrotron Biosciences, National Synchrotron Light Source II, Brookhaven, National Laboratory Case Western Reserve University, Upton, NY 11973, USA
| | - Aidan R McDonald
- School of Chemistry and CRANN/AMBER Nanoscience Institute, Trinity College Dublin, The University of Dublin, College Green, Dublin 2, Ireland
| |
Collapse
|
8
|
Zhu W, Sharma N, Lee YM, El-Khouly ME, Fukuzumi S, Nam W. Use of Singlet Oxygen in the Generation of a Mononuclear Nonheme Iron(IV)-Oxo Complex. Inorg Chem 2023; 62:4116-4123. [PMID: 36862977 DOI: 10.1021/acs.inorgchem.2c04020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Nonheme iron(III)-superoxo intermediates are generated in the activation of dioxygen (O2) by nonheme iron(II) complexes and then converted to iron(IV)-oxo species by reacting with hydrogen donor substrates with relatively weak C-H bonds. If singlet oxygen (1O2) with ca. 1 eV higher energy than the ground state triplet oxygen (3O2) is employed, iron(IV)-oxo complexes can be synthesized using hydrogen donor substrates with much stronger C-H bonds. However, 1O2 has never been used in generating iron(IV)-oxo complexes. Herein, we report that a nonheme iron(IV)-oxo species, [FeIV(O)(TMC)]2+ (TMC = tetramethylcyclam), is generated using 1O2, which is produced with boron subphthalocyanine chloride (SubPc) as a photosensitizer, and hydrogen donor substrates with relatively strong C-H bonds, such as toluene (BDE = 89.5 kcal mol-1), via electron transfer from [FeII(TMC)]2+ to 1O2, which is energetically more favorable by 0.98 eV, as compared with electron transfer from [FeII(TMC)]2+ to 3O2. Electron transfer from [FeII(TMC)]2+ to 1O2 produces an iron(III)-superoxo complex, [FeIII(O2)(TMC)]2+, followed by abstracting a hydrogen atom from toluene by [FeIII(O2)(TMC)]2+ to form an iron(III)-hydroperoxo complex, [FeIII(OOH)(TMC)]2+, that is further converted to the [FeIV(O)(TMC)]2+ species. Thus, the present study reports the first example of generating a mononuclear nonheme iron(IV)-oxo complex with the use of singlet oxygen, instead of triplet oxygen, and a hydrogen atom donor with relatively strong C-H bonds. Detailed mechanistic aspects, such as the detection of 1O2 emission, the quenching by [FeII(TMC)]2+, and the quantum yields, have also been discussed to provide valuable mechanistic insights into understanding nonheme iron-oxo chemistry.
Collapse
Affiliation(s)
- Wenjuan Zhu
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Namita Sharma
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab 21934, Alexandria, Egypt
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Chen J, Song W, Yao J, Wu Z, Lee YM, Wang Y, Nam W, Wang B. Hydrogen Bonding-Assisted and Nonheme Manganese-Catalyzed Remote Hydroxylation of C-H Bonds in Nitrogen-Containing Molecules. J Am Chem Soc 2023; 145:5456-5466. [PMID: 36811463 DOI: 10.1021/jacs.2c13832] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The development of catalytic systems capable of oxygenating unactivated C-H bonds with excellent site-selectivity and functional group tolerance under mild conditions remains a challenge. Inspired by the secondary coordination sphere (SCS) hydrogen bonding in metallooxygenases, reported herein is an SCS solvent hydrogen bonding strategy that employs 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) as a strong hydrogen bond donor solvent to enable remote C-H hydroxylation in the presence of basic aza-heteroaromatic rings with a low loading of a readily available and inexpensive manganese complex as a catalyst and hydrogen peroxide as a terminal oxidant. We demonstrate that this strategy represents a promising compliment to the current state-of-the-art protection approaches that rely on precomplexation with strong Lewis and/or Brønsted acids. Mechanistic studies with experimental and theoretical approaches reveal the existence of a strong hydrogen bonding between the nitrogen-containing substrate and HFIP, which prevents the catalyst deactivation by nitrogen binding and deactivates the basic nitrogen atom toward oxygen atom transfer and the α-C-H bonds adjacent to the nitrogen center toward H-atom abstraction. Moreover, the hydrogen bonding exerted by HFIP has also been demonstrated not only to facilitate the O-O bond heterolytic cleavage of a putative MnIII-OOH precursor to generate MnV(O)(OC(O)CH2Br) as an active oxidant but also to affect the stability and the activity of MnV(O)(OC(O)CH2Br).
Collapse
Affiliation(s)
- Jie Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wenxun Song
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jinping Yao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Zhimin Wu
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Yong Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Bin Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
10
|
Wei S, Li H, Li K, Zhang R, Wang G, Liu R. Design of Prussian Blue Analogue-Derived Magnetic Binary Ce–Fe Oxide Catalysts for the Selective Oxidation of Cyclohexane. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Shuang Wei
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Hao Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Kexin Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Ruirui Zhang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| | - Guosheng Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang110142, P. R. China
| | - Ruixia Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Innovation Academy for Green Manufacture, CAS, Beijing100190, P. R. China
| |
Collapse
|
11
|
Yokota S, Suzuki Y, Yanagisawa S, Ogura T, Nozawa S, Hada M, Fujii H. How Do the Axial and Equatorial Ligands Modulate the Reactivity of a Metal-Bound Terminal Oxidant? An Answer from the Hypochlorite Adduct of Iron(III) Porphyrin. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sawako Yokota
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Yuna Suzuki
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| | - Sachiko Yanagisawa
- Graduate School of Science, University of Hyogo, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Takashi Ogura
- Graduate School of Science, University of Hyogo, Kouto, Kamigori, Ako, Hyogo 678-1297, Japan
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masahiko Hada
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji 192-0397, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science, Graduate School of Humanities and Sciences, Nara Women’s University, Kitauoyanishi, Nara 630-8506, Japan
| |
Collapse
|
12
|
Liu M, Zhang G. Amorphous Goethite as a Catalyst of Chemoselectivity Epoxidation of Alkenes by Hydrogen Peroxide. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Malik DD, Lee Y, Nam W. Identification of a cobalt(
IV
)–oxo intermediate as an active oxidant in catalytic oxidation reactions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deesha D. Malik
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| |
Collapse
|
14
|
Lin J, Wang F, Tian J, Zhang J, Wang Y, Sun W. Theoretical and experimental investigations of the enantioselective epoxidation of olefins catalyzed by manganese complexes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Chatterjee S, Harden I, Bistoni G, Castillo RG, Chabbra S, van Gastel M, Schnegg A, Bill E, Birrell JA, Morandi B, Neese F, DeBeer S. A Combined Spectroscopic and Computational Study on the Mechanism of Iron-Catalyzed Aminofunctionalization of Olefins Using Hydroxylamine Derived N-O Reagent as the "Amino" Source and "Oxidant". J Am Chem Soc 2022; 144:2637-2656. [PMID: 35119853 PMCID: PMC8855425 DOI: 10.1021/jacs.1c11083] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Herein, we study
the mechanism of iron-catalyzed direct synthesis
of unprotected aminoethers from olefins by a hydroxyl amine derived
reagent using a wide range of analytical and spectroscopic techniques
(Mössbauer, Electron Paramagnetic Resonance, Ultra-Violet Visible
Spectroscopy, X-ray Absorption, Nuclear Resonance Vibrational Spectroscopy,
and resonance Raman) along with high-level quantum chemical calculations.
The hydroxyl amine derived triflic acid salt acts as the “oxidant”
as well as “amino” group donor. It activates the high-spin
Fe(II) (St = 2) catalyst [Fe(acac)2(H2O)2] (1) to generate
a high-spin (St = 5/2) intermediate (Int I), which decays to a second intermediate (Int II) with St = 2. The analysis of spectroscopic
and computational data leads to the formulation of Int I as [Fe(III)(acac)2-N-acyloxy] (an alkyl-peroxo-Fe(III)
analogue). Furthermore, Int II is formed by N–O
bond homolysis. However, it does not generate a high-valent
Fe(IV)(NH) species (a Fe(IV)(O) analogue), but instead a high-spin
Fe(III) center which is strongly antiferromagnetically coupled (J = −524 cm–1) to an iminyl radical,
[Fe(III)(acac)2-NH·], giving St = 2. Though Fe(NH) complexes as isoelectronic surrogates
to Fe(O) functionalities are known, detection of a high-spin Fe(III)-N-acyloxy intermediate (Int I), which undergoes
N–O bond cleavage to generate the active iron–nitrogen
intermediate (Int II), is unprecedented. Relative to
Fe(IV)(O) centers, Int II features a weak elongated Fe–N
bond which, together with the unpaired electron density along the
Fe–N bond vector, helps to rationalize its propensity for N-transfer reactions onto styrenyl olefins, resulting in
the overall formation of aminoethers. This study thus demonstrates
the potential of utilizing the iron-coordinated nitrogen-centered
radicals as powerful reactive intermediates in catalysis.
Collapse
Affiliation(s)
- Sayanti Chatterjee
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Ingolf Harden
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Rebeca G Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Sonia Chabbra
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Maurice van Gastel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - James A Birrell
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Bill Morandi
- ETH Zürich, Vladimir-Prelog-Weg 3, HCI, 8093 Zürich, Switzerland.,Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
16
|
Nesterova OV, Kuznetsov ML, Pombeiro AJL, Shul'pin GB, Nesterov DS. Homogeneous oxidation of C–H bonds with m-CPBA catalysed by a Co/Fe system: mechanistic insights from the point of view of the oxidant. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01991k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co/Fe system efficiently catalyses the oxidation of C–H bonds with m-CPBA. The nitric acid promoter hampers the m-CPBA homolysis, suppressing the free radical activity. Experimental and computational data evidence a concerted oxidation mechanism.
Collapse
Affiliation(s)
- Oksana V. Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maxim L. Kuznetsov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Armando J. L. Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Georgiy B. Shul'pin
- Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Ulitsa Kosygina 4, Moscow 119991, Russia
- Chair of Chemistry and Physics, Plekhanov Russian University of Economics, Stremyannyi pereulok 36, Moscow 117997, Russia
| | - Dmytro S. Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Lubov DP, Bryliakova AA, Samsonenko DG, Sheven DG, Talsi EP, Bryliakov KP. Palladium‐Aminopyridine Catalyzed C−H Oxygenation: Probing the Nature of Metal Based Oxidant. ChemCatChem 2021. [DOI: 10.1002/cctc.202101345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Dmitry P. Lubov
- Boreskov Institute of Catalysis Lavrentieva 5 Novosibirsk 630090 Russia
| | - Anna A. Bryliakova
- Novosibirsk State University Pirogova 1 Novosibirsk 630090 Russia
- Novosibirsk R&D Center Inzhenernaya 20 Novosibirsk 630090 Russia
| | - Denis G. Samsonenko
- Nikolaev Institute of Inorganic Chemistry Pr. Lavrentieva 3 Novosibirsk 630090 Russia
| | - Dmitriy G. Sheven
- Nikolaev Institute of Inorganic Chemistry Pr. Lavrentieva 3 Novosibirsk 630090 Russia
| | - Evgenii P. Talsi
- Boreskov Institute of Catalysis Lavrentieva 5 Novosibirsk 630090 Russia
| | | |
Collapse
|
18
|
Ulitin N, Kharlampidi K, Tereshchenko К, Novikov N, Shiyan D, Nurmurodov T, Nurullina N, Ziyatdinov N, Miroshkin N. The cumene oxidation and cumene hydroperoxide decomposition in the presence of Zn, Cd or Hg 2-ethylhexanoate: Kinetic model and analysis of its sensitivity. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
19
|
Jeon H, Choi S, Hong S. A mononuclear nonheme manganese(
III
)‐acylperoxo complex: Synthesis, characterization, and reactivity studies. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hyeri Jeon
- Department of Chemistry Sookmyung Women's University Seoul South Korea
| | - Seoyeon Choi
- Department of Chemistry Sookmyung Women's University Seoul South Korea
| | - Seungwoo Hong
- Department of Chemistry Sookmyung Women's University Seoul South Korea
| |
Collapse
|
20
|
Shteinman AA, Mitra M. Nonheme mono- and dinuclear iron complexes in bio-inspired C H and C C bond hydroxylation reactions: Mechanistic insight. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non‐Heme Iron(IV)‐Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Mursaleem Ansari
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Aniruddha Paik
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sheuli Sasmal
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Sabarni Paul
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Sujoy Rana
- Department of Chemistry University of North Bengal Raja Rammohunpur Darjeeling West Bengal, Pin 734013 India
| | - Gopalan Rajaraman
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Debabrata Maiti
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai 400076 India
| |
Collapse
|
22
|
Morimoto Y, Hanada S, Kamada R, Fukatsu A, Sugimoto H, Itoh S. Hydroxylation of Unactivated C(sp 3)-H Bonds with m-Chloroperbenzoic Acid Catalyzed by an Iron(III) Complex Supported by a Trianionic Planar Tetradentate Ligand. Inorg Chem 2021; 60:7641-7649. [PMID: 33400861 DOI: 10.1021/acs.inorgchem.0c03469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydroxylation of cyclohexane with m-chloroperbenzoic acid was examined in the presence of an iron(III) complex supported by a trianionic planar tetradentate ligand. The present reaction system shows a high turnover number of 2750 with a high product selectivity of alcohol (93%). The turnover frequency was 0.51 s-1, and the second-order rate constant (k) for the C-H bond activation of cyclohexane was 1.08 M-1 s-1, which is one of the highest values among the iron complexes in the oxidation of cyclohexane so far reported. The present catalytic system can be adapted to the hydroxylation of substrates having only primary C-H bonds such as 2,2,3,3-tetramethylbutane as well as gaseous alkanes such as butane, propane, and ethane. The involvement of an iron(III) acyl peroxido complex as the reactive species was suggested by spectroscopic measurements of the reaction solution.
Collapse
Affiliation(s)
- Yuma Morimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinichi Hanada
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Ryusuke Kamada
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Arisa Fukatsu
- Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Hideki Sugimoto
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shinobu Itoh
- Department of Molecular Chemistry, Division of Applied Chemistry, Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Biswas JP, Ansari M, Paik A, Sasmal S, Paul S, Rana S, Rajaraman G, Maiti D. Effect of the Ligand Backbone on the Reactivity and Mechanistic Paradigm of Non-Heme Iron(IV)-Oxo during Olefin Epoxidation. Angew Chem Int Ed Engl 2021; 60:14030-14039. [PMID: 33836110 DOI: 10.1002/anie.202102484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 01/08/2023]
Abstract
The oxygen atom transfer (OAT) reactivity of the non-heme [FeIV (2PyN2Q)(O)]2+ (2) containing the sterically bulky quinoline-pyridine pentadentate ligand (2PyN2Q) has been thoroughly studied with different olefins. The ferryl-oxo complex 2 shows excellent OAT reactivity during epoxidations. The steric encumbrance and electronic effect of the ligand influence the mechanistic shuttle between OAT pathway I and isomerization pathway II (during the reaction stereo pure olefins), resulting in a mixture of cis-trans epoxide products. In contrast, the sterically less hindered and electronically different [FeIV (N4Py)(O)]2+ (1) provides only cis-stilbene epoxide. A Hammett study suggests the role of dominant inductive electronic along with minor resonance effect during electron transfer from olefin to 2 in the rate-limiting step. Additionally, a computational study supports the involvement of stepwise pathways during olefin epoxidation. The ferryl bend due to the bulkier ligand incorporation leads to destabilization of both d z 2 and d x 2 - y 2 orbitals, leading to a very small quintet-triplet gap and enhanced reactivity for 2 compared to 1. Thus, the present study unveils the role of steric and electronic effects of the ligand towards mechanistic modification during olefin epoxidation.
Collapse
Affiliation(s)
- Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Aniruddha Paik
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sheuli Sasmal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sabarni Paul
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Sujoy Rana
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling, West Bengal, Pin, 734013, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
24
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
25
|
Radhika S, Aneeja T, Philip RM, Anilkumar G. Recent advances and trends in the biomimetic iron‐catalyzed asymmetric epoxidation. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sankaran Radhika
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | | | - Rose Mary Philip
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Kottayam India
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University Kottayam India
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Kottayam India
| |
Collapse
|
26
|
Maity AK, Kalb AE, Zeller M, Uyeda C. A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew Chem Int Ed Engl 2021; 60:1897-1902. [PMID: 33045127 PMCID: PMC8086810 DOI: 10.1002/anie.202011602] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 11/09/2022]
Abstract
(NDI)Ni2 catalysts (NDI=naphthyridine-diimine) promote cyclopropanation reactions of 1,3-dienes using (Me3 Si)CHN2 . Mechanistic studies reveal that a metal carbene intermediate is not part of the catalytic cycle. The (NDI)Ni2 (CHSiMe3 ) complex was independently synthesized and found to be unreactive toward dienes. Based on DFT models, we propose an alternative mechanism that begins with a Ni2 -mediated coupling of (Me3 Si)CHN2 and the diene. N2 extrusion followed by radical C-C bond formation generates the cyclopropane product. This model reproduces the experimentally observed regioselectivity and diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Annah E. Kalb
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| | - Christopher Uyeda
- Department of Chemistry, Purdue University, 560 Oval Dr., West Lafayette, IN 47907 (USA)
| |
Collapse
|
27
|
Maity AK, Kalb AE, Zeller M, Uyeda C. A Dinickel Catalyzed Cyclopropanation without the Formation of a Metal Carbene Intermediate. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Arnab K. Maity
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Annah E. Kalb
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Matthias Zeller
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| | - Christopher Uyeda
- Department of Chemistry Purdue University 560 Oval Dr. West Lafayette IN 47907 USA
| |
Collapse
|
28
|
Zhou XT, Yu HY, Li Y, Xue C, Ji HB. Cerium(IV) Sulfate as a Cocatalyst for Promoting the Direct Epoxidation of Propylene by Ruthenium Porphyrin with Molecular Oxygen. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04264] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xian-Tai Zhou
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hai-Yang Yu
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Yang Li
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Can Xue
- Fine Chemical Industry Research Institute, School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Hong-Bing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R. China
| |
Collapse
|
29
|
Kal S, Xu S, Que L. Bio-inspired Nonheme Iron Oxidation Catalysis: Involvement of Oxoiron(V) Oxidants in Cleaving Strong C-H Bonds. Angew Chem Int Ed Engl 2020; 59:7332-7349. [PMID: 31373120 DOI: 10.1002/anie.201906551] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Indexed: 11/11/2022]
Abstract
Nonheme iron enzymes generate powerful and versatile oxidants that perform a wide range of oxidation reactions, including the functionalization of inert C-H bonds, which is a major challenge for chemists. The oxidative abilities of these enzymes have inspired bioinorganic chemists to design synthetic models to mimic their ability to perform some of the most difficult oxidation reactions and study the mechanisms of such transformations. Iron-oxygen intermediates like iron(III)-hydroperoxo and high-valent iron-oxo species have been trapped and identified in investigations of these bio-inspired catalytic systems, with the latter proposed to be the active oxidant for most of these systems. In this Review, we highlight the recent spectroscopic and mechanistic advances that have shed light on the various pathways that can be accessed by bio-inspired nonheme iron systems to form the high-valent iron-oxo intermediates.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Shuangning Xu
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Twin Cities, 207 Pleasant Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
30
|
Kal S, Xu S, Que L. Bioinspirierte Nicht‐Häm‐Eisenoxidationskatalyse: Beteiligung von Oxoeisen(V)‐Oxidantien an der Spaltung starker C‐H‐Bindungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201906551] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Subhasree Kal
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Shuangning Xu
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of Chemistry University of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
31
|
Fukuzumi S, Cho KB, Lee YM, Hong S, Nam W. Mechanistic dichotomies in redox reactions of mononuclear metal–oxygen intermediates. Chem Soc Rev 2020; 49:8988-9027. [DOI: 10.1039/d0cs01251c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review article focuses on various mechanistic dichotomies in redox reactions of metal–oxygen intermediates with the emphasis on understanding and controlling their redox reactivity from experimental and theoretical points of view.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Graduate School of Science and Engineering
| | - Kyung-Bin Cho
- Department of Chemistry
- Jeonbuk National University
- Jeonju 54896
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- School of Chemistry and Chemical Engineering
| |
Collapse
|
32
|
Mononuclear manganese(III) complex with a monodeprotonated N-(2-pyridylmethyl)iminodiisopropanol ligand: synthesis, crystal structure, and catalytic properties. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Tseberlidis G, Demonti L, Pirovano V, Scavini M, Cappelli S, Rizzato S, Vicente R, Caselli A. Controlling Selectivity in Alkene Oxidation: Anion Driven Epoxidation or Dihydroxylation Catalysed by [Iron(III)(Pyridine‐Containing Ligand)] Complexes. ChemCatChem 2019. [DOI: 10.1002/cctc.201901045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Giorgio Tseberlidis
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Luca Demonti
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Valentina Pirovano
- Department of Pharmaceutical Sciences General and Organic Chemistry Section “A. Marchesini”University of Milan Via Venezian 21 Milano 20133 Italy
| | - Marco Scavini
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Serena Cappelli
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Silvia Rizzato
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| | - Rubén Vicente
- Departamento de Química Orgánica e Inorgánica and Instituto Universitario de Química Organometálica “Enrique Moles”Universidad de Oviedo c/ Julián Clavería 8 Oviedo 33007 Spain
| | - Alessandro Caselli
- Department of Chemistry and ISTM-CNR-MilanoUniversità degli Studi di Milano Via Golgi 19 Milano 20133 Italy
| |
Collapse
|
34
|
Lyakin OY, Bryliakov KP, Talsi EP. Non-heme oxoiron(V) intermediates in chemo-, regio- and stereoselective oxidation of organic substrates. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Tseng TH, Chen PPY. A Switch from Mechanistic Competition Mediated by a Combination of Temperature and Concentration Effects in the Oxidation Reaction of [Fe II (N4Py/TPA)](OTf) 2. Chemistry 2018; 24:11568-11572. [PMID: 29889323 DOI: 10.1002/chem.201801028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/03/2018] [Indexed: 01/23/2023]
Abstract
The formation of [(N4Py)FeIV =O]2+ species was accomplished by the reaction of [FeII (N4Py)]2+ with 20 equivalents of tBuO2 H (TBHP, 70 % in H2 O). The temperature, [FeII (N4Py)]2+ -concentration and H2 O-concentration in anhydrous TBHP (5.5 m in decane) dependences of its yields and rates were analyzed to indicate that the proton migration from [(N4Py)FeII -HOOtBu]2+ to [(N4Py)FeII -OO⊕ HtBu]2+ is the rate-determining step followed by rapid heterolytic O-O bond cleavage of FeII -OO⊕ HtBu to FeIV =O complex. The formation of [(TPA)FeIV =O]2+ is thus revealed to be greatly enhanced by the similar oxidation of [FeII (TPA)]2+ (40 mm) with 10 equivalents of tBuO2 H at -45 °C. These results demonstrate the heterolytic O-O bond cleavage of FeII -alkylperoxo species to form FeIV =O originating from the direct reaction of iron(II) complexes/TBHP. The observation of concentration and temperature effects leads to the hypothesis that O-O bond homolysis is a kinetic control pathway and O-O bond heterolysis is a thermodynamic control pathway.
Collapse
Affiliation(s)
- Tzu-Hsien Tseng
- Department of Chemistry, National Chung Hsing University, Taichung city, Taiwan) (R. O. C
| | - Peter Ping-Yu Chen
- Department of Chemistry, National Chung Hsing University, Taichung city, Taiwan) (R. O. C
| |
Collapse
|
36
|
Zima AM, Lyakin OY, Bryliakov KP, Talsi EP. On the nature of the active intermediates in iron-catalyzed oxidation of cycloalkanes with hydrogen peroxide and peracids. MOLECULAR CATALYSIS 2018. [DOI: 10.1016/j.mcat.2018.05.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Mn(III)-Porphyrin Containing Heterogeneous Catalyst based on Microporous Polymeric Constituents as a New Class of Catalyst Support. ChemCatChem 2018. [DOI: 10.1002/cctc.201800973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Shi Z, Mei C, Niu G, Han Q. Two inorganic–organic hybrids based on a polyoxometalate: Structures, characterizations, and epoxidation of olefins. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1468026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Zhuolin Shi
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| | - Chongzhen Mei
- Institute of Environmental and Municipal Engineering, North China University of Water Conservancy and Electric Power, Zhengzhou, China
| | - Guiqin Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, Institute of Molecular and Crystal Engineering, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, China
| |
Collapse
|
39
|
Park H, Ahn HM, Jeong HY, Kim C, Lee D. Non-Heme Iron Catalysts for Olefin Epoxidation: Conformationally Rigid Aryl-Aryl Junction To Support Amine/Imine Multidentate Ligands. Chemistry 2018; 24:8632-8638. [DOI: 10.1002/chem.201800447] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hyunchang Park
- Department of Chemistry; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Korea
| | - Hye Mi Ahn
- Department of Fine Chemistry; Seoul National University of Science and Technology; 232 Gongneung-ro Nowon-gu Seoul 01811 Korea
| | - Ha Young Jeong
- Department of Fine Chemistry; Seoul National University of Science and Technology; 232 Gongneung-ro Nowon-gu Seoul 01811 Korea
| | - Cheal Kim
- Department of Fine Chemistry; Seoul National University of Science and Technology; 232 Gongneung-ro Nowon-gu Seoul 01811 Korea
| | - Dongwhan Lee
- Department of Chemistry; Seoul National University; 1 Gwanak-ro Gwanak-gu Seoul 08826 Korea
| |
Collapse
|
40
|
|
41
|
Zhai Y, Zhang M, Fang H, Ru S, Yu H, Zhao W, Wei Y. An efficient protocol for the preparation of aldehydes/ketones and imines by an inorganic-ligand supported iron catalyst. Org Chem Front 2018. [DOI: 10.1039/c8qo00833g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An efficient aerobic oxidation protocol of organic halides/amines promoted by an inorganic-ligand supported iron catalyst with O2 (1 atm) as the sole oxidant is reported, which can afford aldehydes/ketones and imines in high yield and good selectivity, respectively.
Collapse
Affiliation(s)
- Yongyan Zhai
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P.R. China
| | - Mengqi Zhang
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P.R. China
| | - Haibin Fang
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| | - Shi Ru
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P.R. China
| | - Han Yu
- School of Chemical and Environmental Engineering
- Shanghai Institute of Technology
- Shanghai 201418
- P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
| | - Wenshu Zhao
- Longhua Hospital Shanghai University of Traditional Chinese Medicine
- P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P.R. China
| |
Collapse
|
42
|
Alkane oxidation reactivity of homogeneous and heterogeneous metal complex catalysts with mesoporous silica-immobilized (2-pyridylmethyl)amine type ligands. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
43
|
Metalloporphyrin-mediated aerobic oxidation of hydrocarbons in cumene: Co-substrate specificity and mechanistic consideration. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.07.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Ahn HM, Bae JM, Kim MJ, Bok KH, Jeong HY, Lee SJ, Kim C. Synthesis, Characterization, and Efficient Catalytic Activities of a Nickel(II) Porphyrin: Remarkable Solvent and Substrate Effects on Participation of Multiple Active Oxidants. Chemistry 2017; 23:11969-11976. [PMID: 28731593 DOI: 10.1002/chem.201702750] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Indexed: 12/13/2022]
Abstract
A new nickel(II) porphyrin complex, [NiII (porp)] (1), has been synthesized and characterized by 1 H NMR, 13 C NMR and mass spectrometry analysis. This NiII porphyrin complex 1 quantitatively catalyzed the epoxidation reaction of a wide range of olefins with meta-chloroperoxybenzoic acid (m-CPBA) under mild conditions. Reactivity and Hammett studies, H218 O-exchange experiments, and the use of PPAA (peroxyphenylacetic acid) as a mechanistic probe suggested that participation of multiple active oxidants NiII -OOC(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4 within olefin epoxidation reactions by the nickel porphyrin complex is markedly affected by solvent polarity, concentration, and type of substrate. In aprotic solvent systems, such as toluene, CH2 Cl2 , and CH3 CN, multiple oxidants, NiII -(O)R 2, NiIV -Oxo 3, and NiIII -Oxo 4, operate simultaneously as the key active intermediates responsible for epoxidation reactions of easy-to-oxidize substrate cyclohexene, whereas NiIV -Oxo 3 and NiIII -Oxo 4 species become the common reactive oxidant for the difficult-to-oxidize substrate 1-octene. In a protic solvent system, a mixture of CH3 CN and H2 O (95:5), the NiII -OOC(O)R 2 undergoes heterolytic or homolytic O-O bond cleavage to afford NiIV -Oxo 3 and NiIII -Oxo 4 species by general acid catalysis prior to direct interaction between 2 and olefin, regardless of the type of substrate. In this case, only NiIV -Oxo 3 and NiIII -Oxo 4 species were the common reactive oxidant responsible for olefin epoxidation reactions.
Collapse
Affiliation(s)
- Hye Mi Ahn
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Jeong Mi Bae
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Min Jeong Kim
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Kwon Hee Bok
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Ha Young Jeong
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| | - Suk Joong Lee
- Department of Chemistry, Korea University, Seoul, 136-701, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul, 139-743, Korea
| |
Collapse
|
45
|
Johnson KM, Phan TTN, Albertolle ME, Guengerich FP. Human mitochondrial cytochrome P450 27C1 is localized in skin and preferentially desaturates trans-retinol to 3,4-dehydroretinol. J Biol Chem 2017; 292:13672-13687. [PMID: 28701464 DOI: 10.1074/jbc.m116.773937] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 06/29/2017] [Indexed: 11/06/2022] Open
Abstract
Recently, zebrafish and human cytochrome P450 (P450) 27C1 enzymes have been shown to be retinoid 3,4-desaturases. The enzyme is unusual among mammalian P450s in that the predominant oxidation is a desaturation and in that hydroxylation represents only a minor pathway. We show by proteomic analysis that P450 27C1 is localized to human skin, with two proteins of different sizes present, one being a cleavage product of the full-length form. P450 27C1 oxidized all-trans-retinol to 3,4-dehydroretinol, 4-hydroxy (OH) retinol, and 3-OH retinol in a 100:3:2 ratio. Neither 3-OH nor 4-OH retinol was an intermediate in desaturation. No kinetic burst was observed in the steady state; neither the rate of substrate binding nor product release was rate-limiting. Ferric P450 27C1 reduction by adrenodoxin was 3-fold faster in the presence of the substrate and was ∼5-fold faster than the overall turnover. Kinetic isotope effects of 1.5-2.3 (on kcat/Km ) were observed with 3,3-, 4,4-, and 3,3,4,4-deuterated retinol. Deuteration at C-4 produced a 4-fold increase in 3-hydroxylation due to metabolic switching, with no observable effect on 4-hydroxylation. Deuteration at C-3 produced a strong kinetic isotope effect for 3-hydroxylation but not 4-hydroxylation. Analysis of the products of deuterated retinol showed a lack of scrambling of a putative allylic radical at C-3 and C-4. We conclude that the most likely catalytic mechanism begins with abstraction of a hydrogen atom from C-4 (or possibly C-3) initiating the desaturation pathway, followed by a sequential abstraction of a hydrogen atom or proton-coupled electron transfer. Adrenodoxin reduction and hydrogen abstraction both contribute to rate limitation.
Collapse
Affiliation(s)
- Kevin M Johnson
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Thanh T N Phan
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
46
|
Cussó O, Serrano-Plana J, Costas M. Evidence of a Sole Oxygen Atom Transfer Agent in Asymmetric Epoxidations with Fe-pdp Catalysts. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01184] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Olaf Cussó
- QBIS Research Group, Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Joan Serrano-Plana
- QBIS Research Group, Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Miquel Costas
- QBIS Research Group, Institut de Química
Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
47
|
Zhao C, Chen H. Mechanism of Organophosphonate Catabolism by Diiron Oxygenase PhnZ: A Third Iron-Mediated O–O Activation Scenario in Nature. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00578] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chongyang Zhao
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Chen
- Beijing
National Laboratory for Molecular Sciences (BNLMS), Key Laboratory
of Photochemistry, CAS Research/Education Center for Excellence in
Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
48
|
Synthesis and reactivity of a mononuclear non-haem cobalt(IV)-oxo complex. Nat Commun 2017; 8:14839. [PMID: 28337985 PMCID: PMC5376677 DOI: 10.1038/ncomms14839] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 02/03/2017] [Indexed: 12/21/2022] Open
Abstract
Terminal cobalt(IV)-oxo (CoIV-O) species have been implicated as key intermediates in various cobalt-mediated oxidation reactions. Herein we report the photocatalytic generation of a mononuclear non-haem [(13-TMC)CoIV(O)]2+ (2) by irradiating [CoII(13-TMC)(CF3SO3)]+ (1) in the presence of [RuII(bpy)3]2+, Na2S2O8, and water as an oxygen source. The intermediate 2 was also obtained by reacting 1 with an artificial oxidant (that is, iodosylbenzene) and characterized by various spectroscopic techniques. In particular, the resonance Raman spectrum of 2 reveals a diatomic Co-O vibration band at 770 cm-1, which provides the conclusive evidence for the presence of a terminal Co-O bond. In reactivity studies, 2 was shown to be a competent oxidant in an intermetal oxygen atom transfer, C-H bond activation and olefin epoxidation reactions. The present results lend strong credence to the intermediacy of CoIV-O species in cobalt-catalysed oxidation of organic substrates as well as in the catalytic oxidation of water that evolves molecular oxygen.
Collapse
|
49
|
Xue XS, Ji P, Zhou B, Cheng JP. The Essential Role of Bond Energetics in C-H Activation/Functionalization. Chem Rev 2017; 117:8622-8648. [PMID: 28281752 DOI: 10.1021/acs.chemrev.6b00664] [Citation(s) in RCA: 314] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The most fundamental concepts in chemistry are structure, energetics, reactivity and their inter-relationships, which are indispensable for promoting chemistry into a rational science. In this regard, bond energy, the intrinsic determinant directly related to structure and reactivity, should be most essential in serving as a quantitative basis for the design and understanding of organic transformations. Although C-H activation/functionalization have drawn tremendous research attention and flourished during the past decades, understanding the governing rules of bond energetics in these processes is still fragmentary and seems applicable only to limited cases, such as metal-oxo-mediated hydrogen atom abstraction. Despite the complexity of C-H activation/functionalization and the difficulties in measuring bond energies both for the substrates and intermediates, this is definitely a very important issue that should be more generally contemplated. To this end, this review is rooted in the energetic aspects of C-H activation/functionalization, which were previously rarely discussed in detail. Starting with a concise but necessary introduction of various classical methods for measuring heterolytic and homolytic energies for C-H bonds, the present review provides examples that applied the concept and values of C-H bond energy in rationalizing the observations associated with reactivity and/or selectivity in C-H activation/functionalization.
Collapse
Affiliation(s)
- Xiao-Song Xue
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin, 300071, China
| | - Pengju Ji
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing, 100084, China
| | - Biying Zhou
- State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin, 300071, China
| | - Jin-Pei Cheng
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University , Beijing, 100084, China.,State Key Laboratory of Elemento-organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University , Tianjin, 300071, China
| |
Collapse
|
50
|
Yu H, Ru S, Dai G, Zhai Y, Lin H, Han S, Wei Y. An Efficient Iron(III)-Catalyzed Aerobic Oxidation of Aldehydes in Water for the Green Preparation of Carboxylic Acids. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612225] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Han Yu
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
| | - Shi Ru
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Guoyong Dai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongyan Zhai
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Hualin Lin
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Sheng Han
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; 100 Haiquan Road Shanghai 201418 P.R. China
| | - Yongge Wei
- Key Lab of Organic Optoelectronics & Molecular Engineering of Ministry of Education; Department of Chemistry; Tsinghua University; Beijing 100084 P.R. China
- State Key Laboratory of Natural and Biomimetic Drugs; Peking University; Beijing 100191 P.R. China
| |
Collapse
|