1
|
Manisha M, Kumari S, Sharma D, Negi L, Joshi RK. Iron-Catalyzed Chemoselective Transfer Hydrogenation of α,β-Unsaturated Ketones Using H 2O as a Surrogate of Hydrogen. J Org Chem 2024; 89:11983-11993. [PMID: 39155442 DOI: 10.1021/acs.joc.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Sustainable and highly economical iron-catalyzed chemoselective reduction of C═C of α,β-unsaturated ketones has been established under mild reaction protocols. Water is used as a green and abundant surrogate of hydrogen and is scarcely used in organic synthetic transformations as a source of hydrogen. The developed protocol offers a broad spectrum for chemoselective transfer hydrogenation of α,β-unsaturated ketones. Moreover, the method was found to be highly effective for aryl and ferrocenyl α,β-unsaturated ketones consisting of one or two double bonds and with multiple functionalities. Moreover, the present method avoids prolonged reaction time, provides a wide range of substrates with excellent yield, and circumvents the tedious chromatographic workup.
Collapse
Affiliation(s)
- Manisha Manisha
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Sangeeta Kumari
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Deepak Sharma
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Lalit Negi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| | - Raj K Joshi
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, JLN Marg, Jaipur 302017, Rajasthan, India
| |
Collapse
|
2
|
Golio N, Sen I, Yu X, Kondratyuk P, Gellman AJ. H 2-D 2 Exchange Activity and Electronic Structure of Ag x Pd 1-x Alloy Catalysts Spanning Composition Space. ACS Catal 2024; 14:11014-11025. [PMID: 39050898 PMCID: PMC11264212 DOI: 10.1021/acscatal.4c02309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024]
Abstract
Many computational studies of catalytic surface reaction kinetics have demonstrated the existence of linear scaling relationships between physical descriptors of catalysts and reaction barriers on their surfaces. In this work, the relationship between catalyst activity, electronic structure, and alloy composition was investigated experimentally using a Ag x Pd1-x Composition Spread Alloy Film (CSAF) and a multichannel reactor array that allows measurement of steady-state reaction kinetics at 100 alloy compositions simultaneously. Steady-state H2-D2 exchange kinetics were measured at atmospheric pressure on Ag x Pd1-x catalysts over a temperature range of 333-593 K and a range of inlet H2 and D2 partial pressures. X-ray photoelectron spectroscopy (XPS) was used to characterize the CSAF by determining the local surface compositions and the valence band electronic structure at each composition. The valence band photoemission spectra showed that the average energy of the valence band, ε̅v, shifts linearly with composition from -6.2 eV for pure Ag to -3.4 eV for pure Pd. At all reaction conditions, the H2-D2 exchange activity was found to be highest on pure Pd and gradually decreased as the alloy was diluted with Ag until no activity was observed for compositions with x Pd < 0.58. Measured H2-D2 exchange rates across the CSAF were fit using the Dual Subsurface Hydrogen (2H') mechanism to extract estimates for the activation energy barriers to dissociative adsorption, ΔE ads ‡, associative desorption, ΔE des ‡, and the surface-to-subsurface diffusion energy, ΔE ss, as a function of alloy composition, x Pd. The 2H' mechanism predicts ΔE ads ‡ = 0-10 kJ/mol, ΔE des ‡ = 30-65 kJ/mol, and ΔE ss = 20-30 kJ/mol for all alloy compositions with x Pd ≥ 0.64, including for the pure Pd catalyst (i.e., x Pd = 1). For these Pd-rich catalysts, ΔE des ‡ and ΔE ss appeared to increase by ∼5 kJ/mol with decreasing x Pd. However, due to the coupling of kinetic parameters in the 2H' mechanism, we are unable to exclude the possibility that the kinetic parameters predicted when x Pd ≥ 0.64 are identical to those predicted for pure Pd. This suggests that H2-D2 exchange occurs only on bulk-like Pd domains, presumably due to the strong interactions between H2 and Pd. In this case, the decrease in catalytic activity with decreasing x Pd can be explained by a reduction in the availability of surface Pd at high Ag compositions.
Collapse
Affiliation(s)
- Nicholas Golio
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Irem Sen
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xiaoxiao Yu
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Petro Kondratyuk
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Andrew J. Gellman
- Department
of Chemical Engineering and W.E. Scott Institute for Energy
Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Zhao H, Ravn AK, Haibach MC, Engle KM, Johansson Seechurn CCC. Diversification of Pharmaceutical Manufacturing Processes: Taking the Plunge into the Non-PGM Catalyst Pool. ACS Catal 2024; 14:9708-9733. [PMID: 38988647 PMCID: PMC11232362 DOI: 10.1021/acscatal.4c01809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/12/2024]
Abstract
Recent global events have led to the cost of platinum group metals (PGMs) reaching unprecedented heights. Many chemical companies are therefore starting to seriously consider and evaluate if and where they can substitute PGMs for non-PGMs in their catalytic processes. This review covers recent highly relevant applications of non-PGM catalysts in the modern pharmaceutical industry. By highlighting these selected successful examples of non-PGM-catalyzed processes from the literature, we hope to emphasize the enormous potential of non-PGM catalysis and inspire further development within this field to enable this technology to progress toward manufacturing processes. We also present some historical contexts and review the perceived advantages and challenges of implementing non-PGM catalysts in the pharmaceutical manufacturing environment.
Collapse
Affiliation(s)
- Hui Zhao
- Sinocompound
Catalysts, Building C,
Bonded Area Technology Innovation Zone, Zhangjiagang, Jiangsu 215634, China
| | - Anne K. Ravn
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael C. Haibach
- Process
Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Keary M. Engle
- Department
of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | | |
Collapse
|
4
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Li B, Wang Z, Luo Y, Wei H, Chen J, Liu D, Zhang W. Nickel-catalyzed asymmetric hydrogenation for the preparation of α-substituted propionic acids. Nat Commun 2024; 15:5482. [PMID: 38942809 PMCID: PMC11213955 DOI: 10.1038/s41467-024-49801-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Transition metal-catalyzed asymmetric hydrogenation is one of the most efficient methods for the preparation of chiral α-substituted propionic acids. However, research on this method, employing cleaner earth-abundant metal catalysts, is still insufficient in both academic and industrial contexts. Herein, we report an efficient nickel-catalyzed asymmetric hydrogenation of α-substituted acrylic acids affording the corresponding chiral α-substituted propionic acids with up to 99.4% ee (enantiomeric excess) and 10,000 S/C (substrate/catalyst). In particular, this method can be used to obtain (R)-dihydroartemisinic acid with 99.8:0.2 dr (diastereomeric ratio) and 5000 S/C, which is an essential intermediate for the preparation of the antimalarial drug Artemisinin. The reaction mechanism has been investigated via experiments and DFT (Density Functional Theory) calculations, which indicate that the protonolysis of the C-Ni bond of the key intermediate via an intramolecular proton transfer from the carboxylic acid group of the substrate, is the rate-determining step.
Collapse
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhiling Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Delong Liu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
6
|
Lyu X, Jung H, Kim D, Chang S. Enantioselective Access to β-Amino Carbonyls via Ni-Catalyzed Formal Olefin Hydroamidation. J Am Chem Soc 2024; 146:14745-14753. [PMID: 38742738 DOI: 10.1021/jacs.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We herein describe a Ni-catalyzed formal hydroamidation of readily available α,β-unsaturated carbonyl compounds to afford valuable chiral β-amino acid derivatives (up to >99:1 e.r.) using dioxazolones as a robust amino source. A wide range of alkyl-substituted olefins conjugated to esters, amides, thioesters, and ketones were successfully amidated at the β-position with excellent enantioselectivity for the first time. Combined experimental and computational mechanistic studies supported our working hypothesis that this unconventional β-amidation of unsaturated carbonyl substrates can be attributed to the polar-matched migratory olefin insertion of an (amido)(Cl)NiII intermediate, in situ generated from the dioxazolone precursor.
Collapse
Affiliation(s)
- Xiang Lyu
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Hoimin Jung
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Sukbok Chang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| |
Collapse
|
7
|
Dey K, de Ruiter G. Chemoselective Hydrogenation of α,β-Unsaturated Ketones Catalyzed by a Manganese(I) Hydride Complex. Org Lett 2024; 26:4173-4177. [PMID: 38738936 PMCID: PMC11129310 DOI: 10.1021/acs.orglett.4c00277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/21/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Here, we report the chemoselective hydrogenation of α,β-unsaturated ketones catalyzed by a well-defined Mn(I) PCNHCP pincer complex [(PCNHCP)Mn(CO)2H] (1). The reaction is compatible with a wide variety of functional groups that include halides, esters, amides, nitriles, nitro, alkynes, and alkenes, and for most substrates occurs readily at ambient hydrogen pressure (1-2 bar). Mechanistic studies and deuterium labeling experiments reveal a non-cooperative mechanism, which is further discussed in this report.
Collapse
Affiliation(s)
- Kartick Dey
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| | - Graham de Ruiter
- Schulich
Faculty of Chemistry, Technion −
Israel Institute of Technology, Technion City, 3200008 Haifa, Israel
| |
Collapse
|
8
|
Liu G, Yang X, Gu P, Wang M, Zhang X, Dong XQ. Challenging Task of Ni-Catalyzed Highly Regio-/Enantioselective Semihydrogenation of Racemic Tetrasubstituted Allenes via a Kinetic Resolution Process. J Am Chem Soc 2024; 146:7419-7430. [PMID: 38447583 DOI: 10.1021/jacs.3c12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The first earth-abundant transition metal Ni-catalyzed highly regio- and enantioselective semihydrogenation of racemic tetrasubstituted allenes via a kinetic resolution process as a challenging task was well established. This protocol furnishes expedient access to a diversity of structurally important enantioenriched tetrasubstituted allenes and chiral allylic molecules with high regio-, enantio-, and Z/E-selectivity. Remarkably, this semihydrogenation proceeded with one carbon-carbon double bond of allenes, which was regioselective complementary to the Rh-catalyzed asymmetric version. Deuterium labeling experiments and density functional theory (DFT) calculations were carried out to reveal the reasonable reaction mechanism and explain the regio-/stereoselectivity.
Collapse
Affiliation(s)
- Gang Liu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Xuanliang Yang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| | - Pei Gu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Xumu Zhang
- Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518000, Guangdong, P. R. China
| | - Xiu-Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, P. R. China
| |
Collapse
|
9
|
Chawla R, Singh AK, Dutta PK. Arylazo sulfones: multifaceted photochemical reagents and beyond. Org Biomol Chem 2024; 22:869-893. [PMID: 38196324 DOI: 10.1039/d3ob01599h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The photochemical action of arylazo sulfones under visible light irradiation has recently gained considerable attention for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. The inherent dyedauxiliary group (-N2SO2R) embedded in the reagent is responsible for the absorption of visible light even in the absence of a photocatalyst, additive or oxidant, leading to the generation of three different radicals, viz. aryl (carbon-centred), sulfonyl (sulphur-centred) and diazenyl (nitrogen-centred) radicals, under different reaction conditions. Encountering a reagent with such a versatile behaviour is quite rare, which makes arylazo sulfones a highly interesting class of compounds. The mild reaction conditions under which these reagents can operate are an added advantage. Recently, they are also being used as non-ionic photoacid generators (PAGs), electron acceptors, and hydrogen atom transfer (HAT) and imination reagents in a number of synthetic transformations. They have displayed substantial damaging effect on the structure of DNA in the presence of light which can lead to their use as phototoxic pharmaceuticals for cancer treatment. Moreover, their photochemistry is also being exploited in polymerization reactions (as photoinitiators) and in materials chemistry (surface modification).
Collapse
Affiliation(s)
- Ruchi Chawla
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| | - Atul K Singh
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Pradip K Dutta
- Polymer Research Laboratory, Department of Chemistry, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India.
| |
Collapse
|
10
|
Wu B, Bai YQ, Wang XQ, Huang WJ, Zhou YG. The Proton of Alcohols as Hydrogen Source in Diboron-Mediated Nickel-Catalyzed Asymmetric Transfer Hydrogenation of Cyclic N-Sulfonyl Imines. J Org Chem 2024; 89:710-718. [PMID: 38101332 DOI: 10.1021/acs.joc.3c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The proton of alcohols as the sole hydrogen source in diboron-mediated nickel-catalyzed asymmetric transfer hydrogenation of cyclic N-sulfonyl imines has been developed, providing the chiral cyclic sulfamidates in excellent enantioselectivities. The mechanistic investigations suggested that the proton of alcohols could be activated by tetrahydroxydiboron to form active nickel hydride species.
Collapse
Affiliation(s)
- Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yu-Qing Bai
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Wen-Jun Huang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, P. R. China
| |
Collapse
|
11
|
Zeng L, Zhao M, Lin B, Song J, Tucker JHR, Wen J, Zhang X. Cobalt-Catalyzed Enantioselective Hydrogenation of Diaryl Ketones with Ferrocene-Based Secondary Phosphine Oxide Ligands. Org Lett 2023; 25:6228-6233. [PMID: 37585346 DOI: 10.1021/acs.orglett.3c02530] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
A new class of cobalt catalytic system for asymmetric hydrogenation of ketones was herein reported, involving the development of novel ferrocene-based secondary phosphine oxide ligands. An unusual P-O bidentate coordination pattern with cobalt was confirmed by an X-ray diffraction study. The bichelating tetrahedral cobalt(II) complexes afforded high reactivities (up to 99% yield) and good to excellent enantioselectivities (up to 92% ee) in the AH of various ortho-substituted diaryl ketones. In addition, the diferrocenyl cobalt complex was characterized with intriguing UV-vis absorption and electrochemical properties.
Collapse
Affiliation(s)
- Liyao Zeng
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Menglong Zhao
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Bijin Lin
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Jingyuan Song
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - James H R Tucker
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jialin Wen
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| | - Xumu Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, China
| |
Collapse
|
12
|
Eyke NS, Schneider TN, Jin B, Hart T, Monfette S, Hawkins JM, Morse PD, Howard RM, Pfisterer DM, Nandiwale KY, Jensen KF. Parallel multi-droplet platform for reaction kinetics and optimization. Chem Sci 2023; 14:8798-8809. [PMID: 37621435 PMCID: PMC10445457 DOI: 10.1039/d3sc02082g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
We present an automated droplet reactor platform possessing parallel reactor channels and a scheduling algorithm that orchestrates all of the parallel hardware operations and ensures droplet integrity as well as overall efficiency. We design and incorporate all of the necessary hardware and software to enable the platform to be used to study both thermal and photochemical reactions. We incorporate a Bayesian optimization algorithm into the control software to enable reaction optimization over both categorical and continuous variables. We demonstrate the capabilities of both the preliminary single-channel and parallelized versions of the platform using a series of model thermal and photochemical reactions. We conduct a series of reaction optimization campaigns and demonstrate rapid acquisition of the data necessary to determine reaction kinetics. The platform is flexible in terms of use case: it can be used either to investigate reaction kinetics or to perform reaction optimization over a wide range of chemical domains.
Collapse
Affiliation(s)
- Natalie S Eyke
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Timo N Schneider
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Brooke Jin
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Travis Hart
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| | - Sebastien Monfette
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - Joel M Hawkins
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - Peter D Morse
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - Roger M Howard
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | - David M Pfisterer
- Pfizer Worldwide Research and Development 445 Eastern Point Rd Groton CT 06340 USA
| | | | - Klavs F Jensen
- Department of Chemical Engineering, Massachusetts Institute of Technology Cambridge MA 02139 USA
| |
Collapse
|
13
|
Twitty JC, Hong Y, Garcia B, Tsang S, Liao J, Schultz DM, Hanisak J, Zultanski SL, Dion A, Kalyani D, Watson MP. Diversifying Amino Acids and Peptides via Deaminative Reductive Cross-Couplings Leveraging High-Throughput Experimentation. J Am Chem Soc 2023; 145:5684-5695. [PMID: 36853652 PMCID: PMC10117303 DOI: 10.1021/jacs.2c11451] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A deaminative reductive coupling of amino acid pyridinium salts with aryl bromides has been developed to enable efficient synthesis of noncanonical amino acids and diversification of peptides. This method transforms natural, commercially available lysine, ornithine, diaminobutanoic acid, and diaminopropanoic acid to aryl alanines and homologated derivatives with varying chain lengths. Attractive features include ability to transverse scales, tolerance of pharma-relevant (hetero)aryls and biorthogonal functional groups, and the applicability beyond monomeric amino acids to short and macrocyclic peptide substrates. The success of this work relied on high-throughput experimentation to identify complementary reaction conditions that proved critical for achieving the coupling of a broad scope of aryl bromides with a range of amino acid and peptide substrates including macrocyclic peptides.
Collapse
Affiliation(s)
- J. Cameron Twitty
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Yun Hong
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Bria Garcia
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Tsang
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jennie Liao
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Danielle M. Schultz
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, NJ 07065, United States
| | - Jennifer Hanisak
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L. Zultanski
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, NJ 07065, United States
| | - Amelie Dion
- Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, NJ 07065, United States
| | - Dipannita Kalyani
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Mary P. Watson
- Department of Chemistry & Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
14
|
Yang X, Liu G, Xiang X, Xie D, Han J, Han Z, Dong XQ. Ni-Catalyzed Asymmetric Hydrogenation of α-Substituted α,β-Unsaturated Phosphine Oxides/Phosphonates/Phosphoric Acids. Org Lett 2023; 25:738-743. [PMID: 36716390 DOI: 10.1021/acs.orglett.2c04105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Efficient Ni/(S,S)-Ph-BPE-catalyzed asymmetric hydrogenation of α-substituted α,β-unsaturated phosphine oxides/phosphonates/phosphoric acids has been successfully developed, and a wide range of chiral α-substituted phosphines hydrogenation products were obtained in generally high yields with excellent enantioselective control (92%-99% yields, 84%->99% ee). This method features a cheap transition metal nickel catalytic system, high functional group tolerance, wide substrate scope generality, and excellent enantioselectivity. A plausible catalytic cycle was proposed for this asymmetric hydrogenation according to the results of deuterium-labeling experiments.
Collapse
Affiliation(s)
- Xuanliang Yang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Gang Liu
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xun Xiang
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Dezheng Xie
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Jinyu Han
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhengyu Han
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P.R. China
| | - Xiu-Qin Dong
- College of Chemistry and Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
15
|
Wang Q, Qi Y, Gao X, Gong L, Wan R, Lei W, Wang Z, Mao J, Guan H, Li W, Walsh PJ. Recent trends and developments in the asymmetric synthesis of profens. GREEN SYNTHESIS AND CATALYSIS 2023. [DOI: 10.1016/j.gresc.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
|
16
|
Wei H, Chen H, Chen J, Gridnev ID, Zhang W. Nickel-Catalyzed Asymmetric Hydrogenation of α-Substituted Vinylphosphonates and Diarylvinylphosphine Oxides. Angew Chem Int Ed Engl 2023; 62:e202214990. [PMID: 36507919 DOI: 10.1002/anie.202214990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/14/2022]
Abstract
Chiral α-substituted ethylphosphonate and ethylphosphine oxide compounds are widely used in drugs, pesticides, and ligands. However, their catalytic asymmetric synthesis is still rare. Of the only asymmetric hydrogenation methods available at present, all cases use rare metal catalysts. Herein, we report an efficient earth-abundant transition-metal nickel catalyzed asymmetric hydrogenation affording the corresponding chiral ethylphosphine products with up to 99 % yield, 96 % ee (enantiomeric excess) (99 % ee, after recrystallization) and 1000 S/C (substrate/catalyst); this is also the first study on the asymmetric hydrogenation of terminal olefins using a nickel catalyst under a hydrogen atmosphere. The catalytic mechanism was investigated via deuterium-labelling experiments and calculations which indicate that the two added hydrogen atoms of the products come from hydrogen gas. Additionally, it is believed that the reaction involves a NiII rather than Ni0 cyclic process based on the weak attractive interactions between the Ni catalyst and terminal olefin substrate.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hao Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jianzhong Chen
- Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Science, Leninsky Prospekt 47, Moscow, 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China.,Frontier Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
17
|
Jia F, Zhang B. Computational Mechanism Investigation of C=C Bond Hydrogenation Catalyzed by Rhodium Hydride. Chemphyschem 2023; 24:e202200562. [PMID: 36148802 DOI: 10.1002/cphc.202200562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Indexed: 02/03/2023]
Abstract
The hydrogenation of unsaturated carbons is a commonly used synthetic tool in pharmaceutical and industrial production. Recently, the Norton group realized highly selective hydrogenation of C=C bonds catalyzed by a rhodium hydride. Despite the great efforts made by experimentalists, details regarding the mechanism remained unclear. In this work, detailed DFT calculations were carried out to elucidate the principal features of this transformation. For enones we find that two possible competing mechanisms proposed by the experimental groups are computationally excluded, our proposed alternative mechanism with a total barrier of 20.0 kcal mol-1 is theoretically feasible, solvent methanol to also plays a crucial role in assisting β-hydrogenation in addition to being the hydrogen source for α-hydrogenation, and the cross-polarization of the substrate enone-conjugated system to result in an enhanced charge density of the α-carbon, which favors being hydrogenated first. For isolated alkenes, neither of the two possible competing mechanisms can be excluded computationally and which carbon atom is first hydrogenated depends on the electronic properties of the substrate itself. The combination of rhodium and C=C bonds changes the electronic properties of H on the rhodium hydride and enhances its hydrogenation activity.
Collapse
Affiliation(s)
- Feiyun Jia
- School of Pharmacy, North Sichuan Medical College, 55 Dongshun Road, 637100, Nanchong, Sichuan, P. R. China
| | - Bo Zhang
- School of Pharmacy, North Sichuan Medical College, 55 Dongshun Road, 637100, Nanchong, Sichuan, P. R. China
| |
Collapse
|
18
|
Oates CL, Goodfellow AS, Bühl M, Clarke ML. Rational Design of a Facially Coordinating P,N,N Ligand for Manganese-Catalysed Enantioselective Hydrogenation of Cyclic Ketones. Angew Chem Int Ed Engl 2023; 62:e202212479. [PMID: 36341982 PMCID: PMC10107995 DOI: 10.1002/anie.202212479] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
Abstract
DFT calculations on the full catalytic cycle for manganese catalysed enantioselective hydrogenation of a selection of ketones have been carried out at the PBE0-D3PCM //RI-BP86PCM level. Mn complexes of an enantiomerically pure chiral P,N,N ligand have been found to be most reactive when adopting a facial coordination mode. The use of a new ligand with an ortho-substituted dimethylamino-pyridine motif has been calculated to completely transform the levels of enantioselectivity possible for the hydrogenation of cyclic ketones relative to the first-generation Mn catalysts. In silico evaluation of substrates has been used to identify those likely to be reduced with high enantiomer ratios (er), and others that would exhibit less selectivity; good agreements were then found in experiments. Various cyclic ketones and some acetophenone derivatives were hydrogenated with er's up to 99 : 1.
Collapse
Affiliation(s)
- Conor L. Oates
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Alister S. Goodfellow
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Michael Bühl
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| | - Matthew L. Clarke
- EaStCHEM School of ChemistryUniversity of St AndrewsPurdie BuildingNorth HaughSt Andrews, KY16 9STUK
| |
Collapse
|
19
|
Ruck RT, Strotman NA, Krska SW. The Catalysis Laboratory at Merck: 20 Years of Catalyzing Innovation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Rebecca T. Ruck
- Department of Process Research & Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Neil A. Strotman
- Department of Pharmaceutical Sciences & Clinical Supplies, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Shane W. Krska
- Chemistry Capabilities Accelerating Therapeutics, Merck & Co., Inc., Kenilworth, New Jersey07033, United States
| |
Collapse
|
20
|
Wang L, Li T, Perveen S, Zhang S, Wang X, Ouyang Y, Li P. Nickel-Catalyzed Enantioconvergent Carboxylation Enabled by a Chiral 2,2'-Bipyridine Ligand. Angew Chem Int Ed Engl 2022; 61:e202213943. [PMID: 36300599 DOI: 10.1002/anie.202213943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/24/2022]
Abstract
In contrast to previous approaches to chiral α-aryl carboxylic acids that based on reactions using hazardous gases, pressurized setup and mostly noble metal catalysts, in this work, a nickel-catalyzed general, efficient and highly enantioselective carboxylation reaction of racemic benzylic (pseudo)halides under mild conditions using atmospheric CO2 has been developed. A unique chiral 2,2'-bipyridine ligand named Me-SBpy featuring compact polycyclic skeleton enabled both high reactivity and stereoselectivity. The utility of this method has been demonstrated by synthesis of various chiral α-aryl carboxylic acids (30 examples, up to 95 % yield and 99 : 1 er), including profen family anti-inflammatory drugs and transformations using the acids as key intermediates. Based on mechanistic experimental results, a plausible catalytic cycle involving Ni-complex/radical equilibrium and Lewis acid-assisted CO2 activation has been proposed.
Collapse
Affiliation(s)
- Linghua Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Tao Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Saima Perveen
- School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Shuai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Xicheng Wang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Yizhao Ouyang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China.,School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
21
|
Jeong J, Jung H, Kim D, Chang S. Multidimensional Screening Accelerates the Discovery of Rhodium Catalyst Systems for Selective Intra- and Intermolecular C–H Amidations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jiwoo Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Hoimin Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
22
|
Korch KM, Hayes JC, Kim RS, Sampson J, Kelly AT, Watson DA. Selected Ion Monitoring Using Low-Cost Mass Spectrum Detectors Provides a Rapid, General, and Accurate Method for Enantiomeric Excess Determination in High-Throughput Experimentation. ACS Catal 2022; 12:6737-6745. [PMID: 36743967 PMCID: PMC9894240 DOI: 10.1021/acscatal.2c01628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
High-Throughput Experimentation (HTE) workflows are efficient means of surveying a broad array of chiral catalysts in the development of catalytic asymmetric reactions. However, use of traditional HPLC-UV/vis methodology to determine enantiomeric excess (ee) from the resulting reactions is often hampered by co-elution of other reaction components, resulting in erroneous ee determination when crude samples are used, and ultimately requiring product isolation prior to ee analysis. In this study, using four published reactions selected as model systems, we demonstrate that the use of LC-MS, SFC-MS, and selected ion monitoring (SIM) mass chromatography provides a highly accurate means to determine ee of products in crude reaction samples using commonplace, low-cost MS detectors. By using ion selection, co-eluting signals can be deconvoluted to provide accurate integrations of the target analytes. We also show that this method is effective for samples lacking UV/vis chromophores, making it ideal for HTE workflows in asymmetric catalysis.
Collapse
Affiliation(s)
- Katerina M. Korch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob C. Hayes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Raphael S. Kim
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Jessica Sampson
- High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,Corresponding Authors Donald A. Watson – Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States, ; Jessica Sampson – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States. ; Austin T. Kelly – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,
| | - Austin T. Kelly
- High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,Corresponding Authors Donald A. Watson – Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States, ; Jessica Sampson – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States. ; Austin T. Kelly – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,
| | - Donald A. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States,Corresponding Authors Donald A. Watson – Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States, ; Jessica Sampson – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States. ; Austin T. Kelly – High Throughput Experimentation Center, University of Delaware, Newark, Delaware 19716, United States,
| |
Collapse
|
23
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Deng CQ, Liu J, Luo JH, Gan LJ, Deng J, Fu Y. Proton-Promoted Nickel-Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022; 61:e202115983. [PMID: 35099846 DOI: 10.1002/anie.202115983] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 12/26/2022]
Abstract
A robust and highly active homogeneous chiral nickel-phosphine complex for the asymmetric hydrogenation of aliphatic γ- and δ-ketoacids has been discovered. The hydrogenation could proceed smoothly in the presence of 0.0133 mol% catalyst loading (S/C=7500). The coordination chemistry and catalytic behavior of Ni(OTf)2 with (S,S)-Ph-BPE were explored by 1 H NMR and HRMS. The mechanistic studies revealed that a proton promoted the activation of the substrate C=O bond and controlled the stereoselectivity through hydrogen bonds. A series of chiral γ- and δ-alkyl substituted lactones were obtained in high yields with excellent enantioselectivities (up to 98 % yield and 99 % ee). In addition, this catalytic system also demonstrated that levulinic acid produced from a biomass feedstock was converted into chiral γ-valerolactone without loss of ee value.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jia-Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Li-Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
25
|
Xiao G, Xie C, Guo Q, Zi G, Hou G, Huang Y. Nickel-Catalyzed Asymmetric Hydrogenation of γ-Keto Acids, Esters, and Amides to Chiral γ-Lactones and γ-Hydroxy Acid Derivatives. Org Lett 2022; 24:2722-2727. [PMID: 35363497 DOI: 10.1021/acs.orglett.2c00826] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A highly efficient asymmetric hydrogenation of a series of γ-keto acid derivatives, including γ-keto acids, esters, and amides, using a Ni-(R,R)-QuinoxP* complex as the catalyst has been developed to afford chiral γ-hydroxy acid derivatives with excellent enantioselectivities, up to 99.9% ee. This method provides not only an economical one-pot approach for the synthesis of chiral γ-lactones but also access to (S)-norfluoxetine, an inhibitor of neural serotonin reuptake and an essential intermediate for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Guiying Xiao
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuping Huang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
26
|
Deng CQ, Deng J. Ni-Catalyzed Asymmetric Hydrogenation of Aromatic Ketoacids for the Synthesis of Chiral Lactones. Org Lett 2022; 24:2494-2498. [PMID: 35349293 DOI: 10.1021/acs.orglett.2c00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A highly efficient Ni-catalyzed asymmetric hydrogenation of aromatic γ- and δ-ketoacids has been developed, affording a series of γ- and δ-aryl lactones in high yields and excellent enantioselectivities (≤98% ee). The hydrogenation could occur smoothly on a gram scale with 0.05 mol % catalyst loading (S/C = 2000). This protocol provides an efficient and practical approach for accessing chiral lactones with important potential applications in organic synthesis and the pharmaceutical industry.
Collapse
Affiliation(s)
- Chen-Qiang Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jin Deng
- CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Nasiruzzaman Shaikh M, Aziz A, Shakil Hussain SM, Helal A. Rh‐Complex Supported on Magnetic Nanoparticles as Catalysts for Hydroformylations and Transfer Hydrogenation Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - S. M. Shakil Hussain
- Center for Integrative Petroleum Research (CIPR) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| |
Collapse
|
28
|
Kinetic Parameter Estimation for Catalytic H2–D2 Exchange on Pd. Catal Letters 2022. [DOI: 10.1007/s10562-022-03961-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
29
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|
30
|
Deng C, Liu J, Luo J, Gan L, Deng J, Fu Y. Proton‐Promoted Nickel‐Catalyzed Asymmetric Hydrogenation of Aliphatic Ketoacids. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chen‐Qiang Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jiao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jia‐Hao Luo
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Li‐Jin Gan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Jin Deng
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| | - Yao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM CAS Key Laboratory of Urban Pollutant Conversion Anhui Province Key Laboratory of Biomass Clean Energy Department of Applied Chemistry University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
31
|
Das KK, Mahato S, Hazra S, Panda S. Development of Methods to the Synthesis of β-Boryl Acyls, Imines and Nitriles. CHEM REC 2022; 22:e202100290. [PMID: 35088513 DOI: 10.1002/tcr.202100290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Organoboron compounds are highly important and versatile synthetic intermediates for the preparation of a wide range of organic molecules. Organoboron compounds have drawn significant attention among organic chemists due to their Lewis acidic property, non-toxicity, and commercial availability. Over the last several decades, there has been a substantial development of new organoboron compounds, useful in organic synthesis. Among all other organoboron compounds, β-boryl carbonyl compounds are the important ones. The β-boryl compounds have appeared as promising intermediates for various synthetic transformations. The 1,4-conjugate addition of diboron reagents to carbon-carbon double bond in the presence of different transition-metal catalysts has been extensively reported by various research groups across the globe. This mini-review outlines the numerous racemic as well as asymmetric β-borylation methods developed to date.
Collapse
Affiliation(s)
- Kanak Kanti Das
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Somenath Mahato
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Subrata Hazra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| | - Santanu Panda
- Department of Chemistry, Indian Institute of Technology, Kharagpur, 721302, India
| |
Collapse
|
32
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
33
|
Yang P, Sun Y, Fu K, Zhang L, Yang G, Yue J, Ma Y, Zhou JS, Tang B. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickel‐Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peng Yang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Yaxin Sun
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Kaiyue Fu
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Li Zhang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Guang Yang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Jieyu Yue
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Yu Ma
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School, Room F312 2199 Lishui Road Nanshan District Shenzhen 518055 P. R. China
| | - Bo Tang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
34
|
Sudhakaran S, Shinde PG, Aratikatla EK, Kaulage SH, Rana P, Parit RS, Kavale DS, Senthilkumar B, Punji B. Nickel-Catalyzed Asymmetric Hydrogenation for the Synthesis of a Key Intermediate of Sitagliptin. Chem Asian J 2022; 17:e202101208. [PMID: 34817131 DOI: 10.1002/asia.202101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/22/2021] [Indexed: 11/11/2022]
Abstract
Nickel-catalyzed enantioselective hydrogenation of enamines leading to the efficient synthesis of 3-R-Boc-amino-4-(2,4,5-trifluorophenyl)butyric esters, the key intermediate of the blockbuster antidiabetic drug (R)-SITAGLIPTIN, is described. The sitagliptin motifs were isolated in more than 99% yield and with 75-92% ee using the earth-abundant nickel catalyst. Upon chiral resolution with (R)- and (S)-1-phenylethylamines, the partially enantioenriched (R)- and (S)-Boc-3-amino-4-(2,4,5-trifluorophenyl)butanoic acids provided >99.5% ee of the crucial sitagliptin intermediate. The asymmetric hydrogenation protocol was scaled up to 10 g with consistency in yield and ee, and has been reproduced in multiple batches.
Collapse
Affiliation(s)
- Shana Sudhakaran
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Prasad G Shinde
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Eswar K Aratikatla
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Sandeep H Kaulage
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Priksha Rana
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ratan S Parit
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dattatry S Kavale
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Beeran Senthilkumar
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Benudhar Punji
- Organometallic Synthesis and Catalysis Lab, Chemical Engineering Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
35
|
Yang P, Sun Y, Fu K, Zhang L, Yang G, Yue J, Ma Y, Zhou JS, Tang B. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickel-Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angew Chem Int Ed Engl 2022; 61:e202111778. [PMID: 34676957 DOI: 10.1002/anie.202111778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Indexed: 12/20/2022]
Abstract
We report a stereoselective conversion of terminal alkynes to α-chiral carboxylic acids using a nickel-catalyzed domino hydrocarboxylation-transfer hydrogenation reaction. A simple nickel/BenzP* catalyst displayed high activity in both steps of regioselective hydrocarboxylation of alkynes and subsequent asymmetric transfer hydrogenation. The reaction was successfully applied in enantioselective preparation of three nonsteroidal anti-inflammatory profens (>90 % ees) and the chiral fragment of AZD2716.
Collapse
Affiliation(s)
- Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yaxin Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Kaiyue Fu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Guang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jieyu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen, 518055, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
36
|
Xiao G, Xie C, Guo Q, Zi G, Hou G, Huang Y. Highly enantioselective Ni-catalyzed asymmetric hydrogenation of β,β-disubstituted acrylic acids. Org Chem Front 2022. [DOI: 10.1039/d2qo00652a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly enantioselective Ni-catalyzed hydrogenation of β,β-disubstituted acrylic acids was first realized using Ph-BPE, providing straightforward access to chiral carboxylic acids in high yields with excellent enantioselectivities, up to 99% ee.
Collapse
Affiliation(s)
- Guiying Xiao
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yuping Huang
- Research Institute of Petroleum Processing, SINOPEC, Beijing 100083, China
| |
Collapse
|
37
|
Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Cycloaddition Reactions of
in situ
Generated C
2
D
2
in Dioxane: Efficient Synthetic Approach to D
2
‐Labeled Nitrogen Heterocycles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vladimir V. Voronin
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
| | - Maria S. Ledovskaya
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
| | - Konstantin S. Rodygin
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
| | - Valentine P. Ananikov
- Institute of Chemistry Saint Petersburg State University Universitetsky prospect 26 Peterhof 198504 Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky prospect 47 Moscow 119991 Russia
| |
Collapse
|
38
|
Sen A, Chikkali SH. C 1-Symmetric diphosphorus ligands in metal-catalyzed asymmetric hydrogenation to prepare chiral compounds. Org Biomol Chem 2021; 19:9095-9137. [PMID: 34617539 DOI: 10.1039/d1ob01207j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric hydrogenation has remained an important and challenging research area in industry as well as academia due to its high atom economy and ability to induce chirality. Among several types of ligands, chiral bidentate phosphine ligands have played a pivotal role in developing asymmetric hydrogenation. Although C2-symmetric chiral bidentate phosphine ligands have dominated the field, it has been found that several C1-symmetric ligands are equally effective and, in many cases, have outperformed their C2-symmetric counterparts. This review evaluates the possibility of the use of C1-symmetric diphosphorus ligands in asymmetric hydrogenation to produce chiral compounds. The recent strategies and advances in the application of C1-symmetric diphosphorus ligands in the metal-catalyzed asymmetric hydrogenation of a variety of CC bonds have been summarized. The potential of diphosphorus ligands in asymmetric hydrogenation to produce pharmaceutical intermediates, bioactive molecules, drug molecules, agrochemicals, and fragrances is discussed. Although asymmetric hydrogenation appears to be a problem that has been resolved, a deep dive into the recent literature reveals that there are several challenges that are yet to be addressed. The current asymmetric hydrogenation methods mostly employ precious metals, which are depleting at a fast pace. Therefore, scientific interventions to perform asymmetric hydrogenation using base metals or earth-abundant metals that can compete with established precious metals hold significant potential.
Collapse
Affiliation(s)
- Anirban Sen
- Polyolefin Lab, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, U. P., India
| | - Samir H Chikkali
- Polyolefin Lab, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, U. P., India
| |
Collapse
|
39
|
Zhou JS, Guo S, Zhao X, Chi YR. Nickel-catalyzed enantioselective umpolung hydrogenation for stereoselective synthesis of β-amido esters. Chem Commun (Camb) 2021; 57:11501-11504. [PMID: 34652359 DOI: 10.1039/d1cc05257h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel complexes ligated by strongly donating diphosphines catalyze enantioselective hydrogenation for the preparation of acyclic and cyclic β-amido esters. A combination of acetic acid and indium powder provides protons and electrons to form nickel hydrido complexes under umpolung hydrogenation conditions.
Collapse
Affiliation(s)
- Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen 518055, China.
| | - Siyu Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Xiaohu Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Yonggui Robin Chi
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| |
Collapse
|
40
|
Burke AJ, Federsel HJ, Hermann GJ. Recent Advances in Asymmetric Hydrogenation Catalysis Utilizing Spiro and Other Rigid C-Stereogenic Phosphine Ligands. J Org Chem 2021; 87:1898-1924. [PMID: 34570501 DOI: 10.1021/acs.joc.1c01571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transition-metal-catalyzed asymmetric reactions have been a powerful tool in organic synthesis for many years. The design of chiral ligands with the right configuration is fundamental to induce high regio- and stereoselectivity to catalytic reactions and to achieve high turnover numbers and high yields. A challenge is the control of prochiral centers with similar electronic properties in a similar steric environment within the same molecule. Over the last 10 years, a range of novel rigid C-stereogenic chiral phosphine ligands has been developed and successfully applied in various types of asymmetric transformations. Many of these ligands are of a di-, tri-, or multidentate nature. The purpose of this Perspective is to highlight recent synthetic achievements (since 2010) with spiro-phosphines and other rigid phosphines and discuss some mechanistic aspects of the catalytic reactions.
Collapse
Affiliation(s)
- Anthony J Burke
- Chemistry Department and LAQV-REQMITE, School of Science and Technology and the Institution for Research and Advanced Training, University of Évora, Rua Romão Ramalho, 59, 7000 Évora, Portugal
| | - Hans-Jürgen Federsel
- RISE Research Institutes of Sweden, Department Chemical Process and Pharmaceutical Development, 114 86 Stockholm, Sweden.,ChiraTecnics, University of Évora, P.O. Box 59, Rossio, 7000-802 Évora and Mitra Campus, 7006-554 Évora, Portugal
| | - Gesine J Hermann
- ChiraTecnics, University of Évora, P.O. Box 59, Rossio, 7000-802 Évora and Mitra Campus, 7006-554 Évora, Portugal
| |
Collapse
|
41
|
Lu D, Lu P, Lu Z. Cobalt‐Catalyzed Asymmetric 1,4‐Reduction of
β,β‐
Dialkyl
α
,
β
‐Unsaturated Esters with PMHS. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100856] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Dongpo Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Peng Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
| | - Zhan Lu
- Department of Chemistry Zhejiang University Hangzhou 310058 China
- College of Chemistry Zhengzhou University Zhengzhou 450001 China
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Hangzhou Normal University Hangzhou 310058 China
| |
Collapse
|
42
|
Rein J, Annand JR, Wismer MK, Fu J, Siu JC, Klapars A, Strotman NA, Kalyani D, Lehnherr D, Lin S. Unlocking the Potential of High-Throughput Experimentation for Electrochemistry with a Standardized Microscale Reactor. ACS CENTRAL SCIENCE 2021; 7:1347-1355. [PMID: 34471679 PMCID: PMC8393209 DOI: 10.1021/acscentsci.1c00328] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 05/06/2023]
Abstract
Organic electrochemistry has emerged as an enabling and sustainable technology in modern organic synthesis. Despite the recent renaissance of electrosynthesis, the broad adoption of electrochemistry in the synthetic community, and especially in industrial settings, has been hindered by the lack of general, standardized platforms for high-throughput experimentation (HTE). Herein, we disclose the design of the HTe - Chem, a high-throughput microscale electrochemical reactor that is compatible with existing HTE infrastructure and enables the rapid evaluation of a broad array of electrochemical reaction parameters. Utilizing the HTe - Chem to accelerate reaction optimization, reaction discovery, and chemical library synthesis is illustrated using a suite of oxidative and reductive transformations under constant current, constant voltage, and electrophotochemical conditions.
Collapse
Affiliation(s)
- Jonas Rein
- Department
of Chemistry and Chemical Biology, Cornell
University, 162 Sciences Drive, Ithaca, New York 14853, United
States
| | - James R. Annand
- Department
of Chemistry and Chemical Biology, Cornell
University, 162 Sciences Drive, Ithaca, New York 14853, United
States
| | - Michael K. Wismer
- Scientific
Engineering and Design, Merck & Co.,
Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Jiantao Fu
- Discovery
Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Juno C. Siu
- Department
of Chemistry and Chemical Biology, Cornell
University, 162 Sciences Drive, Ithaca, New York 14853, United
States
| | - Artis Klapars
- Process
Research and Development, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Neil A. Strotman
- Process
Research and Development, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Dipannita Kalyani
- Discovery
Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, New Jersey 07033, United States
| | - Dan Lehnherr
- Process
Research and Development, Merck & Co.,
Inc., Rahway, New Jersey 07065, United States
| | - Song Lin
- Department
of Chemistry and Chemical Biology, Cornell
University, 162 Sciences Drive, Ithaca, New York 14853, United
States
| |
Collapse
|
43
|
Zhao Y, Ding YX, Wu B, Zhou YG. Nickel-Catalyzed Asymmetric Hydrogenation for Kinetic Resolution of [2.2]Paracyclophane-Derived Cyclic N-Sulfonylimines. J Org Chem 2021; 86:10788-10798. [PMID: 34264081 DOI: 10.1021/acs.joc.1c01011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nickel-catalyzed asymmetric hydrogenation for kinetic resolution of [2.2]paracyclophane-derived cyclic N-sulfonylimines was successfully developed. High selectivity factors were observed in most cases (s up to 89), providing the recovered materials and hydrogenation products in good yields with high levels of enantiopurity. The recovered materials and hydrogenation products are useful synthetic intermediates for the synthesis of planar chiral [2.2]paracyclophane-based compounds.
Collapse
Affiliation(s)
- Yang Zhao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yi-Xuan Ding
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Bo Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Yong-Gui Zhou
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
44
|
Zhong H, Beromi MM, Chirik PJ. Ligand Substitution and Electronic Structure Studies of Bis(phosphine)Cobalt Cyclooctadiene Precatalysts for Alkene Hydrogenation. CAN J CHEM 2021; 99:193-201. [PMID: 34334799 DOI: 10.1139/cjc-2020-0352] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Diene self-exchange reactions of the 17-electron, formally cobalt(0) cyclooctadienyl precatalyst, (R,R)-(iPrDuPhos)Co(COD) (P 2 CoCOD, (R,R)-iPrDuPhos = 1,2-bis((2R,5R)-2,5-diisopropylphospholano)benzene, COD = 1,5-cyclooctadiene) were studied using natural abundance and deuterated 1,5-cyclooctadiene. Exchange of free and coordinated diene was observed at ambient temperature in benzene-d 6 solution and kinetic studies support a dissociative process. Both neutral P 2 CoCOD and the 16-electron, cationic cobalt(I) complex, [(R,R)-(iPrDuPhos)Co(COD)][BArF 4] (BArF 4 = B[(3,5-(CF3)2)C6H3]4) underwent instantaneous displacement of the 1,5-cyclooctadiene ligand by carbon monoxide and generated the corresponding carbonyl derivatives. The solid-state parameters, DFT-computed Mulliken spin density and analysis of molecular orbitals suggest an alternative description of P 2 CoCOD as low-spin cobalt(II) with the 1,5-cyclooctadiene acting as a LX2-type ligand. This view of the electronic structure provides insight into the nature of the ligand substitution processes and the remarkable stability of the neutral cobalt complexes toward protic solvents observed during catalytic alkene hydrogenation.
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Megan Mohadjer Beromi
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Paul J Chirik
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
45
|
Gu Y, Norton JR, Salahi F, Lisnyak VG, Zhou Z, Snyder SA. Highly Selective Hydrogenation of C═C Bonds Catalyzed by a Rhodium Hydride. J Am Chem Soc 2021; 143:9657-9663. [PMID: 34142805 DOI: 10.1021/jacs.1c04683] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Under mild conditions (room temperature, 80 psi of H2) Cp*Rh(2-(2-pyridyl)phenyl)H catalyzes the selective hydrogenation of the C═C bond in α,β-unsaturated carbonyl compounds, including natural product precursors with bulky substituents in the β position and substrates possessing an array of additional functional groups. It also catalyzes the hydrogenation of many isolated double bonds. Mechanistic studies reveal that no radical intermediates are involved, and the catalyst appears to be homogeneous, thereby affording important complementarity to existing protocols for similar hydrogenation processes.
Collapse
Affiliation(s)
- Yiting Gu
- Department of Chemistry, Columbia University, 3000 Broadway, New York City, New York 10027, United States
| | - Jack R Norton
- Department of Chemistry, Columbia University, 3000 Broadway, New York City, New York 10027, United States
| | - Farbod Salahi
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Vladislav G Lisnyak
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Zhiyao Zhou
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| |
Collapse
|
46
|
Li B, Liu D, Hu Y, Chen J, Zhang Z, Zhang W. Nickel‐Catalyzed Asymmetric Hydrogenation of Hydrazones. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100642] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Bowen Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Dan Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Yanhua Hu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Zhenfeng Zhang
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Frontiers Science Center for Transformative Molecules School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
- School of Pharmacy Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 R. China
- College of Chemistry Zhengzhou University 75 Daxue Road Zhengzhou 450052 P. R. China
| |
Collapse
|
47
|
Coufourier S, Ndiaye D, Gaillard QG, Bettoni L, Joly N, Mbaye MD, Poater A, Gaillard S, Renaud JL. Iron-catalyzed chemoselective hydride transfer reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
48
|
Wang JY, Li G, Hao WJ, Jiang B. Enantio- and Regioselective CuH-Catalyzed Conjugate Reduction of Yne-Allenones. Org Lett 2021; 23:3828-3833. [PMID: 33955758 DOI: 10.1021/acs.orglett.1c00892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new asymmetric catalytic conjugate reduction of yne-allenones to synthesize enantioenriched cyclobuta[a]naphthalen-4(2H)-ones has been established that uses copper-bisphosphine complexes as catalysts and gives excellent regio- and enantioselectivities (≥99% ee) in most cases. This protocol tolerates a broad scope of substrates, exhibits high compatibility with various substituents, and gives excellent stereoselectivity, providing a catalytic and efficient entry to fabrication of synthetically important chiral 6-6-4 tricarbocyclic scaffolds.
Collapse
Affiliation(s)
- Jia-Yin Wang
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Guigen Li
- Institute of Chemistry and Biomedical Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.,Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Wen-Juan Hao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
49
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
50
|
|