1
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
2
|
Arai S, Nakazawa K, Yang XF, Nakajima M, Harada S, Nishida A. Nickel-catalysed regio- and stereoselective hydrocyanation of alkynoates and its mechanistic insights proposed by DFT calculations. Org Biomol Chem 2024; 22:3606-3610. [PMID: 38629974 DOI: 10.1039/d4ob00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
We have developed a nickel-catalysed regio- and stereoselective hydrocyanation of alkynoates that gives syn-β-cyanoalkenes. DFT calculations suggest that a favored transition state promotes Cα-H bond formation for determining regio- and stereoselectivity of the products.
Collapse
Affiliation(s)
- Shigeru Arai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Koichi Nakazawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Xiao-Fei Yang
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| | - Masaya Nakajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinji Harada
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
- Molecular Chirality Research Center, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
- Institute for Advanced Academic Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Atsushi Nishida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan.
| |
Collapse
|
3
|
Bhuyan M, Sharma S, Dutta NB, Baishya G. tert-Butylhydroperoxide mediated radical cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2023; 21:9255-9269. [PMID: 37969100 DOI: 10.1039/d3ob01528a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
A novel sustainable methodology based on one-pot cyanoalkylation/cyanoalkenylation of 2-anilino-1,4-naphthoquinones with vinylarenes/arylalkynes and azobis(alkylcarbonitrile)s involving a three-component radical cascade pathway has been achieved. Here, tert-butylhydroperoxide (TBHP) acts as an efficient oxidant, and it smoothly drives the reaction, producing the three-component products in very good to excellent yields. This cascade reaction eliminates the use of any base, additive, metal and hazardous cyanating agent. Additionally, this protocol exclusively delivers a stereospecific product in the case of arylalkynes. The involvement of radicals is evidenced through various radical trapping experiments.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| | | | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India
| |
Collapse
|
4
|
Abstract
ConspectusHypervalent iodine reagents find application as selective chemical oxidants in a diverse array of oxidative transformations. The utility of these reagents is often ascribed to (1) the proclivity to engage being selective two-electron redox transformations; (2) facile ligand exchange at the three-centered, four-electron (3c-4e) hypervalent iodine-ligand (I-X) bonds; and (3) the hypernucleofugacity of aryl iodides. One-electron redox and iodine radical chemistry is well-precedented in the context of inorganic hypervalent iodine chemistry─for example, in the iodide-triiodide couple that drives dye-sensitized solar cells. In contrast, organic hypervalent iodine chemistry has historically been dominated by the two-electron I(I)/I(III) and I(III)/I(V) redox couples, which results from intrinsic instability of the intervening odd-electron species. Transient iodanyl radicals (i.e., formally I(II) species), generated by reductive activation of hypervalent I-X bonds, have recently gained attention as potential intermediates in hypervalent iodine chemistry. Importantly, these open-shell intermediates are typically generated by activation of stoichiometric hypervalent iodine reagents, and the role of the iodanyl radical in substrate functionalization and catalysis is largely unknown.Our group has been interested in advancing the chemistry of iodanyl radicals as intermediates in the sustainable synthesis of hypervalent I(III) and I(V) compounds and as novel platforms for substrate activation at open-shell main-group intermediates. In 2018, we disclosed the first example of aerobic hypervalent iodine catalysis by intercepting reactive intermediates in aldehyde autoxidation chemistry. While we initially hypothesized that the observed oxidation was accomplished by aerobically generated peracids via a two-electron I(I)-to-I(III) oxidation reaction, detailed mechanistic studies revealed the critical role of acetate-stabilized iodanyl radical intermediates. We subsequently leveraged these mechanistic insights to develop hypervalent iodine electrocatalysis. Our studies resulted in the identification of new catalyst design principles that give rise to highly efficient organoiodide electrocatalysts that operate at modest applied potentials. These advances addressed classical challenges in hypervalent iodine electrocatalysis related to the need for high applied potentials and high catalyst loadings. In some cases, we were able to isolate the anodically generated iodanyl radical intermediates, which allowed direct interrogation of the elementary chemical reactions characteristic of iodanyl radicals. Both substrate activation via bidirectional proton-coupled electron transfer (PCET) reactions at I(II) intermediates and disproportionation reactions of I(II) species to generate I(III) compounds have been experimentally validated.This Account discusses the emerging synthetic and catalytic chemistry of iodanyl radicals. Results from our group have demonstrated that these open-shell species can play a critical role in sustainable synthesis of hypervalent iodine reagents and play a heretofore unappreciated role in catalysis. Realization of I(I)/I(II) catalytic cycles as a mechanistic alternative to canonical two-electron iodine redox chemistry promises to open new avenues to application of organoiodides in catalysis.
Collapse
Affiliation(s)
- Asim Maity
- Texas A&M University, College Station, Texas 77843, United States
| | - Brandon L. Frey
- Texas A&M University, College Station, Texas 77843, United States
| | - David C. Powers
- Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
5
|
Bennetts JD, Barwise L, Sharp-Bucknall L, White KF, Hogan CF, Dutton JL. Structural verification and new reactivity for Stang's reagent, [PhI(CN)][OTf]. Dalton Trans 2023. [PMID: 37325880 DOI: 10.1039/d3dt01765f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The structure of Stang's reagent [PhI(CN)][OTf] is confirmed by X-ray crystallography and is determined to be best described as an ion-pair in organic solution. It is found to be a strong Lewis acid, but reaction with pyridine ligands gives [Pyr-CN][OTf] salts via oxidation of pyridine giving a new derivative of the CDAP reagent widely used as an activation agent for polysaccharides.
Collapse
Affiliation(s)
- Jason D Bennetts
- Department of Chemistry, La Trobe University, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.
| | - Lachlan Barwise
- Department of Chemistry, La Trobe University, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.
| | - Lachlan Sharp-Bucknall
- Department of Chemistry, La Trobe University, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.
| | - Keith F White
- Department of Chemistry, La Trobe University, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.
| | - Conor F Hogan
- Department of Chemistry, La Trobe University, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.
| | - Jason L Dutton
- Department of Chemistry, La Trobe University, La Trobe Institute for Molecular Science, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Kiyokawa K, Noguchi I, Nagata T, Minakata S. Tris(pentafluorophenyl)borane-Catalyzed Stereospecific Bromocyanation of Styrene Derivatives with Cyanogen Bromide. Org Lett 2023; 25:2537-2542. [PMID: 36971409 DOI: 10.1021/acs.orglett.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We, herein, report on the bromocyanation of styrene derivatives with cyanogen bromide in the presence of tris(pentafluorophenyl)borane which functions as a Lewis acid catalyst that can effectively activate cyanogen bromide. This reaction proceeds through a stereospecific syn-addition. The protocol is operationally simple and provides practical access to β-bromonitriles.
Collapse
|
7
|
Kiyokawa K, Ishizuka M, Minakata S. Stereospecific Oxycyanation of Alkenes with Sulfonyl Cyanide. Angew Chem Int Ed Engl 2023; 62:e202218743. [PMID: 36702752 DOI: 10.1002/anie.202218743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/28/2023]
Abstract
Oxycyanation of alkenes would allow the direct construction of useful β-hydroxy nitrile scaffolds. However, only limited examples of such reactions have been reported, and some problems including limited substrate scope and the lack of diastereocontrol in the case of the oxycyanation of internal alkenes have arisen. We herein report on the intermolecular oxycyanation of alkenes using p-toluenesulfonyl cyanide (TsCN) in the presence of tris(pentafluorophenyl)borane (B(C6 F5 )3 ) as a catalyst, affording products that contain a sulfinyloxy group and a cyano group at the vicinal position. The reaction features a stereospecific syn-addition. The reaction also shows a broad substrate scope with good functional group tolerance. Mechanistic investigations by experimental studies and density functional theory (DFT) calculations revealed that the reaction proceeds via an unprecedented stereospecific mechanism through the electrophilic cyanation of alkenes, in which B(C6 F5 )3 efficiently activates TsCN through the coordination of the cyano group to the boron center.
Collapse
Affiliation(s)
- Kensuke Kiyokawa
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Miu Ishizuka
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| | - Satoshi Minakata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
8
|
Sharma R, Chaudhary S. Regiodivergent Cu-Promoted, AcOH-Switchable Distal Versus Proximal Direct Cyanation of 1-Aryl-1 H-indazoles and 2-Aryl-2 H-indazoles via Aerobic Oxidative C-H Bond Activation. J Org Chem 2022; 87:16188-16203. [PMID: 36417354 DOI: 10.1021/acs.joc.2c01603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A copper-promoted regiodivergent, AcOH-switchable, distal and proximal direct cyanation of N-aryl-(1H/2H)-indazoles via aerobic oxidative C(sp2)-H bond activation has been developed. The inclusion or exclusion of AcOH as an additive is the foremost cause for the positional switch in the C-CN bond formation method that results in (C-2')-cyanated 2-aryl-2H-indazoles 3a-j, (C-2')-cyanated 1-aryl-1H-indazoles 4a-j [distal], or C-3 cyanated 2-aryl-2H-indazoles 5a-i [proximal] products in good to excellent yields and showed various functional group tolerance. The cyanide (CN-) ion surrogate was generated via the unification of dimethylformamide and ammonium iodide (NH4I). The utilization of molecular oxygen (aerobic oxidative strategy) as a clean and safe oxidant is liable for generous value addition. The further pertinence of the developed protocol has been demonstrated by transforming the synthesized cyanated product into numerous other functional groups, which will, undoubtedly, accomplish utilization in the synthetic area of biologically important compounds and medicinal chemistry.
Collapse
Affiliation(s)
- Richa Sharma
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India
| | - Sandeep Chaudhary
- Laboratory of Organic and Medicinal Chemistry, Department of Chemistry, Malaviya National Institute of Technology, Jawaharlal Nehru Marg, Jaipur 302017, India.,Laboratory of Bioactive Heterocycles and Catalysis, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research-Raebareli (Transit Campus), Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow 226002, India
| |
Collapse
|
9
|
Kim S, Lee Y, Cho EJ. Photoredox Selective Homocoupling of Propargyl Bromides. J Org Chem 2022; 88:6382-6389. [DOI: 10.1021/acs.joc.2c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Seoyeon Kim
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yunjeong Lee
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eun Jin Cho
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
10
|
Tang M, Wei Y, Huang S, Xie LG. Regio- and Stereoselective Synthesis of β-Methylthio Vinyl Triflates. Org Lett 2022; 24:7026-7030. [PMID: 36129306 DOI: 10.1021/acs.orglett.2c02880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vinyl triflates are commonly employed as electrophilic vinyl sources in complex synthesis. The triflation of enolates is commonly required for the preparation of vinyl triflates, generally under strongly basic conditions. Herein, the reaction between alkynes and dimethyl(methylthio)sulfonium trifluoromethanesulfonate is presented, which leads to the development of a facile synthesis of β-methylthio vinyl triflates in a chemo-, regio-, and stereoselective manner under neutral and extremely simple conditions.
Collapse
Affiliation(s)
- Meizhong Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongjiao Wei
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
11
|
Anil DA. An Unexpended Stereocontrolled Rearrangement of Ethyl 4‐Hydroxy‐4‐(substituted phenyl)‐2‐butynoate to Tetrasubstituted Alkenes with MeSOCl
2. ChemistrySelect 2022. [DOI: 10.1002/slct.202201499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Derya Aktas Anil
- Department of Chemistry and Chemical Process Technologies Atatürk University Technical Sciences Vocational College 25240 Erzurum Turkey
| |
Collapse
|
12
|
Chatterjee I, Kumar G, Bhattacharya D. Lewis Acid‐Assisted Transition Metal‐Free Aminocyanation of Alkynes with Arylamines and N‐Cyanosuccinimide. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Gautam Kumar
- Indian Institute of Technology Ropar Department of Chemistry INDIA
| | | |
Collapse
|
13
|
Souilah C, Jannuzzi SAV, Demirbas D, Ivlev S, Swart M, DeBeer S, Casitas A. Synthesis of Fe III and Fe IV Cyanide Complexes Using Hypervalent Iodine Reagents as Cyano-Transfer One-Electron Oxidants. Angew Chem Int Ed Engl 2022; 61:e202201699. [PMID: 35285116 PMCID: PMC9313551 DOI: 10.1002/anie.202201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/12/2022]
Abstract
We disclose a new reactivity mode for electrophilic cyano λ3 -iodanes as group transfer one-electron oxidants to synthesize FeIII and FeIV cyanide complexes. The inherent thermal instability of high-valent FeIV compounds without π-donor ligands (such as oxido (O2- ), imido (RN2- ) or nitrido (N3- )) makes their isolation and structural characterization a very challenging task. We report the synthesis of an FeIV cyanide complex [(N3 N')FeCN] (4) by two consecutive single electron transfer (SET) processes from FeII precursor [(N3 N')FeLi(THF)] (1) with cyanobenziodoxolone (CBX). The FeIV complex can also be prepared by reaction of [(N3 N')FeIII ] (3) with CBX. In contrast, the oxidation of FeII with 1-cyano-3,3-dimethyl-3-(1H)-1,2-benziodoxole (CDBX) enables the preparation of FeIII cyanide complex [(N3 N')FeIII (CN)(Li)(THF)3 ] (2-LiTHF ). Complexes 4 and 2-LiTHF have been structurally characterized by single crystal X-ray diffraction and their electronic structure has been examined by Mössbauer, EPR spectroscopy, and computational analyses.
Collapse
Affiliation(s)
- Charafa Souilah
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Sergio A. V. Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Derya Demirbas
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Sergei Ivlev
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Marcel Swart
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
- Institut de Química Computacional i Catàlisi, Facultat de CiènciesUniversitat de Gironac/ M.A. Capmany 6917003GironaSpain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC)Stiftstraße 34–3645470Mülheim an der RuhrGermany
| | - Alicia Casitas
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
14
|
Bowen J, Slebodnick C, Santos WL. Phosphine-catalyzed hydroboration of propiolonitriles: access to ( E)-1,2-vinylcyanotrifluoroborate derivatives. Chem Commun (Camb) 2022; 58:5984-5987. [PMID: 35481802 DOI: 10.1039/d2cc00603k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report an organocatalytic trans hydroboration of 3-substituted-propiolonitriles. In the presence of catalytic amounts of tributylphosphine and pinacolborane, regioselective hydroboration of the internal triple bond proceeded in a stereoselective fashion under mild conditions to afford the corresponding (E)-1,2-vinylcyanoborane derivatives. The mechanism is proposed to occur through a 1,2-phosphine addition instead of a canonical 1,4-conjugate addition pathway.
Collapse
Affiliation(s)
- Johnathan Bowen
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA.
| |
Collapse
|
15
|
Lee JB, Kim GH, Jeon JH, Jeong SY, Lee S, Park J, Lee D, Kwon Y, Seo JK, Chun JH, Kang SJ, Choe W, Rohde JU, Hong SY. Rapid access to polycyclic N-heteroarenes from unactivated, simple azines via a base-promoted Minisci-type annulation. Nat Commun 2022; 13:2421. [PMID: 35504905 PMCID: PMC9065069 DOI: 10.1038/s41467-022-30086-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Conventional synthetic methods to yield polycyclic heteroarenes have largely relied on metal-mediated arylation reactions requiring pre-functionalised substrates. However, the functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Herein, we report a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts. Mechanistic and electron paramagnetic resonance studies provide evidence for the in situ generation of organic electron donors, while chemical trapping and electrochemical experiments implicate an iodanyl radical intermediate serving as a formal biaryl radical equivalent. This intermediate, formed by one-electron reduction of the cyclic iodonium salt, acts as the key intermediate driving the Minisci-type arylation reaction. The synthetic utility of this radical-based annulative π-extension method is highlighted by the preparation of an N-doped heptacyclic nanographene fragment through fourfold C–H arylation. The functionalisation of unactivated azines has been restricted because of their intrinsic low reactivity. Here the authors show a transition-metal-free, radical relay π-extension approach to produce N-doped polycyclic aromatic compounds directly from simple azines and cyclic iodonium salts.
Collapse
Affiliation(s)
- Jae Bin Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Gun Ha Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Ji Hwan Jeon
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Seo Yeong Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Soochan Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jaehyun Park
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Doyoung Lee
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Seok Ju Kang
- School of Energy and Chemical Engineering, UNIST, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Wonyoung Choe
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Jan-Uwe Rohde
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| | - Sung You Hong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
16
|
Souilah C, Jannuzzi SAV, Demirbas D, Ivlev S, Swart M, DeBeer S, Casitas A. Synthesis of Fe
III
and Fe
IV
Cyanide Complexes Using Hypervalent Iodine Reagents as Cyano‐Transfer One‐Electron Oxidants. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Charafa Souilah
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Sergio A. V. Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Derya Demirbas
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Sergei Ivlev
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| | - Marcel Swart
- ICREA Pg. Lluís Companys 23 08010 Barcelona Spain
- Institut de Química Computacional i Catàlisi, Facultat de Ciències Universitat de Girona c/ M.A. Capmany 69 17003 Girona Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC) Stiftstraße 34–36 45470 Mülheim an der Ruhr Germany
| | - Alicia Casitas
- Fachbereich Chemie Philipps-Universität Marburg Hans-Meerwein-Straße 4 35043 Marburg Germany
| |
Collapse
|
17
|
Hansjacob P, Leroux FR, Gandon V, Donnard M. Palladium-Catalyzed Silylcyanation of Ynamides: Regio- and Stereoselective Access to Tetrasubstituted 3-Silyl-2-Aminoacrylonitriles. Angew Chem Int Ed Engl 2022; 61:e202200204. [PMID: 35060272 DOI: 10.1002/anie.202200204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/02/2023]
Abstract
The palladium-catalyzed silylcyanation of ynamides is described. This reaction is fully regioselective, delivering tetrasubstituted 2-aminoacrylonitriles derivatives exclusively. Unexpectedly, the nature (aryl or alkyl) of the substituent located at the β-position of the ynamide directly controls the stereoselectivity. The reaction tolerates a number of functional groups and can be considered as the first general access to fully substituted 2-aminoacrylonitriles. Given the singular reactivity observed, a computational study was performed to shed light on the mechanism of this intriguing transformation. Relying on the specific reactivity of the newly installed vinylsilane functionality, the scope of 2-aminoacrylonitriles has been enlarged by postfunctionalization.
Collapse
Affiliation(s)
- Pierre Hansjacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405, Orsay cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| |
Collapse
|
18
|
Hansjacob P, Leroux FR, Gandon V, Donnard M. Palladium‐Catalyzed Silylcyanation of Ynamides: Regio‐ and Stereoselective Access to Tetrasubstituted 3‐Silyl‐2‐Aminoacrylonitriles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pierre Hansjacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| | - Frédéric R. Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris route de Saclay 91128 Palaiseau cedex France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| |
Collapse
|
19
|
Alatat K, Abbasi Kejani A, Nikbakht A, Bijanzadeh HR, Balalaie S. A metal-free tandem dehydrogenative α-arylation reaction of propargylic alcohols with 2-alkynylbenzaldoximes toward the synthesis of α-(4-bromo-isoquinolin-1-yl)-propenone skeletons. Org Biomol Chem 2022; 20:579-583. [PMID: 34985097 DOI: 10.1039/d1ob02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A tandem reaction of 2-alkynylbenzaldoximes with propargylic alcohols has been developed for the synthesis of α-(4-bromo-isoquinolin-1-yl)-propenones. Employing 2-alkynylbenzaldoximes as a precursor in the presence of Br2 generates 4-bromo-isoquinoline-N-oxides. Subsequently, dehydroxylation of propargylic alcohols gives carbocation intermediates, which are trapped using the N-oxides, affording aryl-substituted α-enones.
Collapse
Affiliation(s)
- Khalil Alatat
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Alireza Abbasi Kejani
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Ali Nikbakht
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran.
| | - Hamid Reza Bijanzadeh
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P. O. Box 15875-4416, Tehran, Iran. .,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
20
|
Bhuyan M, Sharma S, Baishya G. Metal-free three-component cyanoalkylation of quinoxalin-2(1H)-ones with vinylarenes and azobis(alkylcarbonitrile)s. Org Biomol Chem 2022; 20:1462-1474. [DOI: 10.1039/d1ob02143e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A K2S2O8-mediated C3 cyanoalkylation of quinoxalin-2(1H)-ones via a three-component radical cascade reaction with vinylarenes and azobis(alkylcarbonitrile)s has been achieved.
Collapse
Affiliation(s)
- Mayurakhi Bhuyan
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Suraj Sharma
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Gakul Baishya
- Chemical Science & Technology Division, CSIR-North East Institute of Science and Technology, Jorhat-785006, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
21
|
Ghosh S, Chakrabortty R, Ganesh V. Dual Functionalization of Alkynes Utilizing the Redox Characteristics of Transition Metal Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sudipta Ghosh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Rajesh Chakrabortty
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| | - Venkataraman Ganesh
- Department of Chemistry Indian Institute of Technology Kharagpur 721302 West Bengal India
| |
Collapse
|
22
|
Zhang Q, Li X, Zhang W, Wang Y, Pan Y. Photocatalyzed Radical Relayed Regio- and Stereoselective Trifluoromethylthiolation-Boration. Org Lett 2021; 23:5410-5414. [PMID: 34180679 DOI: 10.1021/acs.orglett.1c01737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vinylboronates and alkylboronates are key components in variegated transformations in all aspects of chemical science. This work describes a sequential radical difunctionalization strategy for the construction of fluorine-containing vinylboronates and alkylboronates with the integrated redox-active reagent N-trifluoromethylthiophthalimide. This multifunctional N-S precursor offers a scalable and practical protocol for the trifluoromethylthiolation-borylation of unsaturated hydrocarbons in a highly regio- and stereoselective fashion, which can be further converted into valuable synthons via boryl migration.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, People's Republic of China
| | - Xiaojuan Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, People's Republic of China
| | - Weigang Zhang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, People's Republic of China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, People's Republic of China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, 210023 Nanjing, People's Republic of China
| |
Collapse
|
23
|
Huang H, Zou X, Cao S, Peng Z, Peng Y, Wang X. N-Heterocyclic Carbene-Catalyzed Cyclization of Aldehydes with α-Diazo Iodonium Triflate: Facile Access to 2,5-Disubstituted 1,3,4-Oxadiazoles. Org Lett 2021; 23:4185-4190. [PMID: 33989007 DOI: 10.1021/acs.orglett.1c01128] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we report a novel organocatalytic process for synthesis of complex 1,3,4-oxadiazoles from readily accessible aldehydes. By exploiting the nucleophilicity of the putative Breslow intermediate and the inherent electrophilicity of α-diazo iodonium triflate, we have found that N-heterocyclic carbene catalyst promotes efficient cyclization of various aldehydes and α-diazo iodonium triflates. The reaction proceeds under mild conditions with a wide range of functional group tolerance. The heterocyclic products can be readily further functionalized, rendering the protocol highly valuable.
Collapse
Affiliation(s)
- Hang Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Xianghua Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Si Cao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Zhihong Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Yingying Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| | - Xi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
24
|
Abstract
Developments in synthetic chemistry are increasingly driven by improvements in the selectivity and sustainability of transformations. Bifunctional reagents, either as dual coupling partners or as a coupling partner in combination with an activating species, offer an atom-economic approach to chemical complexity, while suppressing the formation of waste. These reagents are employed in organic synthesis thanks to their ability to form complex organic architectures and empower novel reaction pathways. This Review describes several key bifunctional reagents by showcasing selected cornerstone research areas and examples, including radical reactions, C-H functionalization, cross-coupling, organocatalysis and cyclization reactions.
Collapse
|
25
|
Huang HG, Li W, Zhong D, Wang HC, Zhao J, Liu WB. Trifluoromethanesulfonyl azide as a bifunctional reagent for metal-free azidotrifluoromethylation of unactivated alkenes. Chem Sci 2021; 12:3210-3215. [PMID: 34164089 PMCID: PMC8179360 DOI: 10.1039/d0sc06473d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vicinal trifluoromethyl azides have widespread applications in organic synthesis and drug development. However, their preparation is generally limited to transition-metal-catalyzed three-component reactions. We report here a simple and metal-free method that rapidly provides these building blocks from abundant alkenes and trifluoromethanesulfonyl azide (N3SO2CF3). This unprecedented two-component reaction employs readily available N3SO2CF3 as a bifunctional reagent to concurrently incorporate both CF3 and N3 groups, which avoids the use of their expensive and low atom economic precursors. A wide range of functional groups, including bio-relevant heterocycles and amino acids, were tolerated. Application of this method was further demonstrated by scale-up synthesis (5 mmol), product derivatization to CF3-containing medicinal chemistry motifs, as well as late-stage modification of natural product and drug derivatives. A two-component and metal-free azidotrifluoromethylation of alkenes is realized using readily synthesized trifluoromethanesulfonyl azide (N3SO2CF3) as a bifunctional reagent for both CF3 and N3 groups.![]()
Collapse
Affiliation(s)
- Hong-Gui Huang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Weishuang Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Dayou Zhong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Hu-Chong Wang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| |
Collapse
|
26
|
Lázaro-Milla C, Busto E, Burgos I, Nieto Faza O, Almendros P. Gold-catalyzed reaction of alkynes with diazonium salts under photoirradiation revisited: New alkoxyarylation variant leading to enol ethers. J Catal 2020. [DOI: 10.1016/j.jcat.2020.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Saranya S, Neetha M, Aneeja T, Anilkumar G. Recent Trends in the Iron‐Catalyzed Cyanation Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| | - Thaipparambil Aneeja
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
- Institute for Integrated Programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O. Kottayam Kerala INDIA 686560
| |
Collapse
|
28
|
Zhang Y, Li B, Liu S. Pd‐Senphos Catalyzed
trans
‐Selective Cyanoboration of 1,3‐Enynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005882] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yuanzhe Zhang
- Department of Chemistry Boston College Chestnut Hill MA 02467-3860 USA
| | - Bo Li
- Department of Chemistry Boston College Chestnut Hill MA 02467-3860 USA
| | - Shih‐Yuan Liu
- Department of Chemistry Boston College Chestnut Hill MA 02467-3860 USA
| |
Collapse
|
29
|
Zhang Y, Li B, Liu SY. Pd-Senphos Catalyzed trans-Selective Cyanoboration of 1,3-Enynes. Angew Chem Int Ed Engl 2020; 59:15928-15932. [PMID: 32511855 PMCID: PMC7491284 DOI: 10.1002/anie.202005882] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/25/2022]
Abstract
The first trans-selective cyanoboration reaction of an alkyne, specifically a 1,3-enyne, is described. The reported palladium-catalyzed cyanoboration of 1,3-enynes is site-, regio-, and diastereoselective, and is uniquely enabled by the 1,4-azaborine-based Senphos ligand structure. Tetra-substituted alkenyl nitriles are obtained providing useful boron-dienenitrile building blocks that can be further functionalized. The utility of our method has been demonstrated with the synthesis of Satigrel, an anti-platelet aggregating agent.
Collapse
Affiliation(s)
- Yuanzhe Zhang
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| | - Bo Li
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| | - Shih-Yuan Liu
- Department of Chemistry, Boston College, Chestnut Hill, MA, 02467-3860, USA
| |
Collapse
|
30
|
Li J, Shi L, Zhang SP, Wang XY, Zhu X, Hao XQ, Song MP. Rh(III)-Catalyzed C-H Cyanation of 2 H-Indazole with N-Cyano- N-phenyl- p-toluenesulfonamide. J Org Chem 2020; 85:10835-10845. [PMID: 32692175 DOI: 10.1021/acs.joc.0c01386] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A Rh(III)-catalyzed direct cyanation of 2H-indazoles with N-cyano-N-phenyl-p-toluenesulfonamide has been realized via a chelation-assisted strategy. The methodology enables regioselective access to various ortho-cyanated phenylindazoles in good yields with a broad substrate scope and good functional group compatibility. The obtained cyanated indazoles could further be converted into other value-added chemicals. Importantly, the current protocol is featured with several characteristics, including a novel cyanating agent, good regioselectivity, and operational convenience.
Collapse
Affiliation(s)
- Jing Li
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Linlin Shi
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Shu-Ping Zhang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xu-Yan Wang
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xinju Zhu
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Xin-Qi Hao
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| | - Mao-Ping Song
- College of Chemistry, Zhengzhou University, No. 100 of Science Road, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
31
|
Chai J, Ding W, Wu J, Yoshikai N. Fluorobenziodoxole−BF
3
Reagent for Iodo(III)etherification of Alkynes in Ethereal Solvent. Chem Asian J 2020; 15:2166-2169. [DOI: 10.1002/asia.202000653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Jinkui Chai
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
- College of ChemistryHenan Institute of Advanced TechnologyZhengzhou University Zhengzhou 450001 P.R. China
| | - Wei Ding
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| | - Junliang Wu
- College of ChemistryHenan Institute of Advanced TechnologyZhengzhou University Zhengzhou 450001 P.R. China
| | - Naohiko Yoshikai
- Division of Chemistry and Biological ChemistrySchool of Physical and Mathematical SciencesNanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
32
|
Bürger M, Röttger SH, Loch MN, Jones PG, Werz DB. Pd-Catalyzed Cyanoselenylation of Internal Alkynes: Access to Tetrasubstituted Selenoenol Ethers. Org Lett 2020; 22:5025-5029. [PMID: 32610926 DOI: 10.1021/acs.orglett.0c01582] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Ding W, Chai J, Wang C, Wu J, Yoshikai N. Stereoselective Access to Highly Substituted Vinyl Ethers via trans-Difunctionalization of Alkynes with Alcohols and Iodine(III) Electrophile. J Am Chem Soc 2020; 142:8619-8624. [DOI: 10.1021/jacs.0c04140] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Wei Ding
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Jinkui Chai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Chen Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemical Process, Shaoxing University, Shaoxing 312000, P. R. China
| | - Junliang Wu
- College of Chemistry, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Naohiko Yoshikai
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
34
|
Peng L, Hu Z, Wang H, Wu L, Jiao Y, Tang Z, Xu X. Direct cyanation, hydrocyanation, dicyanation and cyanofunctionalization of alkynes. RSC Adv 2020; 10:10232-10244. [PMID: 35498608 PMCID: PMC9050399 DOI: 10.1039/d0ra01286f] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/04/2020] [Indexed: 12/11/2022] Open
Abstract
In this review, direct cyanation, hydrocyanation, dicyanation, cyanofunctionalization and other cyanation reactions of alkynes were highlighted. Firstly, the use of nitriles and development of cyanation was simply introduced. After presenting the natural properties of alkynes, cyanation reactions of alkynes were classified and introduced in detail. Transition metal catalysed direct cyanation and hydrocyanation of alkynes gave alkynyl cyanides and alkenyl nitriles in good yields. Dicyanation of alkynes produced 1,2-dicyano adducts. Cyanofunctionalization of alkynes afforded functional cyanated compounds. Thiocyanation and selenocyanation yielded the expected functional vinylthiocyanates and vinylselenocyanates. A plausible reaction mechanism is presented if available.
Collapse
Affiliation(s)
- Lifen Peng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Zhifang Hu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Li Wu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Yinchun Jiao
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology Xiangtan 411201 P. R. China
| | - Xinhua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
35
|
Wang J, Sun B, Zhang L, Xu T, Xie Y, Jin C. Transition-metal-free direct C-3 cyanation of quinoxalin-2(1H)-ones with ammonium thiocyanate as the “CN” source. Org Chem Front 2020. [DOI: 10.1039/c9qo01055f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical protocol for TBHP-mediated oxidative C–H cyanation of quinoxalin-2(1H)-ones utilizing ammonium thiocyanate as the cyanide source has been developed under metal free conditions.
Collapse
Affiliation(s)
- Jiayang Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Bin Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liang Zhang
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Tengwei Xu
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuanyuan Xie
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Can Jin
- College of Pharmaceutical Sciences
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
36
|
Arai S, Nishida A. Synthesis of Nitrogen Heterocycles through Cyanative Cyclization and Cycloaddition Reactions under Transition Metal Catalysis. HETEROCYCLES 2020. [DOI: 10.3987/rev-20-930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Bürger M, Loch MN, Jones PG, Werz DB. From 1,2-difunctionalisation to cyanide-transfer cascades - Pd-catalysed cyanosulfenylation of internal (oligo)alkynes. Chem Sci 2019; 11:1912-1917. [PMID: 34123284 PMCID: PMC8148069 DOI: 10.1039/c9sc04569d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Internal alkynes substituted by aliphatic or aromatic moieties or by heteroatoms were converted into sulphur-substituted acrylonitrile derivatives. Key is the use of Pd catalysis, which allows the addition of aromatic and aliphatic thiocyanates in an intra- and intermolecular manner. Substrates with several alkyne units underwent further carbopalladation steps after the initial thiopalladation step, thus generating in a cascade-like fashion an oligoene unit with sulphur at one terminus and the cyano group at the other. The intra- and intermolecular Pd-catalysed cyanosulfenylation of internal alkynes enables the formation of tetrasubstituted thioacrylonitriles and is extended to oligoyne systems leading to oligoenes and a cyanide transfer over four or six atoms.![]()
Collapse
Affiliation(s)
- Marcel Bürger
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Maximilian N Loch
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G Jones
- Technische Universität Braunschweig, Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
38
|
Batsyts S, Shehedyn M, Goreshnik EA, Obushak MD, Schmidt A, Ostapiuk YV. 2‐Bromo‐2‐chloro‐3‐arylpropanenitriles as C‐3 Synthons for the Synthesis of Functionalized 3‐Aminothiophenes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901512] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Sviatoslav Batsyts
- Department of Organic Chemistry Ivan Franko National University of Lviv Kyryla i Mefodiya Str. 6 79005 Lviv Ukraine
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 38678 Clausthal‐Zellerfeld Germany
| | - Maksym Shehedyn
- Department of Organic Chemistry Ivan Franko National University of Lviv Kyryla i Mefodiya Str. 6 79005 Lviv Ukraine
| | - Evgeny A. Goreshnik
- Department of Inorganic Chemistry and Technology Jozef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
| | - Mykola D. Obushak
- Department of Organic Chemistry Ivan Franko National University of Lviv Kyryla i Mefodiya Str. 6 79005 Lviv Ukraine
| | - Andreas Schmidt
- Institute of Organic Chemistry Clausthal University of Technology Leibnizstrasse 6 38678 Clausthal‐Zellerfeld Germany
| | - Yurii V. Ostapiuk
- Department of Organic Chemistry Ivan Franko National University of Lviv Kyryla i Mefodiya Str. 6 79005 Lviv Ukraine
| |
Collapse
|
39
|
Abstract
Cyano (CN) groups are equivalent to carbonyl as well as amino- and hydroxymethyl groups. Therefore, their catalytic introduction under metal catalysis is an important issue in synthetic organic chemistry. Ni-catalyzed hydrocyanation is one of the most well-investigated, powerful tools for installing a CN group. However, it is still difficult to control chemo- and regioselectivity. In this review, the author uses allenes to enable regio-, stereo-, and face-selective transformations to natural product synthesis and axial chirality transfer.
Collapse
Affiliation(s)
- Shigeru Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
40
|
Markos A, Voltrová S, Motornov V, Tichý D, Klepetářová B, Beier P. Stereoselective Synthesis of (
Z
)‐β‐Enamido Triflates and Fluorosulfonates from
N
‐Fluoroalkylated Triazoles. Chemistry 2019; 25:7640-7644. [DOI: 10.1002/chem.201901632] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Athanasios Markos
- The Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic ChemistryFaculty of ScienceCharles University Hlavova 2030/8 12843 Prague 2 Czech Republic
| | - Svatava Voltrová
- The Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Vladimir Motornov
- The Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Higher Chemical CollegeD. I. Mendeleev University of the, Chemical Technology of Russia Miusskaya sq. 9 Moscow 125047 Russia
| | - David Tichý
- The Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Blanka Klepetářová
- The Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Petr Beier
- The Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
41
|
Arai S, Amako Y, Hori H, Nishida A. Nickel-catalyzed Hydrocyanation of Carbon-Carbon Multiple Bonds and its Application. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shigeru Arai
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | | | | | |
Collapse
|
42
|
Song T, Li H, Wei F, Tung CH, Xu Z. Gold/photoredox-cocatalyzed atom transfer thiosulfonylation of alkynes: Stereoselective synthesis of vinylsulfones. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.02.039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
43
|
Kim DE, Zhu Y, Newhouse TR. Vinylogous acyl triflates as an entry point to α,β-disubstituted cyclic enones via Suzuki-Miyaura cross-coupling. Org Biomol Chem 2019; 17:1796-1799. [PMID: 30500029 DOI: 10.1039/c8ob02573h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
An alternative protocol for the B-alkyl Suzuki-Miyaura reaction to produce cyclic α,β-disubstituted enones is reported. The use of β-triflyl enones as coupling partners in lieu of their halogenated analogs provides enhanced substrate stability to light and chromatography without adversely affecting reactivity. This protocol allows efficient access to the synthetically challenging α,β-disubstituted enone motif under mild conditions.
Collapse
Affiliation(s)
- Daria E Kim
- Department of Chemistry, Yale University, 225 Prospect St, New Haven, CT 06520-8107, USA.
| | | | | |
Collapse
|
44
|
Abstract
The present review gives an overview over non-toxic cyanation agents and cyanide sources used in the synthesis of structurally diverse products containing the nitrile function. Nucleophilic as well as electrophilic agents/systems that transfer the entire CN-group were taken in consideration. Reactions in which a preexisting carbon functionality is transformed into a nitrile function by addition of nitrogen are however not covered here.
Collapse
Affiliation(s)
- Alexander M Nauth
- Institute of Organic Chemistry, Johannes Gutenberg University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| | | |
Collapse
|
45
|
Trost BM, Tracy JS. Vanadium-Catalyzed Synthesis of Geometrically Defined Acyclic Tri- and Tetrasubstituted Olefins from Propargyl Alcohols. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04567] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| | - Jacob S. Tracy
- Department of Chemistry, Stanford University, 333 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
46
|
Kuang J, Xia Y, Yang A, Zhang H, Su C, Lee D. Copper-catalyzed aminothiolation of terminal alkynes with tunable regioselectivity. Chem Commun (Camb) 2019; 55:1813-1816. [DOI: 10.1039/c8cc09122f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A simple, mild, and efficient catalytic aminothiolation of terminal alkynes for the synthesis of both 2- and 3-substituted thiazolo[3,2-a]benzimidazoles is established upon catalysis with copper(i), in which complementary regioselectivities could be achieved by using sterically different phenanthroline-based ligands.
Collapse
Affiliation(s)
- Jinqiang Kuang
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - An Yang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Heng Zhang
- College of Chemistry and Materials Engineering
- Wenzhou University
- Wenzhou 325035
- P. R. China
| | - Chenliang Su
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education
- College of Optoelectronic Engineering
- Shenzhen University
- Shenzhen 518060
| | - Daesung Lee
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
47
|
Fosu SC, Hambira CM, Chen AD, Fuchs JR, Nagib DA. Site-Selective C-H Functionalization of (Hetero)Arenes via Transient, Non-Symmetric Iodanes. Chem 2018; 5:417-428. [PMID: 31032461 DOI: 10.1016/j.chempr.2018.11.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A strategy for C-H functionalization of arenes and heteroarenes has been developed to allow site-selective incorporation of various anions, including Cl, Br, OMs, OTs, and OTf. This approach is enabled by in situ generation of reactive, non-symmetric iodanes by combining anions and bench-stable PhI(OAc)2. The utility of this mechanism is demonstrated via para-selective chlorination of medicinally relevant arenes, as well as site-selective C-H chlorination of heteroarenes. Spectroscopic, computational, and competition experiments describe the unique nature, reactivity, and selectivity of these transient, unsymmetrical iodanes.
Collapse
Affiliation(s)
- Stacy C Fosu
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, United States
| | - Chido M Hambira
- The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, OH 43210, United States
| | - Andrew D Chen
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, United States
| | - James R Fuchs
- The Ohio State University, Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Columbus, OH 43210, United States
| | - David A Nagib
- The Ohio State University, Department of Chemistry and Biochemistry, Columbus, OH 43210, United States.,Lead contact
| |
Collapse
|
48
|
Döben N, Yan H, Kischkewitz M, Mao J, Studer A. Intermolecular Acetoxyaminoalkylation of α-Diazo Amides with (Diacetoxyiodo)benzene and Amines. Org Lett 2018; 20:7933-7936. [DOI: 10.1021/acs.orglett.8b03504] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nadine Döben
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Hong Yan
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Marvin Kischkewitz
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Jincheng Mao
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, P. R. China
| | - Armido Studer
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
49
|
Abstract
A metal‐free and direct alkene C−H cyanation is described. Directing groups are not required and the mechanism involves electrophilic activation of the alkene by a cyano iodine(III) species generated in situ from a [bis(trifluoroacetoxy)iodo]arene and trimethylsilyl cyanide as the cyanide source. This C−H functionalization can be conducted on gram scale, and for noncyclic 1,1‐ and 1,2‐disubstuted alkenes high stereoselectivity is achieved, thus rendering the method highly valuable.
Collapse
Affiliation(s)
- Xi Wang
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Westfälische Wilhelms-Universität, Organisch-Chemisches Institut, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
50
|
Affiliation(s)
- Xi Wang
- Westfälische Wilhelms-Universität; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Germany
| | - Armido Studer
- Westfälische Wilhelms-Universität; Organisch-Chemisches Institut; Corrensstraße 40 48149 Münster Germany
| |
Collapse
|