1
|
Saeed N, Atiq A, Rafiq F, Khan I, Atiq M, Saleem M, Anjum DH, Usman Z, Abbas M. Engineering of self-assembled silver-peptide colloidal nanohybrids with enhanced biocompatibility and antibacterial activity. Sci Rep 2024; 14:26398. [PMID: 39488657 PMCID: PMC11531511 DOI: 10.1038/s41598-024-78320-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024] Open
Abstract
Several bacterial strains have developed resistance against commercial antibiotics, and interestingly, supramolecular nanomaterials have shown considerable advantages for antibacterial applications. However, the main challenges in adopting nanotechnology for antibacterial studies are random aggregation, compromised toxicity, multi-step preparation approaches, and unclear structure-function properties. Herein, we designed the amphiphilic tripeptide that acts as a reducing and capping agent for silver metal to form silver-peptide colloidal nanohybrids with the mild assistance of UV light (254 nm) through the photochemical reduction method. The nanohybrids are characterized by different spectroscopic and microscopic techniques, and non-covalent molecular interactions between metal and peptide building blocks confirm their central role in the formation of nanohybrids. The tripeptide is biocompatible and can reduce the toxicity of silver ions (Ag+) by reducing to Ag0. These colloidal nanohybrids showed antibacterial activity against gram-negative and gram-positive bacterial strains, and the possible mechanism of killing bacterial cells could be membrane disruption. This synthetic strategy is facile and green, which helps avoid using toxic chemicals or reagents and complicated methods for colloidal nanohybrid preparation for biomedical applications.
Collapse
Affiliation(s)
- Nyla Saeed
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Atia Atiq
- Division of Science and Technology, Department of Physics, University of Education, Lahore, Pakistan
| | - Farhat Rafiq
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Iliyas Khan
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Maria Atiq
- Institute of Physics, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Muhammad Saleem
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Dalaver H Anjum
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Zahid Usman
- Division of Science and Technology, Department of Physics, University of Education, Lahore, Pakistan
| | - Manzar Abbas
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
- Functional Biomaterial Group, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Fernández-Míguez M, Núñez-Martínez M, Suárez-Picado E, Quiñoá E, Freire F. Optical and Chiroptical Stimuli-Responsive Chiral AgNPs@H-Leu-Poly(phenylacetylene) Nanocomposites in Water. ACS NANO 2024; 18:28822-28833. [PMID: 39382101 PMCID: PMC11503914 DOI: 10.1021/acsnano.4c08622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
Dynamic macroscopically chiral nanocomposites are prepared by combining silver nanoparticles (AgNPs) and dynamic helical poly(phenylacetylene)s (PPAs) bearing pendants functionalized with amino groups. These amino groups provide the nanocomposite with the ability to disperse in water along with high stability due to the interaction between the ammonium group and the AgNP. Moreover, the equilibrium between NH3+/NH2 produces a "blinking" contact between the PPA and the AgNPs, which allows total control of the dynamic helical behavior of the polymer. The use of acidic or neutral pH allows controlling the morphology of the nanocomposite, which consists of a nanosphere that has trapped inside it a single AgNP (pH = 2) or several AgNPs (pH = 7) with ca. 30 nm of diameter. These nanocomposites combine the optical and chiroptical stimuli-responsive properties of both components, AgNPs and PPAs. Thus, the controlled aggregation of the nanocomposite produced variations in the LSPR band of the AgNPs in a reversible manner. In turn, given that the chiral coating is selective to Ba2+, the presence of this metal ion caused a helical inversion of the chiral coating of the nanocomposite detected by electronic circular dichroism. Moreover, it is possible to distinguish between three metal ions in different oxidation states, such as Ce4+, Fe3+, and Hg2+, which produce different responses of the nanocomposite when oxidizing the AgNP to Ag+.
Collapse
Affiliation(s)
- Manuel Fernández-Míguez
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | - Esteban Suárez-Picado
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Emilio Quiñoá
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Félix Freire
- Centro Singular de Investigación
en Química Biolóxica e Materiais Moleculares (CiQUS)
and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Mondal B, Hansda B, Mondal T, Pal P, Basu K, Banerjee A. Long Stability of Atomically Precise Red Emissive Copper Nanoclusters within the Gel and Their Use As a Potential Catalyst and Fluorescent Ink. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21876-21883. [PMID: 39365915 DOI: 10.1021/acs.langmuir.4c03210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Herein, an amphiphile-based hydrogel (with 5% DMF) containing natural amino acid residue has been used to prepare and stabilize red-emitting CuNCs for several months. Though different methods have been attempted, amphiphile and 4-mercaptobenzoic acid (4-MBA)-containing hydrogels are pinpointed to be the base medium to stabilize this new Cu-cluster. From a MALDI-TOF MS analysis it was found that it is a Cu8-atom cluster stabilized by three 4-MBA ligands. Copper acetate monohydrate (Cu(CH3COO)2·H2O) has been used as a copper precursor, and l-ascorbic acid has been used as a reducing agent. FEG-TEM analysis shows that the Cu cluster has an average size of 2.83 nm. Interestingly, these clusters can be used as a fluorescent ink with a visibility of the solid state under a UV-lamp with an excitation of 365 nm. This envisaged applying these CuNCs for anticounterfeiting. These Cu-clusters show an excitation of 420 nm with an emission of 620 nm, as is evident from the fluorescence spectroscopic analysis. Based on our knowledge, this is the first example of making and consequently stabilizing Cu-clusters using hydrogel as a template for a few months. Moreover, these CuNCs can also be used as a catalyst for the reduction of nitro derivatives to their amine derivatives in aqueous medium.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Tanushree Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Poulami Pal
- Department of Chemistry, Visva-Bharati, Shantiniketan-731235, West Bengal, India
| | - Kingshuk Basu
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
4
|
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives. ACS APPLIED BIO MATERIALS 2024; 7:4923-4943. [PMID: 37976446 DOI: 10.1021/acsabm.3c00731] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Antimicrobial peptides (AMPs), distinguished by their cationic and amphiphilic nature, represent a critical frontier in the battle against antimicrobial resistance due to their potent antimicrobial activity and a broad spectrum of action. However, the clinical translation of AMPs faces hurdles, including their susceptibility to degradation, limited bioavailability, and the need for targeted delivery. Transdermal delivery has immense potential for optimizing AMP administration for wound management. Leveraging the skin's accessibility and barrier properties, transdermal delivery offers a noninvasive approach that can circumvent systemic side effects and ensure sustained release. Biomaterial-based delivery systems, encompassing nanofibers, hydrogels, nanoparticles, and liposomes, have emerged as key players in enhancing the efficacy of transdermal AMP delivery. These biomaterial carriers not only shield AMPs from enzymatic degradation but also provide controlled release mechanisms, thereby elevating stability and bioavailability. The synergistic interaction between the transdermal approach and biomaterial-facilitated formulations presents a promising strategy to overcome the multifaceted challenges associated with AMP delivery. Integrating advanced technologies and personalized medicine, this convergence allows the reimagining of wound care. This review amalgamates insights to propose a pathway where AMPs, transdermal delivery, and biomaterial innovation harmonize for effective wound management.
Collapse
Affiliation(s)
- Syeda Omara Firdous
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - Md Mehadi Hassan Sagor
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka 1205, Bangladesh
| |
Collapse
|
5
|
Zhou Y, Zhang Y, Rosi NL. Imparting Stability to Chiral Helical Gold Nanoparticle Superstructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40. [PMID: 39018267 PMCID: PMC11295200 DOI: 10.1021/acs.langmuir.4c01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/13/2024] [Accepted: 07/01/2024] [Indexed: 07/19/2024]
Abstract
Realizing the promise of chiral inorganic nanomaterials hinges on improving their structural stability under various chemical and environmental conditions. Here, we examine the stability of 1-D gold nanoparticle (Au NP) single helices prepared using the amphiphilic peptide conjugate Cx-(PEPAuM-ox)2 (PEPAuM-ox = AYSSGAPPMoxPPF; x = 16-22). We present a general template-independent strategy of tuning helix stability that relies on controlling the dimensions of constituent NPs. As NP dimensions increase, Au NP single helices become both more thermally stable and more stable in the presence of chemical denaturants and protein digestion agents (e.g., urea and proteinase K, respectively). We use this strategy for imparting helix stability to create colloidal suspensions of thermally robust Au NP single helices which maintain their plasmonic chiroptical activity up to ∼80 °C.
Collapse
Affiliation(s)
- Yicheng Zhou
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuyu Zhang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L. Rosi
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Chemical and Petroleum Engineering, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
6
|
Umesh, Chandran VC, Saha P, Nath D, Bera S, Bhattacharya S, Pal A. A hydrogel based on Fe(II)-GMP demonstrates tunable emission, self-healing mechanical strength and Fenton chemistry-mediated notable antibacterial properties. NANOSCALE 2024; 16:13050-13060. [PMID: 38899974 DOI: 10.1039/d4nr01011f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Supramolecular hydrogels serve as an excellent platform to enable in situ reactive oxygen species (ROS) generation while maintaining controlled localized conditions, thereby mitigating cytotoxicity. Herein, we demonstrate hydrogel formation using guanosine-5'-monophosphate (GMP) with tetra(4-carboxylphenyl) ethylene (1) to exhibit aggregation-induced emission (AIE) and tunable mechanical strength in the presence of divalent metal ions such as Ca2+, Mg2+, and Fe2+. The addition of divalent metal ions leads to structural transformation in the metallogels (M-1GMP). Furthermore, the incorporation of Fe2+ ions into the hydrogel (Fe-1GMP) promotes the Fenton reaction that could be upregulated upon adding ascorbic acid (AA), demonstrating antibacterial efficacy via ROS generation. In vitro studies on AA-loaded Fe-1GMP demonstrate excellent bacterial killing efficacy against E. coli, S. aureus and vancomycin-resistant enterococci (VRE) strains. Finally, in vivo studies involving topical administration of Fe-1GMP to Balb/c mice with skin infections further suggest the potential antibacterial efficacy of the hydrogel. Taken together, the hydrogel with its unique combination of mechanical tunability, ROS generation capability and antibacterial efficacy can be used for biomedical applications, particularly in wound healing and infection control.
Collapse
Affiliation(s)
- Umesh
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Vysakh C Chandran
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Pranay Saha
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| | - Debasish Nath
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| | - Sayan Bera
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata, 700032, India.
- Department of Chemistry, Indian Institute of Science Education and Research Tirupati, Yerpedu Mandal, Tirupati District, Andhra Pradesh, 517619, India
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
7
|
Li Z, Saravanakumar K, Yao L, Kim Y, Choi SY, Yoo G, Keon K, Lee CM, Youn B, Lee D, Cho N. Acer tegmentosum extract-mediated silver nanoparticles loaded chitosan/alginic acid scaffolds enhance healing of E. coli-infected wounds. Int J Biol Macromol 2024; 267:131389. [PMID: 38582461 DOI: 10.1016/j.ijbiomac.2024.131389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
This work developed Acer tegmentosum extract-mediated silver nanoparticles (AgNPs) loaded chitosan (CS)/alginic acid (AL) scaffolds (CS/AL-AgNPs) to enhance the healing of E. coli-infected wounds. The SEM-EDS and XRD results revealed the successful formation of the CS/AL-AgNPs. FTIR analysis evidenced that the anionic group of AL (-COO-) and cationic amine groups of CS (-NH3+) were ionically crosslinked to form scaffold (CS/AL). The CS/AL-AgNPs exhibited significant antimicrobial activity against both Gram-positive (G+) and Gram-negative (G-) bacterial pathogens, while being non-toxic to red blood cells (RBCs), the hen's egg chorioallantoic membrane (HET-CAM), and a non-cancerous cell line (NIH3T3). Treatment with CS/AL-AgNPs significantly accelerated the healing of E. coli-infected wounds by regulating the collagen deposition and blood parameters as evidenced by in vivo experiments. Overall, these findings suggest that CS/AL-AgNPs are promising for the treatment of infected wounds.
Collapse
Affiliation(s)
- Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Lulu Yao
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Sang Yoon Choi
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Guijae Yoo
- Korea Food Research Institute, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-Gun, Jeollabuk-do, Republic of Korea.
| | - Kim Keon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea.
| | - Byungwook Youn
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Doojin Lee
- Department of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, South Korea.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
8
|
Srivastava A, Verma N, Kumar V, Apoorva P, Agarwal V. Biofilm inhibition/eradication: exploring strategies and confronting challenges in combatting biofilm. Arch Microbiol 2024; 206:212. [PMID: 38616221 DOI: 10.1007/s00203-024-03938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/16/2024]
Abstract
Biofilms are complex communities of microorganisms enclosed in a self-produced extracellular matrix, posing a significant threat to different sectors, including healthcare and industry. This review provides an overview of the challenges faced due to biofilm formation and different novel strategies that can combat biofilm formation. Bacteria inside the biofilm exhibit increased resistance against different antimicrobial agents, including conventional antibiotics, which can lead to severe problems in livestock and animals, including humans. In addition, biofilm formation also imposes heavy economic pressure on industries. Hence it becomes necessary to explore newer alternatives to eradicate biofilms effectively without applying selection pressure on the bacteria. Excessive usage of antibiotics may also lead to an increase in the number of resistant strains as bacteria employ an advanced antimicrobial resistance mechanism. This review provides insight into multifaceted technologies like quorum sensing inhibition, enzymes, antimicrobial peptides, bacteriophage, phytocompounds, and nanotechnology to neutralize biofilms without developing antimicrobial resistance (AMR). Furthermore, it will pave the way for developing newer therapeutic agents to deal with biofilms more efficiently.
Collapse
Affiliation(s)
- Anmol Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Nidhi Verma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vivek Kumar
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Pragati Apoorva
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India
| | - Vishnu Agarwal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
9
|
Sahu I, Chakraborty P. A repertoire of nanoengineered short peptide-based hydrogels and their applications in biotechnology. Colloids Surf B Biointerfaces 2024; 233:113654. [PMID: 38000121 DOI: 10.1016/j.colsurfb.2023.113654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/23/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Peptide nanotechnology has currently bridged the gap between materials and biological worlds. Bioinspired self-assembly of short-peptide building blocks helps take the leap from molecules to materials by taking inspiration from nature. Owing to their intrinsic biocompatibility, high water content, and extracellular matrix mimicking fibrous morphology, hydrogels engineered from the self-assembly of short peptides exemplify the actualization of peptide nanotechnology into biomedical products. However, the weak mechanical property of these hydrogels jeopardizes their practical applications. Moreover, their functional diversity is limited since they comprise only one building block. Nanoengineering the networks of these hydrogels by incorporating small molecules, polymers, and inorganic/carbon nanomaterials can augment the mechanical properties while retaining their dynamic supramolecular nature. These additives interact with the peptide building blocks supramolecularly and may enhance the branching of the networks via coassembly or crystallographic mismatch. This phenomenon expands the functional diversity of these hydrogels by synergistically combining the attributes of the individual building blocks. This review highlights such nanoengineered peptide hydrogels and their applications in biotechnology. We have included exemplary works on supramolecular modification of the peptide hydrogel networks by integrating other small molecules, synthetic/biopolymers, conductive polymers, and inorganic/carbon nanomaterials and shed light on their various utilities focusing on biotechnology. We finally envision some future prospects in this highly active field of research.
Collapse
Affiliation(s)
- Ipsita Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Priyadarshi Chakraborty
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, Telangana, India.
| |
Collapse
|
10
|
Kannappan S, Jo K, Kim KK, Lee JH. Utilizing peptide-anchored DNA templates for novel programmable nanoparticle assemblies in biological macromolecules: A review. Int J Biol Macromol 2024; 256:128427. [PMID: 38016615 DOI: 10.1016/j.ijbiomac.2023.128427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
Biological macromolecules such as proteins and DNA are known to self-assemble into various structural moieties with distinct functions. While nucleic acids are the structural building blocks, peptides exemplify diversity as tailorable biochemical units. Thus, combining the scaffold properties of the biomacromolecule DNA and the functionality of peptides could evolve into a powerful method to obtain tailorable nano assemblies. In this review, we discuss the assembly of non-DNA-coated colloidal NPs on DNA/peptide templates using functional anchors. We begin with strategies for directly attaching metallic NPs to DNA templates to ascertain the functional role of DNA as a scaffold. Followed by methods to assemble peptides onto DNA templates to emphasize the functional versatility of biologically abundant DNA-binding peptides. Next, we focus on studies corroborating peptide self-assembling into macromolecular templates onto which NPs can attach to emphasize the properties of NP-binding peptides. Finally, we discuss the assembly of NPs on a DNA template with a focus on the bifunctional DNA-binding peptides with NP-binding affinity (peptide anchors). This review aims to highlight the immense potential of combining the functional power of DNA scaffolds and tailorable functionalities of peptides for NP assembly and the need to utilize them effectively to obtain tailorable hierarchical NP assemblies.
Collapse
Affiliation(s)
- Shrute Kannappan
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Mapo-gu, Seoul 04107, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; Department of Metabiohealth, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea; School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea.
| |
Collapse
|
11
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
12
|
Ligorio C, Mata A. Synthetic extracellular matrices with function-encoding peptides. NATURE REVIEWS BIOENGINEERING 2023; 1:1-19. [PMID: 37359773 PMCID: PMC10127181 DOI: 10.1038/s44222-023-00055-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 06/28/2023]
Abstract
The communication of cells with their surroundings is mostly encoded in the epitopes of structural and signalling proteins present in the extracellular matrix (ECM). These peptide epitopes can be incorporated in biomaterials to serve as function-encoding molecules to modulate cell-cell and cell-ECM interactions. In this Review, we discuss natural and synthetic peptide epitopes as molecular tools to bioengineer bioactive hydrogel materials. We present a library of functional peptide sequences that selectively communicate with cells and the ECM to coordinate biological processes, including epitopes that directly signal to cells, that bind ECM components that subsequently signal to cells, and that regulate ECM turnover. We highlight how these epitopes can be incorporated in different biomaterials as individual or multiple signals, working synergistically or additively. This molecular toolbox can be applied in the design of biomaterials aimed at regulating or controlling cellular and tissue function, repair and regeneration.
Collapse
Affiliation(s)
- Cosimo Ligorio
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
| | - Alvaro Mata
- Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham, UK
- School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Li G, Lai Z, Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206602. [PMID: 36722732 PMCID: PMC10104676 DOI: 10.1002/advs.202206602] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Indexed: 05/10/2023]
Abstract
Owing to the increase in multidrug-resistant bacterial isolates in hospitals globally and the lack of truly effective antimicrobial agents, antibiotic resistant bacterial infections have increased substantially. There is thus an urgent need to develop new antimicrobial drugs and their related formulations. In recent years, natural antimicrobial peptides (AMPs), AMP optimization, self-assembled AMPs, AMP hydrogels, and biomaterial-assisted delivery of AMPs have shown great potential in the treatment of bacterial infections. In this review, it is focused on the development prospects and shortcomings of various AMP-based biomaterials for treating animal model infections, such as abdominal, skin, and eye infections. It is hoped that this review will inspire further innovations in the design of AMP-based biomaterials for the treatment of bacterial infections and accelerate their commercialization.
Collapse
Affiliation(s)
- Guoyu Li
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhenheng Lai
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Anshan Shan
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
14
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
15
|
Kumar Tripathi S, Kesharwani K, Saxena D, Singh R, Kautu A, Sharma S, Pandey A, Chopra S, Ballabh Joshi K. Silver-Nanoparticle-Embedded Short Amphiphilic Peptide Nanostructures and Their Plausible Application to Reduce Bacterial Infections. ChemMedChem 2023; 18:e202200654. [PMID: 36604305 DOI: 10.1002/cmdc.202200654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
The microbiota-gut-brain axis (GBA) plays a critical role in the development of neurodegenerative diseases. Dysbiosis of the intestinal microbiome causes a significant alteration in the gut microbiota of Alzheimer's disease (AD) patients, followed by neuroinflammatory processes. Thus, AD beginning in the gut is closely related to an imbalance in gut microbiota, and hence a multidomain approach to reduce this imbalance by exerting positive effects on the gut microbiota is needed. In one example, a tyrosine-based short peptide amphiphile (sPA) was used to synthesize antibacterial AgNPs-sPA nanostructures. Such nanostructures showed high biocompatibility and low cytotoxicity, and therefore work as model drug delivery agents for addressing local bacterial infections. These may have therapeutic value for the treatment of microbiota-triggered progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyendra Kumar Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Archna Pandey
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
16
|
Ma J, Jin B, Guye KN, Chowdhury ME, Naser NY, Chen CL, De Yoreo JJ, Baneyx F. Controlling Mineralization with Protein-Functionalized Peptoid Nanotubes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207543. [PMID: 36281797 DOI: 10.1002/adma.202207543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Sequence-defined foldamers that self-assemble into well-defined architectures are promising scaffolds to template inorganic mineralization. However, it has been challenging to achieve robust control of nucleation and growth without sequence redesign or extensive experimentation. Here, peptoid nanotubes functionalized with a panel of solid-binding proteins are used to mineralize homogeneously distributed and monodisperse anatase nanocrystals from the water-soluble TiBALDH precursor. Crystallite size is systematically tuned between 1.4 and 4.4 nm by changing protein coverage and the identity and valency of the genetically engineered solid-binding segments. The approach is extended to the synthesis of gold nanoparticles and, using a protein encoding both material-binding specificities, to the fabrication of titania/gold nanocomposites capable of photocatalysis under visible-light illumination. Beyond uncovering critical roles for hierarchical organization and denticity on solid-binding protein mineralization outcomes, the strategy described herein should prove valuable for the fabrication of hierarchical hybrid materials incorporating a broad range of inorganic components.
Collapse
Affiliation(s)
- Jinrong Ma
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98115, USA
| | - Biao Jin
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kathryn N Guye
- Department of Chemistry, University of Washington, Seattle, WA, 98115, USA
| | - Md Emtias Chowdhury
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nada Y Naser
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| | - Chun-Long Chen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| | - James J De Yoreo
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98115, USA
| | - François Baneyx
- Molecular Engineering and Science Institute, University of Washington, Seattle, WA, 98115, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98115, USA
| |
Collapse
|
17
|
Shao L, Ma J, Prelesnik JL, Zhou Y, Nguyen M, Zhao M, Jenekhe SA, Kalinin SV, Ferguson AL, Pfaendtner J, Mundy CJ, De Yoreo JJ, Baneyx F, Chen CL. Hierarchical Materials from High Information Content Macromolecular Building Blocks: Construction, Dynamic Interventions, and Prediction. Chem Rev 2022; 122:17397-17478. [PMID: 36260695 DOI: 10.1021/acs.chemrev.2c00220] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hierarchical materials that exhibit order over multiple length scales are ubiquitous in nature. Because hierarchy gives rise to unique properties and functions, many have sought inspiration from nature when designing and fabricating hierarchical matter. More and more, however, nature's own high-information content building blocks, proteins, peptides, and peptidomimetics, are being coopted to build hierarchy because the information that determines structure, function, and interfacial interactions can be readily encoded in these versatile macromolecules. Here, we take stock of recent progress in the rational design and characterization of hierarchical materials produced from high-information content blocks with a focus on stimuli-responsive and "smart" architectures. We also review advances in the use of computational simulations and data-driven predictions to shed light on how the side chain chemistry and conformational flexibility of macromolecular blocks drive the emergence of order and the acquisition of hierarchy and also on how ionic, solvent, and surface effects influence the outcomes of assembly. Continued progress in the above areas will ultimately usher in an era where an understanding of designed interactions, surface effects, and solution conditions can be harnessed to achieve predictive materials synthesis across scale and drive emergent phenomena in the self-assembly and reconfiguration of high-information content building blocks.
Collapse
Affiliation(s)
- Li Shao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Jinrong Ma
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States
| | - Jesse L Prelesnik
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Yicheng Zhou
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mary Nguyen
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Mingfei Zhao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Samson A Jenekhe
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States.,Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Sergei V Kalinin
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Jim Pfaendtner
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Christopher J Mundy
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - James J De Yoreo
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - François Baneyx
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, Washington 98195, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chun-Long Chen
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Mondal S, Rehak P, Ghosh N, Král P, Gazit E. Linear One-Dimensional Assembly of Metal Nanostructures onto an Asymmetric Peptide Nanofiber with High Persistence Length. ACS NANO 2022; 16:18307-18314. [PMID: 36346650 DOI: 10.1021/acsnano.2c06082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Self-assembled peptide fibrils have been used extensively to template the organization of metal nanoparticles in a one-dimensional (1D) array. It has been observed that the formation of the 1D arrays with a width of a single or few nanoparticles (viz. 20 nm diameter) is only possible if the templating fibers have comparable diameters (viz. ≤20 nm). Accordingly, until today, all the peptide-based templates enabling such 1D arrays have very low persistence lengths, a property that depends strongly on the diameter of the template, owing to the inherent flexibility of only a few nanometer-wide fibers. Here, we demonstrate the formation of high persistence length 1D arrays templated by a short self-assembling peptide fibril with an asymmetrically distributed charged surface. The asymmetric nature of the peptide fibril allows charge-dependent deposition of the nanoparticles only to the part of the fiber with complementary charges, and the rest of the fibril surface remains free of nanoparticles. Consequently, fibers with a much higher diameter, which will have a higher persistence length, are able to template single or few nanoparticle-wide 1D arrays. Detailed microscopy, molecular dynamics simulations, and crystal structure analysis provide molecular-level insights into fiber asymmetry and its interactions with diverse nanostructures such as gold and magnetic nanoparticles. This study will afford an alternative paradigm for high persistence length 1D array fabrication comparable to DNA nanotechnology and lithography but with tremendous cost-effectiveness.
Collapse
Affiliation(s)
- Sudipta Mondal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Pavel Rehak
- Chemistry, Physics, Pharmaceutical Sciences, Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Nandita Ghosh
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, India
| | - Petr Král
- Chemistry, Physics, Pharmaceutical Sciences, Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Ehud Gazit
- Shmunis School of Biomedicine and Cancer Research, Dr. George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo69978, Israel
| |
Collapse
|
19
|
Mondal B, Gupta VK, Hansda B, Bhoumik A, Mondal T, Majumder HK, Edwards-Gayle CJC, Hamley IW, Jaisankar P, Banerjee A. Amino acid containing amphiphilic hydrogelators with antibacterial and antiparasitic activities. SOFT MATTER 2022; 18:7201-7216. [PMID: 36098333 DOI: 10.1039/d2sm00562j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoscale self-assembly of peptide constructs represents a promising means to present bioactive motifs to develop new functional materials. Here, we present a series of peptide amphiphiles which form hydrogels based on β-sheet nanofibril networks, several of which have very promising anti-microbial and anti-parasitic activities, in particular against multiple strains of Leishmania including drug-resistant ones. Aromatic amino acid based amphiphilic supramolecular gelators C14-Phe-CONH-(CH2)n-NH2 (n = 6 for P1 and n = 2 for P3) and C14-Trp-CONH-(CH2)n-NH2 (n = 6 for P2 and n = 2 for P4) have been synthesized and characterized, and their self-assembly and gelation behaviour have been investigated in the presence of ultrapure water (P1, P2, and P4) or 2% DMSO(v/v) in ultrapure water (P3). The rheological, morphological and structural properties of the gels have been comprehensively examined. The amphiphilic gelators (P1 and P3) were found to be active against both Gram-positive bacteria B. subtilis and Gram-negative bacteria E. coli and P. aeruginosa. Interestingly, amphiphiles P1 and P3 containing an L-phenylalanine residue show both antibacterial and antiparasitic activities. Herein, we report that synthetic amphiphiles with an amino acid residue exhibit a potent anti-protozoan activity and are cytotoxic towards a wide array of protozoal parasites, which includes Indian varieties of Leishmania donovani and also kill resistant parasitic strains including BHU-575, MILR and CPTR cells. These gelators are highly cytotoxic to promastigotes of Leishmania and trigger apoptotic-like events inside the parasite. The mechanism of killing the parasite is shown and these gelators are non-cytotoxic to host macrophage cells indicating the potential use of these gels as therapeutic agents against multiple forms of leishmaniasis in the near future.
Collapse
Affiliation(s)
- Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Vivek Kumar Gupta
- Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700 032, India.
| | - Biswanath Hansda
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Arpita Bhoumik
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 2A & 2B Raja S. C. Mullick Road, Kolkata-700 032, India
| | - Tanushree Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| | - Hemanta K Majumder
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 2A & 2B Raja S. C. Mullick Road, Kolkata-700 032, India
| | | | - Ian W Hamley
- Department of Chemistry, University of Reading, Reading RG6 6AD, UK
| | - Parasuraman Jaisankar
- Laboratory of Catalysis and Chemical Biology, Department of Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata-700 032, India.
| | - Arindam Banerjee
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
20
|
Yuan SC, Lewis JA, Sai H, Weigand SJ, Palmer LC, Stupp SI. Peptide Sequence Determines Structural Sensitivity to Supramolecular Polymerization Pathways and Bioactivity. J Am Chem Soc 2022; 144:16512-16523. [PMID: 36049084 DOI: 10.1021/jacs.2c05759] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathways in supramolecular polymerization traverse different regions of the system's energy landscape, affecting not only their architectures and internal structure but also their functions. We report here on the effects of pathway selection on polymerization for two isomeric peptide amphiphile monomers with amino acid sequences AAEE and AEAE. We subjected the monomers to five different pathways that varied in the order they were exposed to electrostatic screening by electrolytes and thermal annealing. We found that introducing electrostatic screening of E residues before annealing led to crystalline packing of AAEE monomers. Electrostatic screening decreased intermolecular repulsion among AAEE monomers thus promoting internal order within the supramolecular polymers, while subsequent annealing brought them closer to thermodynamic equilibrium with enhanced β-sheet secondary structure. In contrast, supramolecular polymerization of AEAE monomers was less pathway dependent, which we attribute to side-chain dimerization. Regardless of the pathway, the internal structure of AEAE nanostructures had limited internal order and moderate β-sheet structure. These supramolecular polymers generated hydrogels with lower porosity and greater bulk mechanical strength than those formed by the more cohesive AAEE polymers. The combination of dynamic, less ordered internal structure and bulk strength of AEAE networks promoted strong cell-material interactions in adherent epithelial-like cells, evidenced by increased cytoskeletal remodeling and cell spreading. The highly ordered AAEE nanostructures formed porous hydrogels with inferior bulk mechanical properties and weaker cell-material interactions. We conclude that pathway sensitivity in supramolecular synthesis, and therefore structure and function, is highly dependent on the nature of dominant interactions driving polymerization.
Collapse
Affiliation(s)
- Shelby C Yuan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Jacob A Lewis
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Hiroaki Sai
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States.,Center for Bio-Inspired Energy Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
21
|
Preparation and in vivo bacteriostatic application of PPDO-coated Ag loading TiO 2 nanoparticles. Sci Rep 2022; 12:10585. [PMID: 35732700 PMCID: PMC9217793 DOI: 10.1038/s41598-022-14814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Implant-associated infections limit the clinical application of implants therapy; hence, exploiting strategies to prevent biomaterial-associated infections has become important. Therefore, in this study, a series of poly (p-dioxanone) (PPDO)-coated Ag loading TiO2 nanoparticles (Ag@TiO2-PPDO) was synthesized to be applied as bacteriostatic coating materials that could be easily dispersed in organic solvent and coated onto implantable devices via temperate methods such as electrospraying. The lattice parameters of TiO2 were a = 0.504 nm, b = c = 1.05 nm, alpha = beta = gamma = 90 degree and the size of crystallite was about 13 nm, indicating that part of Ag has been embedded into crystal defects of TiO2. Both XRD and TEM determinations indicated the successful grating of PPDO on the surface of Ag@TiO2. Among Ag@TiO2 nanoparticles with various Ag loading quantities, 12% Ag@TiO2 nanoparticles exhibited relatively higher grafting efficiency and Ag contents on the surface of grafted composites. In addition, 12% Ag@TiO2-PPDO exhibited the best bacteriostatic effect in vitro owing to its higher grafted efficiency and relatively short length of PPDO segments. Subsequently, Ag@TiO2-PPDO was coated on the surface of a poly lactic-co-glycolic acid (PLGA) electrospun membrane via the electrospraying method. Finally, the in vivo bacteriostatic effect of 12% Ag@TiO2-PPDO coating was verified by implanting 12% Ag@TiO2-PPDO-coated PLGA membrane into a rat subcutaneously combined with an injection of Staphylococcus aureus at implanting sites.
Collapse
|
22
|
Parchebafi A, Tamanaee F, Ehteram H, Ahmad E, Nikzad H, Haddad Kashani H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures. Microb Cell Fact 2022; 21:118. [PMID: 35717207 PMCID: PMC9206340 DOI: 10.1186/s12934-022-01848-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 06/08/2022] [Indexed: 12/20/2022] Open
Abstract
Microbial infection and cancer are two leading causes of global mortality. Discovering and developing new therapeutics with better specificity having minimal side-effects and no drug resistance are of an immense need. In this regard, cationic antimicrobial peptides (AMP) with dual antimicrobial and anticancer activities are the ultimate choice. For better efficacy and improved stability, the AMPs available for treatment still required to be modified. There are several strategies in which AMPs can be enhanced through, for instance, nano-carrier application with high selectivity and specificity enables researchers to estimate the rate of drug delivery to a particular tissue. In this review we present the biology and modes of action of AMPs for both anticancer and antimicrobial activities as well as some modification strategies to improve the efficacy and selectivity of these AMPs.
Collapse
Affiliation(s)
- Atefeh Parchebafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Farzaneh Tamanaee
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hassan Ehteram
- Department of Pathology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ejaz Ahmad
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Hossein Nikzad
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Haddad Kashani
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
23
|
Tripathi SK, Kesharwani K, Kaul G, Akhir A, Saxena D, Singh R, Mishra NK, Pandey A, Chopra S, Joshi KB. Amyloid-β Inspired Short Peptide Amphiphile Facilitates Synthesis of Silver Nanoparticles as Potential Antibacterial Agents. ChemMedChem 2022; 17:e202200251. [PMID: 35684988 DOI: 10.1002/cmdc.202200251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Indexed: 11/11/2022]
Abstract
An amyloid-β inspired biocompatible short peptide amphiphile (sPA) molecule was used for controlled and targeted delivery of bioactive silver nanoparticles via transforming sPA nanostructures. Such sPA-AgNPs hybrid structures can be further used to develop antibacterial materials to combat emerging bacterial resistance. Due to the excellent antibacterial activity of silver, the growth of clinically relevant bacteria was inhibited in the presence of AgNPs-sPA hybrids. Bacterial tests demonstrated that the high biocompatibility and low cytotoxicity of the designed sPA allow it to work as a model drug delivery agent. It therefore shows great potential in locally addressing bacterial infections. The results of our study suggest that these nanodevices have the potential to trap and then engage in the facile delivery of their chemical payload at the target site, thereby working as potential delivery materials. This system has potential therapeutic value for the treatment of microbiota triggered progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyendra K Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Grace Kaul
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abdul Akhir
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Narendra K Mishra
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Archna Pandey
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti B Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr.Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
24
|
|
25
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
26
|
Zeng A, Wang B, Zhang C, Yang R, Yu S, Zhao W. Physicochemical properties and antibacterial application of silver nanoparticles stabilized by whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Fan Y, Ou-Yang S, Zhou D, Wei J, Liao L. Biological applications of chiral inorganic nanomaterials. Chirality 2022; 34:760-781. [PMID: 35191098 DOI: 10.1002/chir.23428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/29/2021] [Accepted: 02/06/2022] [Indexed: 12/16/2022]
Abstract
Chirality is common in nature and plays the essential role in maintaining physiological process. Chiral inorganic nanomaterials with intense optical activity have attracted more attention due to amazing properties in recent years. Over the past decades, many efforts have been paid to the preparation and chirality origin of chiral nanomaterials; furthermore, emerging biological applications have been investigated widely. This review mainly summarizes recent advances in chiral nanomaterials. The top-down and bottom-up preparation methods and chirality origin of chiral nanomaterials are introduced; besides, the biological applications, such as sensing, therapy, and catalysis, will be introduced comprehensively. Finally, we also provide a perspective on the biomedical applications of chiral nanomaterials.
Collapse
Affiliation(s)
- Yuan Fan
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China
| | - Shaobo Ou-Yang
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Dong Zhou
- College of Chemistry, Nanchang University, Nanchang, China
| | - Junchao Wei
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,College of Chemistry, Nanchang University, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| | - Lan Liao
- The School of Stomatological Hospital, Nanchang University, Nanchang, China.,Jiangxi Province Key Laboratory of Oral Biomedicine, Nanchang, China.,Jiangxi Province Clinical Research Center for Oral Disease, Nanchang, China
| |
Collapse
|
28
|
Biosynthesis and applications of iron oxide nanocomposites synthesized by recombinant Escherichia coli. Appl Microbiol Biotechnol 2022; 106:1127-1137. [DOI: 10.1007/s00253-022-11779-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/31/2022]
|
29
|
Zhang Q, Li J, Wang Y, Ma Y, He M, Zhao D, Huo D, Lu L, Hou C. Detection of aldehydes by gold nanoparticle colorimetric array based on Tollens' reagent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5478-5486. [PMID: 34734943 DOI: 10.1039/d1ay01431e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aldehydes are very common pollutants and many are possible human carcinogens. Herein, we report an easy-to-operate and low-cost method for discrimination of diverse aldehydes. Our colorimetric sensor array based on Tollens' reagent allows discrimination of ten kinds of aldehydes, showing a distinct color change from wine-red to deep yellow. In the presence of aldehydes, Ag shells are coated onto gold nanoparticles (GNPs) functionalized with diverse ligands (including bovine serum albumin, polyvinylpyrrolidone and L-cysteine), forming Au@Ag core-shell nanoparticles. The sensor array has great capacity for differentiating between ten kinds of aldehydes by color change, with accuracy and specificity of over 88%. Under optimal conditions, there is good linear correlation between Euclidean distance and formaldehyde concentrations ranging from 0.1 to 10 000 μM (R2 = 0.9908). The sensor was successfully used to determine formaldehyde content in shrimp, with recovery of 85.8% to 114.82%. Our GNPs sensor shows good potential for fast, reliable identification of aldehydes in food.
Collapse
Affiliation(s)
- Qinghai Zhang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Jiawei Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
- Chongqing University Three Gorges Hospital, Chongqing, 404000, PR China.
| | - You Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Miao He
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Dong Zhao
- Strong-flavor Baijiu Solid-state Fermentation Key Laboratory of China Light Industry, Wuliangye Group Co. Ltd, Yibin, 644007, PR China
| | - Danqun Huo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Laichun Lu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| | - Changjun Hou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
30
|
Gómez-González J, Bouzada D, Pérez-Márquez LA, Sciortino G, Maréchal JD, Vázquez López M, Vázquez ME. Stereoselective Self-Assembly of DNA Binding Helicates Directed by the Viral β-Annulus Trimeric Peptide Motif. Bioconjug Chem 2021; 32:1564-1569. [PMID: 34320309 PMCID: PMC8485332 DOI: 10.1021/acs.bioconjchem.1c00312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Combining
coordination chemistry and peptide engineering offers
extraordinary opportunities for developing novel molecular (supra)structures.
Here, we demonstrate that the β-annulus motif is capable of
directing the stereoselective assembly of designed peptides containing
2,2′-bipyridine ligands into parallel three-stranded chiral
peptide helicates, and that these helicates selectively bind with
high affinity to three-way DNA junctions.
Collapse
Affiliation(s)
- Jacobo Gómez-González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Bouzada
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Lidia A Pérez-Márquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giuseppe Sciortino
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola, Spain
| | - Miguel Vázquez López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
31
|
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature's Reservoir to the Laboratory and Beyond. Front Chem 2021; 9:691532. [PMID: 34222199 PMCID: PMC8249576 DOI: 10.3389/fchem.2021.691532] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rapid rise of antimicrobial resistance against conventional antimicrobials, resurgence of multidrug resistant microbes and the slowdown in the development of new classes of antimicrobials, necessitates the urgent development of alternate classes of therapeutic molecules. Antimicrobial peptides (AMPs) are small proteins present in different lifeforms in nature that provide defense against microbial infections. They have been effective components of the host defense system for a very long time. The fact that the development of resistance by the microbes against the AMPs is relatively slower or delayed compared to that against the conventional antibiotics, makes them prospective alternative therapeutics of the future. Several thousands of AMPs have been isolated from various natural sources like microorganisms, plants, insects, crustaceans, animals, humans, etc. to date. However, only a few of them have been translated commercially to the market so far. This is because of some inherent drawbacks of the naturally obtained AMPs like 1) short half-life owing to the susceptibility to protease degradation, 2) inactivity at physiological salt concentrations, 3) cytotoxicity to host cells, 4) lack of appropriate strategies for sustained and targeted delivery of the AMPs. This has led to a surge of interest in the development of synthetic AMPs which would retain or improve the antimicrobial potency along with circumventing the disadvantages of the natural analogs. The development of synthetic AMPs is inspired by natural designs and sequences and strengthened by the fusion with various synthetic elements. Generation of the synthetic designs are based on various strategies like sequence truncation, mutation, cyclization and introduction of unnatural amino acids and synthons. In this review, we have described some of the AMPs isolated from the vast repertoire of natural sources, and subsequently described the various synthetic designs that have been developed based on the templates of natural AMPs or from de novo design to make commercially viable therapeutics of the future. This review entails the journey of the AMPs from their natural sources to the laboratory.
Collapse
Affiliation(s)
| | | | - Sunanda Chatterjee
- Department of Chemistry, Indian Institute of Technology, Guwahati, India
| |
Collapse
|
32
|
Abbas M, Atiq A, Xing R, Yan X. Silver-incorporating peptide and protein supramolecular nanomaterials for biomedical applications. J Mater Chem B 2021; 9:4444-4458. [PMID: 33978051 DOI: 10.1039/d1tb00025j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The natural biomolecules of peptides and proteins are able to form elegant metal incorporating supramolecular nanomaterials through multiple weak non-covalent interactions. The use of toxic chemical reagents to fabricate silver nanoparticles poses a danger to apply them in various biomedical applications. Peptide and protein biomolecules have the potential to overcome this barrier by the supramolecular chemistry approach. In this review, we focus on the self-assembly of peptides and proteins to synthesize silver incorporating supramolecular nanoarchitectures, which in turn enhance the biological properties of these silver nanomaterials being used in nanomedicine. This review aims to illustrate the recent developments in amphiphilic peptides, oligopeptides, collagen, bovine serum albumin (BSA), and human serum albumin (HSA) as capping, stabilizing, and reducing agents to form silver incorporating supramolecular nanostructures. Finally, we provide some biomedical applications of silver-incorporating supramolecular nanomaterials along with future perspectives.
Collapse
Affiliation(s)
- Manzar Abbas
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| | - Atia Atiq
- Department of Physics, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Ruirui Xing
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China. and Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
33
|
Thapa RK, Diep DB, Tønnesen HH. Nanomedicine-based antimicrobial peptide delivery for bacterial infections: recent advances and future prospects. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00525-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Abstract
Background
Antimicrobial peptides (AMPs) have gained wide interest as viable alternatives to antibiotics owing to their potent antimicrobial effects and the low propensity of resistance development. However, their physicochemical properties (solubility, charge, hydrophobicity/hydrophilicity), stability issues (proteolytic or enzymatic degradation, aggregation, chemical degradation), and toxicities (interactions with blood components or cellular toxicities) limit their therapeutic applications.
Area covered
Nanomedicine-based therapeutic delivery is an emerging concept. The AMP loaded nanoparticles have been prepared and investigated for their antimicrobial effects. In this review, we will discuss different nanomedicine-based AMP delivery systems including metallic nanoparticles, lipid nanoparticles, polymeric nanoparticles, and their hybrid systems along with their future prospects for potent antimicrobial efficacy.
Expert opinion
Nanomedicine-based AMP delivery is a recent approach to the treatment of bacterial infections. The advantageous properties of nanoparticles including the enhancement of AMP stability, controlled release, and targetability make them suitable for the augmentation of AMP activity. Modifications in the nanomedicine-based approach are required to overcome the problems of nanoparticle instability, shorter residence time, and toxicity. Future rigorous studies for both the AMP loaded nanoparticle preparation and characterization, and detailed evaluations of their in vitro and in vivo antimicrobial effects and toxicities, are essential.
Collapse
|
34
|
Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Metal‐Coordinated Supramolecular Polymers from the Minimalistic Hybrid Peptide Foldamers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sanjit Dey
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Rajkumar Misra
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Abhijith Saseendran
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Saikat Pahan
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Hosahudya N. Gopi
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|
35
|
Distaffen HE, Jones CW, Abraham BL, Nilsson BL. Multivalent display of chemical signals on
self‐assembled
peptide scaffolds. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Dey S, Misra R, Saseendran A, Pahan S, Gopi HN. Metal‐Coordinated Supramolecular Polymers from the Minimalistic Hybrid Peptide Foldamers. Angew Chem Int Ed Engl 2021; 60:9863-9868. [DOI: 10.1002/anie.202015838] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/19/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Sanjit Dey
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Rajkumar Misra
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Abhijith Saseendran
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Saikat Pahan
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| | - Hosahudya N. Gopi
- Department of Chemistry Indian Institute of Science Education and Research (IISER), Pune Dr. Homi Bhabha Road Pune 411008 India
| |
Collapse
|
37
|
Wang Z, Wang J, Sun Z, Xiang W, Shen C, Rui N, Ding M, Yuan Y, Cui H, Liu CJ. Electron-induced rapid crosslinking in supramolecular metal-peptide assembly and chemically responsive disaggregation for catalytic application. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63655-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Pan Y, Paschoalino WJ, Szuchmacher Blum A, Mauzeroll J. Recent Advances in Bio-Templated Metallic Nanomaterial Synthesis and Electrocatalytic Applications. CHEMSUSCHEM 2021; 14:758-791. [PMID: 33296559 DOI: 10.1002/cssc.202002532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Developing metallic nanocatalysts with high reaction activity, selectivity and practical durability is a promising and active subfield in electrocatalysis. In the classical "bottom-up" approach to synthesize stable nanomaterials by chemical reduction, stabilizing additives such as polymers or organic surfactants must be present to cap the nanoparticle to prevent material bulk aggregation. In recent years, biological systems have emerged as green alternatives to support the uncoated inorganic components. One key advantage of biological templates is their inherent ability to produce nanostructures with controllable composition, facet, size and morphology under ecologically friendly synthetic conditions, which are difficult to achieve with traditional inorganic synthesis. In addition, through genetic engineering or bioconjugation, bio-templates can provide numerous possibilities for surface functionalization to incorporate specific binding sites for the target metals. Therefore, in bio-templated systems, the electrocatalytic performance of the formed nanocatalyst can be tuned by precisely controlling the material surface chemistry. With controlled improvements in size, morphology, facet exposure, surface area and electron conductivity, bio-inspired nanomaterials often exhibit enhanced catalytic activity towards electrode reactions. In this Review, recent research developments are presented in bio-approaches for metallic nanomaterial synthesis and their applications in electrocatalysis for sustainable energy storage and conversion systems.
Collapse
Affiliation(s)
- Yani Pan
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| | - Waldemir J Paschoalino
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
- Department of Analytical Chemistry, Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971, Campinas, SP, Brazil
| | - Amy Szuchmacher Blum
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| | - Janine Mauzeroll
- Department of Chemistry, McGill University, 801 Sherbrooke West, Montreal H3 A 0B8, Quebec, Canada
| |
Collapse
|
39
|
Bellotto O, Cringoli MC, Perathoner S, Fornasiero P, Marchesan S. Peptide Gelators to Template Inorganic Nanoparticle Formation. Gels 2021; 7:14. [PMID: 33540722 PMCID: PMC7930985 DOI: 10.3390/gels7010014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 12/28/2022] Open
Abstract
The use of peptides to template inorganic nanoparticle formation has attracted great interest as a green route to advance structures with innovative physicochemical properties for a variety of applications that range from biomedicine and sensing, to catalysis. In particular, short-peptide gelators offer the advantage of providing dynamic supramolecular environments for the templating effect on the formation of inorganic nanoparticles directly in the resulting gels, and ideally without using further reductants or chemical reagents. This mini-review describes the recent progress in the field to outline future research directions towards dynamic functional materials that exploit the synergy between supramolecular chemistry, nanoscience, and the interface between organic and inorganic components for advanced performance.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
| | - Maria C. Cringoli
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| | - Siglinda Perathoner
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, 98168 Messina, Italy;
- INSTM, Unit of Messina, 98168 Messina, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (O.B.); (M.C.C.); (P.F.)
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| |
Collapse
|
40
|
Mosleh I, Abbaspourrad A. Peptide-directed Pd-decorated Au and PdAu nanocatalysts for degradation of nitrite in water. RSC Adv 2021; 11:32615-32621. [PMID: 35493599 PMCID: PMC9042164 DOI: 10.1039/d1ra05304c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/29/2021] [Indexed: 01/18/2023] Open
Abstract
In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency. Pd-on-Au NPs with 20% to 300% surface coverage (sc%) of Au showed catalytic activity commensurate with sc%. Additionally, the catalytic activity of PdxAu100−x alloy NPs varied based on palladium composition (x = 6–59). The maximum nitrite removal efficiency of Pd-on-Au and PdxAu100−x alloy NPs was obtained at sc 100% and x = 59, respectively. The synthesized peptide-directed Pd-on-Au catalysts showed an increase in nitrite reduction three and a half times better than monometallic Pd and two and a half times better than PdxAu100−x NPs under comparable conditions. Furthermore, peptide-directed NPs showed high activity after five reuse cycles. Pd-on-Au NPs with more available activated palladium atoms showed high selectivity (98%) toward nitrogen gas production over ammonia. In this work, a palladium binding peptide, Pd4, has been used for the synthesis of catalytically active palladium-decorated gold (Pd-on-Au) nanoparticles (NPs) and palladium–gold (PdxAu100−x) alloy NPs exhibiting high nitrite degradation efficiency.![]()
Collapse
Affiliation(s)
- Imann Mosleh
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agricultural and Life Sciences, Cornell University, Stocking Hall, Ithaca, NY, 14853, USA
| |
Collapse
|
41
|
Rauf S, Susapto HH, Kahin K, Alshehri S, Abdelrahman S, Lam JH, Asad S, Jadhav S, Sundaramurthi D, Gao X, Hauser CAE. Self-assembling tetrameric peptides allow in situ 3D bioprinting under physiological conditions. J Mater Chem B 2021; 9:1069-1081. [DOI: 10.1039/d0tb02424d] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tetrameric peptide-based bioinks allow the printing of 3D cell-laden scaffolds under true physiological conditions avoiding harsh UV or chemical treatment.
Collapse
|
42
|
Eivazzadeh-Keihan R, Khalili F, Aliabadi HAM, Maleki A, Madanchi H, Ziabari EZ, Bani MS. Alginate hydrogel-polyvinyl alcohol/silk fibroin/magnesium hydroxide nanorods: A novel scaffold with biological and antibacterial activity and improved mechanical properties. Int J Biol Macromol 2020; 162:1959-1971. [DOI: 10.1016/j.ijbiomac.2020.08.090] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
|
43
|
Wei W, Liu Y, Xiong N, Yu L, Zhang T, Song H, Tang F. A Peptide-Based Method for the Fabrication of 1D Rail-Like Nanoparticle Chains and 2D Nanoparticle Membranes: Higher-Order Self-Assembly. Chempluschem 2020; 84:374-381. [PMID: 31939204 DOI: 10.1002/cplu.201900040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 03/13/2019] [Indexed: 12/22/2022]
Abstract
Functionalized histidine-rich peptide sequences were designed for the site-directed assembly of nanoparticles. TEM and AFM images shown that the peptides self-assembled into well-ordered nanofibrils at pH 7.2. The nanofibrils could lie parallel to one another and form membranes when the solution was acidic (pH 3.8) resulting from the hierarchical assembly of the nanofibrils in the direction of the peptide backbone. These peptide structures served as a template for nucleation and growth of Au nanocrystals. Further characterization showed that the Au nanocrystals grew on both sides of the nanofibrils, and a 1D system with a rail-like structure and a 2D membrane were synthesized after reduction with hydrazine hydrate at neutral and acidic pH values, respectively. The size and packing density of the Au nanocrystals were positively correlated with the incubation time of the Au ions. This approach can be extended further to the controlled synthesis of 1D and 2D architectures formed from metals, metal sulfides, and metal oxides in a low-cost and simple manner. Finally, the nanostructures could catalyze the reduction of p-nitrophenol with rate constants of 0.83±0.14 and 0.69±0.09 min-1 for the 1D and 2D structures, respectively.
Collapse
Affiliation(s)
- Wei Wei
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Yanfei Liu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Na Xiong
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Tao Zhang
- Key Laboratory of Cell Engineering of Guizhou Province, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, China
| | - Hong Song
- Department of Microbiology, Zunyi Medical University, Zunyi, 563000, China
| | - Fushan Tang
- Key Laboratory of Clinical Pharmacy in Zunyi City Department of Clinical Pharmacy School of Pharmacy, Zunyi Medical University, Zunyi, 563000, China
| |
Collapse
|
44
|
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities. Molecules 2020; 25:E2850. [PMID: 32575664 PMCID: PMC7356147 DOI: 10.3390/molecules25122850] [Citation(s) in RCA: 213] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides (AMPs), or host defense peptides, are small cationic or amphipathic molecules produced by prokaryotic and eukaryotic organisms that play a key role in the innate immune defense against viruses, bacteria and fungi. AMPs have either antimicrobial or anticancer activities. Indeed, cationic AMPs are able to disrupt microbial cell membranes by interacting with negatively charged phospholipids. Moreover, several peptides are capable to trigger cytotoxicity of human cancer cells by binding to negatively charged phosphatidylserine moieties which are selectively exposed on the outer surface of cancer cell plasma membranes. In addition, some AMPs, such as LTX-315, have shown to induce release of tumor antigens and potent damage associated molecular patterns by causing alterations in the intracellular organelles of cancer cells. Given the recognized medical need of novel anticancer drugs, AMPs could represent a potential source of effective therapeutic agents, either alone or in combination with other small molecules, in oncology. In this review we summarize and describe the properties and the mode of action of AMPs as well as the strategies to increase their selectivity toward specific cancer cells.
Collapse
Affiliation(s)
- Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Antonella Borrelli
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy;
| | - Luigi Buonaguro
- Innovative Immunological Models, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy;
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS “Fondazione G. Pascale”, 80131 Napoli, Italy; (F.M.B.); (M.L.T.)
| |
Collapse
|
45
|
Anti-bacterial activity of inorganic nanomaterials and their antimicrobial peptide conjugates against resistant and non-resistant pathogens. Int J Pharm 2020; 586:119531. [PMID: 32540348 DOI: 10.1016/j.ijpharm.2020.119531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 12/20/2022]
Abstract
This review details the antimicrobial applications of inorganic nanomaterials of mostly metallic form, and the augmentation of activity by surface conjugation of peptide ligands. The review is subdivided into three main sections, of which the first describes the antimicrobial activity of inorganic nanomaterials against gram-positive, gram-negative and multidrug-resistant bacterial strains. The second section highlights the range of antimicrobial peptides and the drug resistance strategies employed by bacterial species to counter lethality. The final part discusses the role of antimicrobial peptide-decorated inorganic nanomaterials in the fight against bacterial strains that show resistance. General strategies for the preparation of antimicrobial peptides and their conjugation to nanomaterials are discussed, emphasizing the use of elemental and metallic oxide nanomaterials. Importantly, the permeation of antimicrobial peptides through the bacterial membrane is shown to aid the delivery of nanomaterials into bacterial cells. By judicious use of targeting ligands, the nanomaterial becomes able to differentiate between bacterial and mammalian cells and, thus, reduce side effects. Moreover, peptide conjugation to the surface of a nanomaterial will alter surface chemistry in ways that lead to reduction in toxicity and improvements in biocompatibility.
Collapse
|
46
|
Pigliacelli C, Sánchez-Fernández R, García MD, Peinador C, Pazos E. Self-assembled peptide-inorganic nanoparticle superstructures: from component design to applications. Chem Commun (Camb) 2020; 56:8000-8014. [PMID: 32495761 DOI: 10.1039/d0cc02914a] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Peptides have become excellent platforms for the design of peptide-nanoparticle hybrid superstructures, owing to their self-assembly and binding/recognition capabilities. Morover, peptide sequences can be encoded and modified to finely tune the structure of the hybrid systems and pursue functionalities that hold promise in an array of high-end applications. This feature article summarizes the different methodologies that have been developed to obtain self-assembled peptide-inorganic nanoparticle hybrid architectures, and discusses how the proper encoding of the peptide sequences can be used for tailoring the architecture and/or functionality of the final systems. We also describe the applications of these hybrid superstructures in different fields, with a brief look at future possibilities towards the development of new functional hybrid materials.
Collapse
Affiliation(s)
- Claudia Pigliacelli
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain.
| | | | | | | | | |
Collapse
|
47
|
Nagra U, Shabbir M, Zaman M, Mahmood A, Barkat K. Review on Methodologies Used in the Synthesis of Metal Nanoparticles: Significance of Phytosynthesis Using Plant Extract as an Emerging Tool. Curr Pharm Des 2020; 26:5188-5204. [PMID: 32473619 DOI: 10.2174/1381612826666200531150218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.
Collapse
Affiliation(s)
- Uzair Nagra
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Maryam Shabbir
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Muhammad Zaman
- Faculty of Pharmacy, University of Central Punjab, Lahore, Punjab, Pakistan
| | - Asif Mahmood
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| | - Kashif Barkat
- Faculty of Pharmacy, University of Lahore, Lahore, Punjab, Pakistan
| |
Collapse
|
48
|
Copper Iodide Nanoparticles Immobolized Porous Polysulfonamide: An Effective Nanocatalyst for Synthesis of Imidazo [1,2-a] Pyridines. Catal Letters 2020. [DOI: 10.1007/s10562-020-03265-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Wang Y, Yang X, Liu T, Li Z, Leskauskas D, Liu G, Matson JB. Molecular-Level Control over Plasmonic Properties in Silver Nanoparticle/Self-Assembling Peptide Hybrids. J Am Chem Soc 2020; 142:9158-9162. [PMID: 32392041 PMCID: PMC7657666 DOI: 10.1021/jacs.0c03672] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The plasmonic properties of silver nanoparticle (AgNP) arrays are directly controlled by AgNP size, shape, and spatial arrangement. Reported here is a strategy to prepare chiral AgNP arrays templated by two constitutionally isomeric aromatic peptide amphiphiles (APAs), KSC'EKS and C'EKSKS (KS = S-aroylthiooxime-modified lysine, C' = citrulline, and E = glutamic acid). In phosphate buffer, both APAs initially self-assembled into nanoribbons with a similar geometry. However, in the presence of silver ions and poly(sodium 4-styrenesulfonate) (PSSS), one of the nanoribbons (KSC'EKS) turned into nanohelices with a regular twisting pitch, while the other (C'EKSKS) remained as nanoribbons. Both were used as templates for synthesis of arrays of ∼8 nm AgNPs to understand how small changes in molecular structure affect the plasmonic properties of these chiral AgNP/APA hybrids. Both hybrids showed improved colloidal stability compared to pure AgNPs, and both showed enhanced sensitivity as surface-enhanced Raman spectroscopy (SERS) substrates for model analytes, with nanohelices showing better SERS performance compared to their nanoribbon counterparts and pure AgNPs.
Collapse
Affiliation(s)
- Yin Wang
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - Xiaozhou Yang
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Tianyu Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Zhao Li
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - David Leskauskas
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| | - John B. Matson
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, United States
- Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
50
|
Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs). NANOMATERIALS 2020; 10:nano10030560. [PMID: 32244858 PMCID: PMC7153398 DOI: 10.3390/nano10030560] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 03/12/2020] [Accepted: 03/13/2020] [Indexed: 01/09/2023]
Abstract
Microbial infections are still among the major public health concerns since several yeasts and fungi, and other pathogenic microorganisms, are responsible for continuous growth of infections and drug resistance against bacteria. Antimicrobial resistance rate is fostering the need to develop new strategies against drug-resistant superbugs. Antimicrobial peptides (AMPs) are small peptide-based molecules of 5–100 amino acids in length, with potent and broad-spectrum antimicrobial properties. They are part of the innate immune system, which can represent a minimal risk of resistance development. These characteristics contribute to the description of these molecules as promising new molecules in the development of new antimicrobial drugs. However, efforts in developing new medicines have not resulted in any decrease of drug resistance yet. Thus, a technological approach on improving existing drugs is gaining special interest. Nanomedicine provides easy access to innovative carriers, which ultimately enable the design and development of targeted delivery systems of the most efficient drugs with increased efficacy and reduced toxicity. Based on performance, successful experiments, and considerable market prospects, nanotechnology will undoubtedly lead a breakthrough in biomedical field also for infectious diseases, as there are several nanotechnological approaches that exhibit important roles in restoring antibiotic activity against resistant bacteria.
Collapse
|