1
|
Wang N, Huang Y, Zi Y, Wang M, Huang W. P(NMe 2) 3-Mediated Regioselective N-Alkylation of 2-Pyridones via Direct Deoxygenation of α-Keto Esters. J Org Chem 2024; 89:3657-3665. [PMID: 38366991 DOI: 10.1021/acs.joc.3c02819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
A practical and regioselective direct N-alkylation of 2-pyridones is enabled by use of α-keto esters in the P(NMe2)3-mediated deoxygenation process. The reaction proceeds under mild conditions to produce N-alkylated 2-pyridones with high selectivity and generality, and the protocol is shown to be applicable for the scale-up synthesis, which makes it promising for practical applications.
Collapse
Affiliation(s)
- Nan Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Yuanyuan Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, P. R. China
| |
Collapse
|
2
|
Bosveli A, Griboura N, Kampouropoulos I, Kalaitzakis D, Montagnon T, Vassilikogiannakis G. The Rapid Synthesis of Colibactin Warhead Model Compounds Using New Metal-Free Photocatalytic Cyclopropanation Reactions Facilitates the Investigation of Biological Mechanisms. Chemistry 2023; 29:e202301713. [PMID: 37452669 DOI: 10.1002/chem.202301713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Herein, we report the synthesis of a series of colibactin warhead model compounds using two newly developed metal-free photocatalytic cyclopropanation reactions. These mild cyclopropanations expand the known applications of eosin within synthesis. A halogen atom transfer reaction mode has been harnessed so that dihalides can be used as the cyclopropanating agents. The colibactin warhead models were then used to provide new insight into two key mechanisms in colibactin chemistry. An explanation is provided for why the colibactin warhead sometimes undergoes a ring expansion-addition reaction to give fused cyclobutyl products while at other times nucleophiles add directly to the cyclopropyl unit (as when DNA adds to colibactin). Finally, we provide some evidence that Cu(II) chelated to colibactin may catalyze an important oxidation of the colibactin-DNA adduct. The Cu(I) generated as a result could then also play a role in inducing double strand breaks in DNA.
Collapse
Affiliation(s)
- Artemis Bosveli
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Nefeli Griboura
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | | - Dimitris Kalaitzakis
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | - Tamsyn Montagnon
- Department of Chemistry, University of Crete, Vasilika Vouton, 71003, Iraklion, Crete
| | | |
Collapse
|
3
|
DiBello M, Healy AR, Nikolayevskiy H, Xu Z, Herzon SB. Structure Elucidation of Secondary Metabolites: Current Frontiers and Lingering Pitfalls. Acc Chem Res 2023; 56:1656-1668. [PMID: 37220079 PMCID: PMC10468810 DOI: 10.1021/acs.accounts.3c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Analytical methods allow for the structure determination of submilligram quantities of complex secondary metabolites. This has been driven in large part by advances in NMR spectroscopic capabilities, including access to high-field magnets equipped with cryogenic probes. Experimental NMR spectroscopy may now be complemented by remarkably accurate carbon-13 NMR calculations using state-of-the-art DFT software packages. Additionally, microED analysis stands to have a profound effect on structure elucidation by providing X-ray-like images of microcrystalline samples of analytes. Nonetheless, lingering pitfalls in structure elucidation remain, particularly for isolates that are unstable or highly oxidized. In this Account, we discuss three projects from our laboratory that highlight nonoverlapping challenges to the field, with implications for chemical, synthetic, and mechanism of action studies. We first discuss the lomaiviticins, complex unsaturated polyketide natural products disclosed in 2001. The original structures were derived from NMR, HRMS, UV-vis, and IR analysis. Owing to the synthetic challenges presented by their structures and the absence of X-ray crystallographic data, the structure assignments remained untested for nearly two decades. In 2021, the Nelson group at Caltech carried out microED analysis of (-)-lomaiviticin C, leading to the startling discovery that the original structure assignment of the lomaiviticins was incorrect. Acquisition of higher-field (800 MHz 1H, cold probe) NMR data as well as DFT calculations provided insights into the basis for the original misassignment and lent further support to the new structure identified by microED. Reanalysis of the 2001 data set reveals that the two structure assignments are nearly indistinguishable, underscoring the limitations of NMR-based characterization. We then discuss the structure elucidation of colibactin, a complex, nonisolable microbiome metabolite implicated in colorectal cancer. The colibactin biosynthetic gene cluster was detected in 2006, but owing to colibactin's instability and low levels of production, it could not be isolated or characterized. We used a combination of chemical synthesis, mechanism of action studies, and biosynthetic analysis to identify the substructures in colibactin. These studies, coupled with isotope labeling and tandem MS analysis of colibactin-derived DNA interstrand cross-links, ultimately led to a structure assignment for the metabolite. We then discuss the ocimicides, plant secondary metabolites that were studied as agents against drug-resistant P. falciparum. We synthesized the core structure of the ocimicides and found significant discrepancies between our experimental NMR spectroscopic data and that reported for the natural products. We determined the theoretical carbon-13 NMR shifts for 32 diastereomers of the ocimicides. These studies indicated that a revision of the connectivity of the metabolites is likely needed. We end with some thoughts on the frontiers of secondary metabolite structure determination. As modern NMR computational methods are straightforward to execute, we advocate for their systematic use in validating the assignments of novel secondary metabolites.
Collapse
Affiliation(s)
- Mikaela DiBello
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Zhi Xu
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Departments of Pharmacology and Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
4
|
Zhou T, Ando T, Kudo A, Sato M, Miyoshi N, Mutoh M, Ishikawa H, Wakabayashi K, Watanabe K. Screening method toward ClbP-specific inhibitors. Genes Environ 2023; 45:8. [PMID: 36797758 PMCID: PMC9933310 DOI: 10.1186/s41021-023-00264-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Colibactin is a genotoxin produced by Escherichia coli and other Enterobacteriaceae that is believed to increase the risk of colorectal cancer (CRC) of their symbiosis hosts, including human. A peptidase ClbP is the key enzyme for activation of colibactin. Inhibition of ClbP is considered to impede maturation of precolibactin into genotoxic colibactin. Therefore, ClbP-specific inhibitors could potentially prevent the onset of CRC, one of the leading causes of cancer-related deaths in the world. This study intends to establish an efficient screening system for identifying inhibitors that are specific to ClbP. METHODS Two types of assays were applied in the screening procedure: a probe assay and an LC-MS assay. For the probe assay, we employed the synthesized probe which we described in our previous report. This probe can be hydrolyzed efficiently by ClbP to release a fluorophore. Hence it was applied here for detection of inhibition of ClbP. For the LC-MS assay, formation of the byproduct of precolibactin maturation process, N-myristoyl-D-asparagine, was quantified using a liquid chromatography-mass spectrometry (LC-MS) technique. The probe assay can be performed much faster, while the LC-MS assay is more accurate. Therefore, our method employed the two assays in sequence to screen a large number of compounds for inhibition of ClbP. RESULTS A library of 67,965 standard compounds was evaluated by the screening method established in the current study, and one compound was found to show a moderate inhibitory activity against ClbP. CONCLUSION A simple screening method for ClbP-specific inhibitors was established. It was proven to be reliable and is believed to be useful in developing potential prophylactic agents for CRC.
Collapse
Affiliation(s)
- Tao Zhou
- Adenoprevent Co., Ltd., Shizuoka, 422-8526 Japan ,grid.469280.10000 0000 9209 9298Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Takayuki Ando
- Department of Pharmaceutical and Food Science, Shizuoka Institution of Environment and Hygiene, Fujieda, 426-0083 Japan
| | - Akihiro Kudo
- Department of Pharmaceutical and Food Science, Shizuoka Institution of Environment and Hygiene, Fujieda, 426-0083 Japan
| | - Michio Sato
- grid.469280.10000 0000 9209 9298Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Noriyuki Miyoshi
- grid.469280.10000 0000 9209 9298Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Michihiro Mutoh
- grid.272458.e0000 0001 0667 4960Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Hideki Ishikawa
- grid.272458.e0000 0001 0667 4960Department of Molecular-Targeting Cancer Prevention, Kyoto Prefectural University of Medicine, Kyoto, 602-8566 Japan
| | - Keiji Wakabayashi
- grid.469280.10000 0000 9209 9298Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526 Japan
| | - Kenji Watanabe
- Adenoprevent Co., Ltd., Shizuoka, 422-8526, Japan. .,Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan.
| |
Collapse
|
5
|
Mousa WK. The microbiome-product colibactin hits unique cellular targets mediating host–microbe interaction. Front Pharmacol 2022; 13:958012. [PMID: 36172175 PMCID: PMC9510844 DOI: 10.3389/fphar.2022.958012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022] Open
Abstract
The human microbiota produces molecules that are evolved to interact with the diverse cellular machinery of both the host and microbes, mediating health and diseases. One of the most puzzling microbiome molecules is colibactin, a genotoxin encoded in some commensal and extraintestinal microbes and is implicated in initiating colorectal cancer. The colibactin cluster was discovered more than 15 years ago, and most of the research studies have been focused on revealing the biosynthesis and precise structure of the cryptic encoded molecule(s) and the mechanism of carcinogenesis. In 2022, the Balskus group revealed that colibactin not only hits targets in the eukaryotic cell machinery but also in the prokaryotic cell. To that end, colibactin crosslinks the DNA resulting in activation of the SOS signaling pathway, leading to prophage induction from bacterial lysogens and modulation of virulence genes in pathogenic species. These unique activities of colibactin highlight its ecological role in shaping gut microbial communities and further consequences that impact human health. This review dives in-depth into the molecular mechanisms underpinning colibactin cellular targets in eukaryotic and prokaryotic cells, aiming to understand the fine details of the role of secreted microbiome chemistry in mediating host–microbe and microbe–microbe interactions. This understanding translates into a better realization of microbiome potential and how this could be advanced to future microbiome-based therapeutics or diagnostic biomarkers.
Collapse
Affiliation(s)
- Walaa K. Mousa
- College of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates
- College of Pharmacy, Mansoura University, Mansoura, Egypt
- *Correspondence: Walaa K. Mousa,
| |
Collapse
|
6
|
Tang JW, Liu X, Ye W, Li ZR, Qian PY. Biosynthesis and bioactivities of microbial genotoxin colibactins. Nat Prod Rep 2022; 39:991-1014. [PMID: 35288725 DOI: 10.1039/d1np00050k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covering: up to 2021Colibactin(s), a group of secondary metabolites produced by the pks island (clb cluster) of Escherichia coli, shows genotoxicity relevant to colorectal cancer and thus significantly affects human health. Over the last 15 years, substantial efforts have been exerted to reveal the molecular structure of colibactin, but progress is slow owing to its instability, low titer, and elusive and complex biosynthesis logic. Fortunately, benefiting from the discovery of the prodrug mechanism, over 40 precursors of colibactin have been reported. Some key biosynthesis genes located on the pks island have also been characterised. Using an integrated bioinformatics, metabolomics, and chemical synthesis approach, researchers have recently characterised the structure and possible biosynthesis processes of colibactin, thereby providing new insights into the unique biosynthesis logic and the underlying mechanism of the biological activity of colibactin. Early developments in the study of colibactin have been summarised in several previous reviews covering various study periods, whereas the two most recent reviews have focused primarily on the chemical synthesis of colibactin. The present review aims to provide an update on the biosynthesis and bioactivities of colibactin.
Collapse
Affiliation(s)
- Jian-Wei Tang
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Xin Liu
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| | - Wei Ye
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zhong-Rui Li
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Pei-Yuan Qian
- Department of Ocean Science, Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China. .,Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
7
|
Cui H, Xu G, Zhu J, Sun J. Rhodium-Catalyzed Dearomative Rearrangement of 2-Oxypyridines with Cyclopropenes: Access to N-Alkylated 2-Pyridones. Org Chem Front 2022. [DOI: 10.1039/d1qo01937f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rhodium-catalyzed dearomative O-to-N rearrangement reaction of 2-oxypyridines has been developed by using cyclopropenes as the carbene precursors. This protocol features broad substrate scope and mild reaction conditions, providing a...
Collapse
|
8
|
Tirla A, Wernke KM, Herzon SB. On the Stability and Spectroscopic Properties of 5-Hydroxyoxazole-4-carboxylic Acid Derivatives. Org Lett 2021; 23:5457-5460. [PMID: 34180681 DOI: 10.1021/acs.orglett.1c01796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
5-Hydroxyoxazole-4-carboxylic acid residues were advanced as substructures within the secondary bacterial metabolites precolibactins 969 and 795a. However, oxazoles containing both 5-hydroxy and 4-carboxy substituents are unprecedented. We have found these oxazoles are unstable with respect to hydrolytic ring opening and decarboxylation. Comparison of reported and theoretical 13C NMR chemical shifts between synthetic intermediates and the isolates revealed discrepancies in the oxazole region. These results suggest that precolibactins 969 and 795a may not contain 5-hydroxyoxazole-4-carboxylic acid residues.
Collapse
Affiliation(s)
- Alina Tirla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Zhou T, Hirayama Y, Tsunematsu Y, Suzuki N, Tanaka S, Uchiyama N, Goda Y, Yoshikawa Y, Iwashita Y, Sato M, Miyoshi N, Mutoh M, Ishikawa H, Sugimura H, Wakabayashi K, Watanabe K. Isolation of New Colibactin Metabolites from Wild-Type Escherichia coli and In Situ Trapping of a Mature Colibactin Derivative. J Am Chem Soc 2021; 143:5526-5533. [PMID: 33787233 DOI: 10.1021/jacs.1c01495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colibactin is a polyketide-nonribosomal peptide hybrid secondary metabolite that can form interstrand cross-links in double-stranded DNA. Colibactin-producing Escherichia coli has also been linked to colorectal oncogenesis. Thus, there is a strong interest in understanding the role colibactin may play in oncogenesis. Here, using the high-colibactin-producing wild-type E. coli strain we isolated from a clinical sample with the activity-based fluorescent probe we developed earlier, we were able to identify colibactin 770, which was recently identified and proposed as the complete form of colibactin, along with colibactin 788, 406, 416, 420, and 430 derived from colibactin 770 through structural rearrangements and solvolysis. Furthermore, we were able to trap the degrading mature colibactin species by converting the diketone moiety into quinoxaline in situ in the crude culture extract to form colibactin 860 at milligram scale. This allowed us to determine the stereochemically complex structure of the rearranged form of an intact colibactin, colibactin 788, in detail. Furthermore, our study suggested that we were capturing only a few percent of the actual colibactin produced by the microbe, providing a crude quantitative insight into the inherent instability of this compound. Through the structural assignment of colibactins and their degradative products by the combination of LC-HRMS and NMR spectroscopies, we were able to elucidate further the fate of inherently unstable colibactin, which could help acquire a more complete picture of colibactin metabolism and identify key DNA adducts and biomarkers for diagnosing colorectal cancer.
Collapse
Affiliation(s)
- Tao Zhou
- Adenoprevent Co., Ltd., Shizuoka 422-8526, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuichiro Hirayama
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Nanami Suzuki
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Seiji Tanaka
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Nahoko Uchiyama
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yukihiro Goda
- National Institute of Health Sciences, Kawasaki 210-9501, Japan
| | - Yuko Yoshikawa
- School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Yuji Iwashita
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michihiro Mutoh
- Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hideki Ishikawa
- Department of Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology, Hamamatsu University School of Medicine, Shizuoka 431-3192, Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Adenoprevent Co., Ltd., Shizuoka 422-8526, Japan
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
10
|
Wei S, Bao X, Nawaz S, Qu J, Wang B. Identification of a tartrate-based modular guanidine towards highly asymmetric Michael addition of 3-aminooxindoles to nitroolefins. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
11
|
Zhou S, Liu DY, Wang S, Tian JS, Loh TP. An efficient method for the synthesis of 2-pyridones via C-H bond functionalization. Chem Commun (Camb) 2020; 56:15020-15023. [PMID: 33185645 DOI: 10.1039/d0cc06834a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method to access N-substituted 2-pyridones via a formal [3+3] annulation of enaminones with acrylates based on RhIII-catalyzed C-H functionalization was developed. Control and deuterated experiments led to a plausible mechanism involving C-H bond cross-coupling and aminolysis cyclization. This strategy provides a short synthesis of structural motifs of N-substituted 2-pyridones.
Collapse
Affiliation(s)
- Shuguang Zhou
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | | | | | | | | |
Collapse
|
12
|
Williams PC, Wernke KM, Tirla A, Herzon SB. Employing chemical synthesis to study the structure and function of colibactin, a "dark matter" metabolite. Nat Prod Rep 2020; 37:1532-1548. [PMID: 33174565 PMCID: PMC7700718 DOI: 10.1039/d0np00072h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Covering: 2015 to 2020 The field of natural products is dominated by a discovery paradigm that follows the sequence: isolation, structure elucidation, chemical synthesis, and then elucidation of mechanism of action and structure-activity relationships. Although this discovery paradigm has proven successful in the past, researchers have amassed enough evidence to conclude that the vast majority of nature's secondary metabolites - biosynthetic "dark matter" - cannot be identified and studied by this approach. Many biosynthetic gene clusters (BGCs) are expressed at low levels, or not at all, and in some instances a molecule's instability to fermentation or isolation prevents detection entirely. Here, we discuss an alternative approach to natural product identification that addresses these challenges by enlisting synthetic chemistry to prepare putative natural product fragments and structures as guided by biosynthetic insight. We demonstrate the utility of this approach through our structure elucidation of colibactin, an unisolable genotoxin produced by pathogenic bacteria in the human gut.
Collapse
Affiliation(s)
- Peyton C Williams
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA.
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, USA. and Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
13
|
Serusi L, Soddu F, Cuccu F, Peretti G, Luridiana A, Secci F, Caboni P, Aitken DJ, Frongia A. Synthesis of α‐Aminocyclopropyl Ketones and 2‐Substituted Benzoimidazoles from 2‐Hydroxycyclobutanones and Aryl Amines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lorenzo Serusi
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Complesso Universitario di Monserrato S.S. 554, Bivio per Sestu I-09042 Monserrato, Cagliari Italy
| | - Francesco Soddu
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Complesso Universitario di Monserrato S.S. 554, Bivio per Sestu I-09042 Monserrato, Cagliari Italy
| | - Federico Cuccu
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Complesso Universitario di Monserrato S.S. 554, Bivio per Sestu I-09042 Monserrato, Cagliari Italy
| | - Giuseppe Peretti
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Complesso Universitario di Monserrato S.S. 554, Bivio per Sestu I-09042 Monserrato, Cagliari Italy
| | - Alberto Luridiana
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Complesso Universitario di Monserrato S.S. 554, Bivio per Sestu I-09042 Monserrato, Cagliari Italy
| | - Francesco Secci
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Complesso Universitario di Monserrato S.S. 554, Bivio per Sestu I-09042 Monserrato, Cagliari Italy
| | - Pierluigi Caboni
- Dipartimento di Scienze della Vita e dell'Ambiente Università degli Studi di Cagliari Via Ospedale 72 09124 Cagliari Italy
| | - David J. Aitken
- Université Paris Saclay, CNRS, ICMMO, CP3A Organic Synthesis Group, Bât 420 rue du Doyen Georges Poitou 91405 Orsay cedex France
| | - Angelo Frongia
- Dipartimento di Scienze Chimiche e Geologiche Università degli Studi di Cagliari Complesso Universitario di Monserrato S.S. 554, Bivio per Sestu I-09042 Monserrato, Cagliari Italy
| |
Collapse
|
14
|
Zhang S, Bacheley L, Young CM, Stark DG, O'Riordan T, Slawin AMZ, Smith AD. Isothiourea‐Catalyzed Functionalization of Pyrrolyl‐ and Indolylacetic Acid: Enantioselective Synthesis of Dihydropyridinones and One‐pot Synthesis of Pyridinones. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shuyue Zhang
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Lucas Bacheley
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Claire M. Young
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Daniel G. Stark
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Timothy O'Riordan
- Syngenta Jealott's Hill International Research Centre Bracknell Berkshire RG42 6EY UK
| | - Alexandra M. Z. Slawin
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| | - Andrew D. Smith
- EastCHEM School of Chemistry University of St Andrews North Haugh Fife Scotland Scotland KY16 9ST UK
| |
Collapse
|
15
|
Ilazi A, Huang B, de Almeida Campos V, Gademann K. Synthesis of Colibactin Pyrrolidono[3,4- d]pyridones via Regioselective C(sp 3)-H Activation. Org Lett 2020; 22:6858-6862. [PMID: 32815372 DOI: 10.1021/acs.orglett.0c02385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The synthesis of pyrrolidono[3,4-d]pyridones of relevance to putative genotoxic colibactin structures featuring a doubly conjugated 1,6-Michael acceptor system is reported. We investigated and implemented a highly selective Pd-catalyzed C(sp3)-H activation reaction as a key step and further functionalized the pyridone core. Evaluating the role of this structural unit of relevance to colibactin, we found that this structure displayed a high degree of stability toward both acidic conditions and nucleophiles.
Collapse
Affiliation(s)
- Agron Ilazi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Bin Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Valery de Almeida Campos
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| | - Karl Gademann
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057 Zürich, Switzerland
| |
Collapse
|
16
|
Colibactin DNA-damage signature indicates mutational impact in colorectal cancer. Nat Med 2020; 26:1063-1069. [PMID: 32483361 DOI: 10.1038/s41591-020-0908-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The mucosal epithelium is a common target of damage by chronic bacterial infections and the accompanying toxins, and most cancers originate from this tissue. We investigated whether colibactin, a potent genotoxin1 associated with certain strains of Escherichia coli2, creates a specific DNA-damage signature in infected human colorectal cells. Notably, the genomic contexts of colibactin-induced DNA double-strand breaks were enriched for an AT-rich hexameric sequence motif, associated with distinct DNA-shape characteristics. A survey of somatic mutations at colibactin target sites of several thousand cancer genomes revealed notable enrichment of this motif in colorectal cancers. Moreover, the exact double-strand-break loci corresponded with mutational hot spots in cancer genomes, reminiscent of a trinucleotide signature previously identified in healthy colorectal epithelial cells3. The present study provides evidence for the etiological role of colibactin in human cancer.
Collapse
|
17
|
Wernke KM, Xue M, Tirla A, Kim CS, Crawford JM, Herzon SB. Structure and bioactivity of colibactin. Bioorg Med Chem Lett 2020; 30:127280. [PMID: 32527463 DOI: 10.1016/j.bmcl.2020.127280] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
Colibactin is a secondary metabolite produced by certain strains of bacteria found in the human gut. The presence of colibactin-producing bacteria has been correlated to colorectal cancer in humans. Colibactin was first discovered in 2006, but because it is produced in small quantities and is unstable, it has yet to be isolated from bacterial cultures. Here we summarize advances in the field since ~2017 that have led to the identification of the structure of colibactin as a heterodimer containing two DNA-reactive electrophilic cyclopropane residues. Colibactin has been shown to form interstrand cross-links by alkylation of adenine residues on opposing strands of DNA. The structure of colibactin contains two thiazole rings separated by a two-carbon linker that is thought to exist as an α-aminoketone following completion of the biosynthetic pathway. However, synthetic studies have now established that this α-aminoketone is unstable toward aerobic oxidation; the resulting oxidation products are in turn unstable toward nucleophilic cleavage under mild conditions. These data provide a simple molecular-level explanation for colibactin's instability and potentially also explain the observation that cell-to-cell contact is required for genotoxic effects.
Collapse
Affiliation(s)
- Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Alina Tirla
- Department of Chemistry, Yale University, New Haven, CT 06520, United States
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT 06516, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Chemical Biology Institute, Yale University, West Haven, CT 06516, United States; Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, United States; Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, United States.
| |
Collapse
|
18
|
Silbergleit M, Vasquez AA, Miller CJ, Sun J, Kato I. Oral and intestinal bacterial exotoxins: Potential linked to carcinogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 171:131-193. [PMID: 32475520 DOI: 10.1016/bs.pmbts.2020.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Growing evidence suggests that imbalances in resident microbes (dysbiosis) can promote chronic inflammation, immune-subversion, and production of carcinogenic metabolites, thus leading to neoplasia. Yet, evidence to support a direct link of individual bacteria species to human sporadic cancer is still limited. This chapter focuses on several emerging bacterial toxins that have recently been characterized for their potential oncogenic properties toward human orodigestive cancer and the presence of which in human tissue samples has been documented. These include cytolethal distending toxins produced by various members of gamma and epsilon Proteobacteria, Dentilisin from mammalian oral Treponema, Pasteurella multocida toxin, two Fusobacterial toxins, FadA and Fap2, Bacteroides fragilis toxin, colibactin, cytotoxic necrotizing factors and α-hemolysin from Escherichia coli, and Salmonella enterica AvrA. It was clear that these bacterial toxins have biological activities to induce several hallmarks of cancer. Some toxins directly interact with DNA or chromosomes leading to their breakdowns, causing mutations and genome instability, and others modulate cell proliferation, replication and death and facilitate immune evasion and tumor invasion, prying specific oncogene and tumor suppressor pathways, such as p53 and β-catenin/Wnt. In addition, most bacterial toxins control tumor-promoting inflammation in complex and diverse mechanisms. Despite growing laboratory evidence to support oncogenic potential of selected bacterial toxins, we need more direct evidence from human studies and mechanistic data from physiologically relevant experimental animal models, which can reflect chronic infection in vivo, as well as take bacterial-bacterial interactions among microbiome into consideration.
Collapse
Affiliation(s)
| | - Adrian A Vasquez
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Carol J Miller
- Department of Civil and Environmental Engineering, Wayne State University, Healthy Urban Waters, Detroit, MI, United States
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| | - Ikuko Kato
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, United States; Department of Pathology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
19
|
Abstract
The clb gene cluster encodes the biosynthesis of metabolites known as precolibactins and colibactins. The clb pathway is found in gut commensal E. coli, and clb metabolites are thought to initiate colorectal cancer via DNA cross-linking. Here we report confirmation of the structural assignment of the complex clb product precolibactin 886 via a biomimetic synthetic pathway. We show that a α-ketoimine linear precursor undergoes spontaneous cyclization to precolibactin 886 upon HPLC purification. Studies of this α-ketoimine and the related α-dicarbonyl revealed that these compounds are unexpectedly susceptible to nucleophilic cleavage under mildly basic conditions. This cleavage pathway forms other known clb metabolites or biosynthetic intermediates and explains the difficulties in isolating fully mature biosynthetic products. This cleavage also accounts for a recently identified colibactin–adenine adduct. The colibactin peptidase ClbP deacylates synthetic precolibactin 886 to form a non-genotoxic pyridone, suggesting precolibactin 886 lies off-path of the major biosynthetic route.
Collapse
|
20
|
Wu Y, Jhong Y, Lin H, Swain SP, Tsai HG, Hou D. Organocatalyzed Enantioselective Michael Addition of 2‐Hydroxypyridines and α,β‐Unsaturated 1,4‐Dicarbonyl Compounds. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900997] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yu‐Chun Wu
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Yi Jhong
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Hui‐Jie Lin
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Sharada Prasanna Swain
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
- Assistant Professor-Selection Grade, School of Health SciencesUniversity of Petroleum and Energy Studies Bidholi, Dehradun- 248007 India
| | - Hui‐Hsu Gavin Tsai
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
- Research Center of New Generation Light Driven Photovoltaic Module InstitutionNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| | - Duen‐Ren Hou
- Department of ChemistryNational Central University 300 Jhong-Da Rd., Jhong-Li Taoyuan Taiwan 32001
| |
Collapse
|
21
|
Xue M, Kim CS, Healy AR, Wernke KM, Wang Z, Frischling MC, Shine EE, Wang W, Herzon SB, Crawford JM. Structure elucidation of colibactin and its DNA cross-links. Science 2019; 365:science.aax2685. [PMID: 31395743 DOI: 10.1126/science.aax2685] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/24/2019] [Indexed: 12/18/2022]
Abstract
Colibactin is a complex secondary metabolite produced by some genotoxic gut Escherichia coli strains. The presence of colibactin-producing bacteria correlates with the frequency and severity of colorectal cancer in humans. However, because colibactin has not been isolated or structurally characterized, studying the physiological effects of colibactin-producing bacteria in the human gut has been difficult. We used a combination of genetics, isotope labeling, tandem mass spectrometry, and chemical synthesis to deduce the structure of colibactin. Our structural assignment accounts for all known biosynthetic and cell biology data and suggests roles for the final unaccounted enzymes in the colibactin gene cluster.
Collapse
Affiliation(s)
- Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Chung Sub Kim
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alan R Healy
- Department of Chemistry, Yale University, New Haven, CT 06520, USA.,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Kevin M Wernke
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Zhixun Wang
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | | | - Emilee E Shine
- Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| | - Weiwei Wang
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT 06520, USA.,W. M. Keck Biotechnology Resource Laboratory, Yale School of Medicine, New Haven, CT 06510, USA
| | - Seth B Herzon
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Jason M Crawford
- Department of Chemistry, Yale University, New Haven, CT 06520, USA. .,Chemical Biology Institute, Yale University, West Haven, CT 06516, USA.,Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, USA
| |
Collapse
|
22
|
Wilson MR, Jiang Y, Villalta PW, Stornetta A, Boudreau PD, Carrá A, Brennan CA, Chun E, Ngo L, Samson LD, Engelward BP, Garrett WS, Balbo S, Balskus EP. The human gut bacterial genotoxin colibactin alkylates DNA. Science 2019; 363:363/6428/eaar7785. [PMID: 30765538 DOI: 10.1126/science.aar7785] [Citation(s) in RCA: 380] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/16/2018] [Accepted: 12/21/2018] [Indexed: 12/13/2022]
Abstract
Certain Escherichia coli strains residing in the human gut produce colibactin, a small-molecule genotoxin implicated in colorectal cancer pathogenesis. However, colibactin's chemical structure and the molecular mechanism underlying its genotoxic effects have remained unknown for more than a decade. Here we combine an untargeted DNA adductomics approach with chemical synthesis to identify and characterize a covalent DNA modification from human cell lines treated with colibactin-producing E. coli Our data establish that colibactin alkylates DNA with an unusual electrophilic cyclopropane. We show that this metabolite is formed in mice colonized by colibactin-producing E. coli and is likely derived from an initially formed, unstable colibactin-DNA adduct. Our findings reveal a potential biomarker for colibactin exposure and provide mechanistic insights into how a gut microbe may contribute to colorectal carcinogenesis.
Collapse
Affiliation(s)
- Matthew R Wilson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Yindi Jiang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Peter W Villalta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Alessia Stornetta
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Paul D Boudreau
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Andrea Carrá
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA
| | - Caitlin A Brennan
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lizzie Ngo
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Leona D Samson
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Wendy S Garrett
- Department of Immunology and Infectious Diseases and Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA.,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Medical Oncology, Dana-Farber Institute, Boston, MA 02115, USA
| | - Silvia Balbo
- Masonic Cancer Center, University of Minnesota, 2231 Sixth Street Southeast, Minneapolis, MN 55455, USA.
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA.
| |
Collapse
|
23
|
Du Y, Li X, Su C, Wang L, Jiang J, Hong B. The human gut microbiome - a new and exciting avenue in cardiovascular drug discovery. Expert Opin Drug Discov 2019; 14:1037-1052. [PMID: 31315489 DOI: 10.1080/17460441.2019.1638909] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Introduction: Over the past decade, numerous research efforts have identified the gut microbiota as a novel regulator of human metabolic syndrome and cardiovascular disease (CVD). With the elucidation of underlying molecular mechanisms of the gut microbiota and its metabolites, the drug-discovery process of CVD therapeutics might be expedited. Areas covered: The authors describe the evidence concerning the impact of gut microbiota on metabolic disorders and CVD and summarize the current knowledge of the gut microbial mechanisms that underlie CVD with a focus on microbial metabolites. In addition, they discuss the potential impact of the gut microbiota on the drug efficacy of available cardiometabolic therapeutic agents. Most importantly, the authors review the role of the gut microbiome as a promising source of potential drug targets and novel therapeutics for the development of new treatment modalities for CVD. This review also presents the various effective strategies to investigate the gut microbiome for CVD drug-discovery approaches. Expert opinion: With the elucidation of its causative role in cardiometabolic disease and atherosclerosis, the human gut microbiome holds promises as a reservoir of novel potential therapeutic targets as well as novel therapeutic agents, paving a new and exciting avenue in cardiovascular drug discovery.
Collapse
Affiliation(s)
- Yu Du
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Xingxing Li
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| | - Chunyan Su
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Li Wang
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Jiandong Jiang
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China
| | - Bin Hong
- NHC Key Laboratory of Biotechnology of Antibiotics , Beijing , China.,CAMS Key Laboratory of Synthetic Biology for Drug Innovation, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing , China
| |
Collapse
|
24
|
Hirayama Y, Tsunematsu Y, Yoshikawa Y, Tamafune R, Matsuzaki N, Iwashita Y, Ohnishi I, Tanioka F, Sato M, Miyoshi N, Mutoh M, Ishikawa H, Sugimura H, Wakabayashi K, Watanabe K. Activity-Based Probe for Screening of High-Colibactin Producers from Clinical Samples. Org Lett 2019; 21:4490-4494. [PMID: 31192617 DOI: 10.1021/acs.orglett.9b01345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
While high-colibactin-producing Escherichia coli is thought to be associated with colorectal oncogenesis, this study is complicated part due to an inability to isolate colibactin adequately. Here, we created fluorescent probes activated by ClbP, the colibactin-maturing peptidase, to identify high-colibactin-producing strains. Our probe served as a valuable clinical diagnostic tool that allowed simple high-throughput diagnostic screening of clinical samples. Furthermore, the probe also allowed identification of high-colibactin producers that would help advance our understanding of colibactin biosynthesis.
Collapse
Affiliation(s)
- Yuichiro Hirayama
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Yuko Yoshikawa
- School of Veterinary Medicine, Faculty of Veterinary Science , Nippon Veterinary and Life Science University , Tokyo 180-8602 , Japan
| | - Ryota Tamafune
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Nobuo Matsuzaki
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Yuji Iwashita
- Department of Tumor Pathology , Hamamatsu University School of Medicine , Shizuoka 431-3192 , Japan
| | - Ippei Ohnishi
- Division of Pathology , Iwata City Hospital , Iwata 438-8550 , Japan
| | - Fumihiko Tanioka
- Division of Pathology , Iwata City Hospital , Iwata 438-8550 , Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Noriyuki Miyoshi
- Graduate School of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Michihiro Mutoh
- Epidemiology and Prevention Division, Center for Public Health Sciences , National Cancer Center , Tokyo 104-0045 , Japan
| | - Hideki Ishikawa
- Department of Molecular-Targeting Cancer Prevention , Kyoto Prefectural University of Medicine , Kyoto 602-8566 , Japan
| | - Haruhiko Sugimura
- Department of Tumor Pathology , Hamamatsu University School of Medicine , Shizuoka 431-3192 , Japan
| | - Keiji Wakabayashi
- Graduate Division of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences , University of Shizuoka , Shizuoka 422-8526 , Japan
| |
Collapse
|
25
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018; 58:1417-1421. [DOI: 10.1002/anie.201812326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Indexed: 12/15/2022]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|
26
|
Moodie LWK, Hubert M, Zhou X, Albers MF, Lundmark R, Wanrooij S, Hedberg C. Photoactivated Colibactin Probes Induce Cellular DNA Damage. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
| | - Madlen Hubert
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
| | - Xin Zhou
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | | - Richard Lundmark
- Integrative Medical Biology; Umeå University; 90187 Umeå Sweden
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | - Sjoerd Wanrooij
- Medical Biochemistry and Biophysics; Umeå University; 90187 Umeå Sweden
| | | |
Collapse
|
27
|
Shine EE, Xue M, Patel JR, Healy AR, Surovtseva YV, Herzon SB, Crawford JM. Model Colibactins Exhibit Human Cell Genotoxicity in the Absence of Host Bacteria. ACS Chem Biol 2018; 13:3286-3293. [PMID: 30403848 DOI: 10.1021/acschembio.8b00714] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Colibactins are genotoxic secondary metabolites produced in select Enterobacteriaceae, which induce downstream DNA double-strand breaks (DSBs) in human cell lines and are thought to promote the formation of colorectal tumors. Although key structural and functional features of colibactins have been elucidated, the full molecular mechanisms regulating these phenotypes remain unknown. Here, we demonstrate that free model colibactins induce DSBs in human cell cultures and do not require delivery by host bacteria. Through domain-targeted editing, we demonstrate that a subset of native colibactins generated from observed module skipping in the nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) biosynthetic assembly line share DNA alkylation phenotypes with the model colibactins in vitro. However, module skipping eliminates the strong DNA interstrand cross-links formed by the wild-type pathway in cell culture. This product diversification during the modular NRPS-PKS biosynthesis produces a family of metabolites with varying observed mechanisms of action (DNA alkylation versus cross-linking) in cell culture. The presence of membranes separating human cells from model colibactins attenuated genotoxicity, suggesting that membrane diffusion limits colibactin activity and could account for the reported bacterium-human cell-to-cell contact phenotype. Additionally, extracellular supplementation of the colibactin resistance protein ClbS was able to intercept colibactins in an Escherichia coli-human cell transient infection model. Our studies demonstrate that free model colibactins recapitulate cellular phenotypes associated with module-skipped products in the native colibactin pathway and define specific protein domains that are required for efficient DNA interstrand cross-linking in the native pathway.
Collapse
Affiliation(s)
- Emilee E. Shine
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Mengzhao Xue
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Jaymin R. Patel
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520, United States
| | - Alan R. Healy
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Yulia V. Surovtseva
- Yale Center for Molecular Discovery, West Haven, Connecticut 06516, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| |
Collapse
|
28
|
Wassenaar TM. E. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit Rev Microbiol 2018; 44:619-632. [DOI: 10.1080/1040841x.2018.1481013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
29
|
Tsunematsu Y. Biosynthesis-assisted Structure Elucidation of Colibactin, the Genotoxic Metabolite Produced by Commensal Microbiota. J SYN ORG CHEM JPN 2018. [DOI: 10.5059/yukigoseikyokaishi.76.490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Faïs T, Delmas J, Barnich N, Bonnet R, Dalmasso G. Colibactin: More Than a New Bacterial Toxin. Toxins (Basel) 2018; 10:toxins10040151. [PMID: 29642622 PMCID: PMC5923317 DOI: 10.3390/toxins10040151] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/06/2018] [Accepted: 04/07/2018] [Indexed: 12/16/2022] Open
Abstract
Cyclomodulins are bacterial toxins that interfere with the eukaryotic cell cycle. A new cyclomodulin called colibactin, which is synthetized by the pks genomic island, was discovered in 2006. Despite many efforts, colibactin has not yet been purified, and its structure remains elusive. Interestingly, the pks island is found in members of the family Enterobacteriaceae (mainly Escherichia coli and Klebsiella pneumoniae) isolated from different origins, including from intestinal microbiota, septicaemia, newborn meningitis, and urinary tract infections. Colibactin-producing bacteria induce chromosomal instability and DNA damage in eukaryotic cells, which leads to senescence of epithelial cells and apoptosis of immune cells. The pks island is mainly observed in B2 phylogroup E. coli strains, which include extra-intestinal pathogenic E. coli strains, and pksE. coli are over-represented in biopsies isolated from colorectal cancer. In addition, pksE. coli bacteria increase the number of tumours in diverse colorectal cancer mouse models. Thus, colibactin could have a major impact on human health. In the present review, we will focus on the biological effects of colibactin, the distribution of the pks island, and summarize what is currently known about its synthesis and its structure.
Collapse
Affiliation(s)
- Tiphanie Faïs
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Julien Delmas
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| | - Richard Bonnet
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
- CHU Clermont-Ferrand, Laboratoire de Bactériologie, Centre de Biologie, F-63003 Clermont-Ferrand, France.
| | - Guillaume Dalmasso
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
31
|
Tripathi P, Shine EE, Healy AR, Kim CS, Herzon SB, Bruner SD, Crawford JM. ClbS Is a Cyclopropane Hydrolase That Confers Colibactin Resistance. J Am Chem Soc 2017; 139:17719-17722. [PMID: 29112397 DOI: 10.1021/jacs.7b09971] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Certain commensal Escherichia coli contain the clb biosynthetic gene cluster that codes for small molecule prodrugs known as precolibactins. Precolibactins are converted to colibactins by N-deacylation; the latter are postulated to be genotoxic and to contribute to colorectal cancer formation. Though advances toward elucidating (pre)colibactin biosynthesis have been made, the functions and mechanisms of several clb gene products remain poorly understood. Here we report the 2.1 Å X-ray structure and molecular function of ClbS, a gene product that confers resistance to colibactin toxicity in host bacteria and which has been shown to be important for bacterial viability. The structure harbors a potential colibactin binding site and shares similarity to known hydrolases. In vitro studies using a synthetic colibactin analog and ClbS or an active site residue mutant reveal cyclopropane hydrolase activity that converts the electrophilic cyclopropane of the colibactins into an innocuous hydrolysis product. As the cyclopropane has been shown to be essential for genotoxic effects in vitro, this ClbS-catalyzed ring-opening provides a means for the bacteria to circumvent self-induced genotoxicity. Our study provides a molecular-level view of the first reported cyclopropane hydrolase and support for a specific mechanistic role of this enzyme in colibactin resistance.
Collapse
Affiliation(s)
- Prabhanshu Tripathi
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Emilee E Shine
- Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Alan R Healy
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Chung Sub Kim
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| | - Steven D Bruner
- Department of Chemistry, University of Florida , Gainesville, Florida 32611, United States
| | - Jason M Crawford
- Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| |
Collapse
|
32
|
Guntaka NS, Healy AR, Crawford JM, Herzon SB, Bruner SD. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway. ACS Chem Biol 2017; 12:2598-2608. [PMID: 28846367 PMCID: PMC5830302 DOI: 10.1021/acschembio.7b00479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0 Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.
Collapse
Affiliation(s)
- Naga Sandhya Guntaka
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alan R. Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
33
|
Healy AR, Herzon SB. Molecular Basis of Gut Microbiome-Associated Colorectal Cancer: A Synthetic Perspective. J Am Chem Soc 2017; 139:14817-14824. [PMID: 28949546 DOI: 10.1021/jacs.7b07807] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A significant challenge toward studies of the human microbiota involves establishing causal links between bacterial metabolites and human health and disease states. Certain strains of commensal Escherichia coli harbor the 54-kb clb gene cluster which codes for small molecules named precolibactins and colibactins. Several studies suggest colibactins are genotoxins and support a role for clb metabolites in colorectal cancer formation. Significant advances toward elucidating the structures and biosynthesis of the precolibactins and colibactins have been made using genetic approaches, but their full structures remain unknown. In this Perspective we describe recent synthetic efforts that have leveraged biosynthetic advances and shed light on the mechanism of action of clb metabolites. These studies indicate that deletion of the colibactin peptidase ClbP, a modification introduced to promote accumulation of precolibactins, leads to the production of non-genotoxic pyridone-based isolates derived from the diversion of linear biosynthetic intermediates toward alternative cyclization pathways. Furthermore, these studies suggest the active genotoxins (colibactins) are unsaturated imines that are potent DNA damaging agents, thereby confirming an earlier mechanism of action hypothesis. Although these imines have very recently been detected in bacterial extracts, they have to date confounded isolation. As the power of "meta-omics" approaches to natural products discovery further advance, we anticipate that chemical synthetic and biosynthetic studies will become increasingly interdependent.
Collapse
Affiliation(s)
- Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
34
|
Toyama T, Saitoh T, Takahashi Y, Oka K, Citterio D, Suzuki K, Nishiyama S. Click Reaction Based on the Biosynthesis of Firefly Luciferin. CHEM LETT 2017. [DOI: 10.1246/cl.170094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohisa Toyama
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575
| | - Yuka Takahashi
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Kotaro Oka
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Koji Suzuki
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| | - Shigeru Nishiyama
- Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522
| |
Collapse
|
35
|
Affiliation(s)
- Christian Ebner
- Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| | - Erick M. Carreira
- Eidgenössische Technische Hochschule Zürich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland
| |
Collapse
|
36
|
Abstract
Human-associated microorganisms have the potential to biosynthesize numerous secondary metabolites that may mediate important host-microbe and microbe-microbe interactions. However, there is currently a limited understanding of microbiome-derived natural products. A variety of complementary discovery approaches have begun to illuminate this microbial "dark matter," which will in turn allow detailed mechanistic studies of the effects of these molecules on microbiome and host. Herein, we review recent efforts to uncover microbiome-derived natural products, describe the key approaches that were used to identify and characterize these metabolites, discuss potential functional roles of these molecules, and highlight challenges related to this emerging research area.
Collapse
Affiliation(s)
- Matthew R Wilson
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Li Zha
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Emily P Balskus
- From the Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138
| |
Collapse
|
37
|
Trautman EP, Healy AR, Shine EE, Herzon SB, Crawford JM. Domain-Targeted Metabolomics Delineates the Heterocycle Assembly Steps of Colibactin Biosynthesis. J Am Chem Soc 2017; 139:4195-4201. [PMID: 28240912 DOI: 10.1021/jacs.7b00659] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Modular polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs) comprise giant multidomain enzymes responsible for the "assembly line" biosynthesis of many genetically encoded small molecules. Site-directed mutagenesis, protein biochemical, and structural studies have focused on elucidating the catalytic mechanisms of individual multidomain proteins and protein domains within these megasynthases. However, probing their functions at the cellular level typically has invoked the complete deletion (or overexpression) of multidomain-encoding genes or combinations of genes and comparing those mutants with a control pathway. Here we describe a "domain-targeted" metabolomic strategy that combines genome editing with pathway analysis to probe the functions of individual PKS and NRPS catalytic domains at the cellular metabolic level. We apply the approach to the bacterial colibactin pathway, a genotoxic NRPS-PKS hybrid pathway found in certain Escherichia coli. The pathway produces precolibactins, which are converted to colibactins by a dedicated peptidase, ClbP. Domain-targeted metabolomics enabled the characterization of "multidomain signatures", or functional readouts of NRPS-PKS domain contributions to the pathway-dependent metabolome. These multidomain signatures provided experimental support for individual domain contributions to colibactin biosynthesis and delineated the assembly line timing events of colibactin heterocycle formation. The analysis also led to the structural characterization of two reactive precolibactin metabolites. We demonstrate the fate of these reactive intermediates in the presence and absence of ClbP, which dictates the formation of distinct product groups resulting from alternative cyclization cascades. In the presence of the peptidase, the reactive intermediates are converted to a known genotoxic scaffold, providing metabolic support of our mechanistic model for colibactin-induced genotoxicity. Domain-targeted metabolomics could be more widely used to characterize NRPS-PKS pathways with unprecedented genetic and metabolic precision.
Collapse
Affiliation(s)
- Eric P Trautman
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Emilee E Shine
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| |
Collapse
|
38
|
Garg N, Luzzatto-Knaan T, Melnik AV, Caraballo-Rodríguez AM, Floros DJ, Petras D, Gregor R, Dorrestein PC, Phelan VV. Natural products as mediators of disease. Nat Prod Rep 2017; 34:194-219. [PMID: 27874907 PMCID: PMC5299058 DOI: 10.1039/c6np00063k] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2016Humans are walking microbial ecosystems, each harboring a complex microbiome with the genetic potential to produce a vast array of natural products. Recent sequencing data suggest that our microbial inhabitants are critical for maintaining overall health. Shifts in microbial communities have been correlated to a number of diseases including infections, inflammation, cancer, and neurological disorders. Some of these clinically and diagnostically relevant phenotypes are a result of the presence of small molecules, yet we know remarkably little about their contributions to the health of individuals. Here, we review microbe-derived natural products as mediators of human disease.
Collapse
Affiliation(s)
- Neha Garg
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Tal Luzzatto-Knaan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Alexey V. Melnik
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | | | - Dimitrios J. Floros
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093
| | - Daniel Petras
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Rachel Gregor
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Pieter C. Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
| | - Vanessa V. Phelan
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
39
|
Mousa JJ, Newsome RC, Yang Y, Jobin C, Bruner SD. ClbM is a versatile, cation-promiscuous MATE transporter found in the colibactin biosynthetic gene cluster. Biochem Biophys Res Commun 2016; 482:1233-1239. [PMID: 27939886 DOI: 10.1016/j.bbrc.2016.12.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/02/2016] [Indexed: 11/30/2022]
Abstract
Multidrug transporters play key roles in cellular drug resistance to toxic molecules, yet these transporters are also involved in natural product transport as part of biosynthetic clusters in bacteria and fungi. The genotoxic molecule colibactin is produced by strains of virulent and pathobiont Escherichia coli and Klebsiella pneumoniae. In the biosynthetic cluster is a multidrug and toxic compound extrusion protein (MATE) proposed to transport the prodrug molecule precolibactin across the cytoplasmic membrane, for subsequent cleavage by the peptidase ClbP and cellular export. We recently determined the X-ray structure of ClbM, and showed preliminary data suggesting its specific role in precolibactin transport. Here, we define a functional role of ClbM by examining transport capabilities under various biochemical conditions. Our data indicate ClbM responds to sodium, potassium, and rubidium ion gradients, while also having substantial transport activity in the absence of alkali cations.
Collapse
Affiliation(s)
- Jarrod J Mousa
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Rachel C Newsome
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Ye Yang
- Department of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Steven D Bruner
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
40
|
Healy AR, Nikolayevskiy H, Patel JR, Crawford JM, Herzon SB. A Mechanistic Model for Colibactin-Induced Genotoxicity. J Am Chem Soc 2016; 138:15563-15570. [PMID: 27934011 DOI: 10.1021/jacs.6b10354] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Precolibactins and colibactins represent a family of natural products that are encoded by the clb gene cluster and are produced by certain commensal, extraintestinal, and probiotic E. coli. clb+ E. coli induce megalocytosis and DNA double-strand breaks in eukaryotic cells, but paradoxically, this gene cluster is found in the probiotic Nissle 1917. Evidence suggests precolibactins are converted to genotoxic colibactins by colibactin peptidase (ClbP)-mediated cleavage of an N-acyl-d-Asn side chain, and all isolation efforts have employed ΔclbP strains to facilitate accumulation of precolibactins. It was hypothesized that colibactins form unsaturated imines that alkylate DNA by cyclopropane ring opening (2 → 3). However, as no colibactins have been isolated, this hypothesis has not been tested experimentally. Additionally, precolibactins A-C (7-9) contain a pyridone that cannot generate the unsaturated imines that form the basis of this hypothesis. To resolve this, we prepared 13 synthetic colibactin derivatives and evaluated their DNA binding and alkylation activity. We show that unsaturated imines, but not the corresponding pyridone derivatives, potently alkylate DNA. The imine, unsaturated lactam, and cyclopropane are essential for efficient DNA alkylation. A cationic residue enhances activity. These studies suggest that precolibactins containing a pyridone are not responsible for the genotoxicity of the clb cluster. Instead, we propose that these are off-pathway fermentation products produced by a facile double cyclodehydration route that manifests in the absence of viable ClbP. The results presented herein provide a foundation to begin to connect metabolite structure with the disparate phenotypes associated with clb+ E. coli.
Collapse
Affiliation(s)
- Alan R Healy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States
| | - Herman Nikolayevskiy
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States
| | - Jaymin R Patel
- Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Molecular, Cellular, and Developmental Biology, Yale University , New Haven, Connecticut 06520, United States
| | - Jason M Crawford
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Chemical Biology Institute, Yale University , West Haven, Connecticut 06516, United States.,Department of Microbial Pathogenesis, Yale School of Medicine , New Haven, Connecticut 06536, United States
| | - Seth B Herzon
- Department of Chemistry, Yale University , New Haven, Connecticut 06520, United States.,Department of Pharmacology, Yale School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
41
|
Li ZR, Li J, Gu JP, Lai JYH, Duggan BM, Zhang WP, Li ZL, Li YX, Tong RB, Xu Y, Lin DH, Moore BS, Qian PY. Divergent biosynthesis yields a cytotoxic aminomalonate-containing precolibactin. Nat Chem Biol 2016; 12:773-5. [PMID: 27547923 PMCID: PMC5030165 DOI: 10.1038/nchembio.2157] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Colibactin is an as-yet-uncharacterized genotoxic secondary metabolite produced by human gut bacteria. Here we report the biosynthetic discovery of two new precolibactin molecules from Escherichia coli, including precolibactin-886, which uniquely incorporates the highly sought genotoxicity-associated aminomalonate building block into its unprecedented macrocyclic structure. This work provides new insights into the biosynthetic logic and mode of action of this colorectal-cancer-linked microbial chemical.
Collapse
Affiliation(s)
- Zhong-Rui Li
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jie Li
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
| | - Jin-Ping Gu
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jennifer Y. H. Lai
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Brendan M. Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Wei-Peng Zhang
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhi-Long Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yong-Xin Li
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Rong-Biao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource & Ecoenvironmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, P. R. China
| | - Dong-Hai Lin
- High-field NMR Research Center, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093, United States
| | - Pei-Yuan Qian
- Division of Life Science and Environmental Science Programs, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|