1
|
Devlin T, Fleming KG. A team of chaperones play to win in the bacterial periplasm. Trends Biochem Sci 2024; 49:667-680. [PMID: 38677921 DOI: 10.1016/j.tibs.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/14/2024] [Accepted: 03/22/2024] [Indexed: 04/29/2024]
Abstract
The survival and virulence of Gram-negative bacteria require proper biogenesis and maintenance of the outer membrane (OM), which is densely packed with β-barrel OM proteins (OMPs). Before reaching the OM, precursor unfolded OMPs (uOMPs) must cross the whole cell envelope. A network of periplasmic chaperones and proteases maintains unfolded but folding-competent conformations of these membrane proteins in the aqueous periplasm while simultaneously preventing off-pathway aggregation. These periplasmic proteins utilize different strategies, including conformational heterogeneity, oligomerization, multivalency, and kinetic partitioning, to perform and regulate their functions. Redundant and unique characteristics of the individual periplasmic players synergize to create a protein quality control team capable responding to changing environmental stresses.
Collapse
Affiliation(s)
- Taylor Devlin
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Karen G Fleming
- Thomas C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
2
|
Nava-Ramírez T, Gutiérrez-Terrazas S, Hansberg W. The Molecular Chaperone Mechanism of the C-Terminal Domain of Large-Size Subunit Catalases. Antioxidants (Basel) 2023; 12:antiox12040839. [PMID: 37107214 PMCID: PMC10135305 DOI: 10.3390/antiox12040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
Large-size subunit catalases (LSCs) have an additional C-terminal domain (CT) that is structurally similar to Hsp31 and DJ-1 proteins, which have molecular chaperone activity. The CT of LSCs derives from a bacterial Hsp31 protein. There are two CT dimers with inverted symmetry in LSCs, one dimer in each pole of the homotetrameric structure. We previously demonstrated the molecular chaperone activity of the CT of LSCs. Like other chaperones, LSCs are abundant proteins that are induced under stress conditions and during cell differentiation in bacteria and fungi. Here, we analyze the mechanism of the CT of LSCs as an unfolding enzyme. The dimeric form of catalase-3 (CAT-3) CT (TDC3) of Neurospora crassa presented the highest activity as compared to its monomeric form. A variant of the CAT-3 CT lacking the last 17 amino acid residues (TDC3Δ17aa), a loop containing hydrophobic and charged amino acid residues only, lost most of its unfolding activity. Substituting charged for hydrophobic residues or vice versa in this C-terminal loop diminished the molecular chaperone activity in all the mutant variants analyzed, indicating that these amino acid residues play a relevant role in its unfolding activity. These data suggest that the general unfolding mechanism of CAT-3 CT involves a dimer with an inverted symmetry, and hydrophobic and charged amino acid residues. Each tetramer has four sites of interaction with partially unfolded or misfolded proteins. LSCs preserve their catalase activity under different stress conditions and, at the same time, function as unfolding enzymes.
Collapse
|
3
|
Sučec I, Bersch B, Schanda P. How do Chaperones Bind (Partly) Unfolded Client Proteins? Front Mol Biosci 2021; 8:762005. [PMID: 34760928 PMCID: PMC8573040 DOI: 10.3389/fmolb.2021.762005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/06/2021] [Indexed: 01/03/2023] Open
Abstract
Molecular chaperones are central to cellular protein homeostasis. Dynamic disorder is a key feature of the complexes of molecular chaperones and their client proteins, and it facilitates the client release towards a folded state or the handover to downstream components. The dynamic nature also implies that a given chaperone can interact with many different client proteins, based on physico-chemical sequence properties rather than on structural complementarity of their (folded) 3D structure. Yet, the balance between this promiscuity and some degree of client specificity is poorly understood. Here, we review recent atomic-level descriptions of chaperones with client proteins, including chaperones in complex with intrinsically disordered proteins, with membrane-protein precursors, or partially folded client proteins. We focus hereby on chaperone-client interactions that are independent of ATP. The picture emerging from these studies highlights the importance of dynamics in these complexes, whereby several interaction types, not only hydrophobic ones, contribute to the complex formation. We discuss these features of chaperone-client complexes and possible factors that may contribute to this balance of promiscuity and specificity.
Collapse
Affiliation(s)
- Iva Sučec
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Beate Bersch
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France
| | - Paul Schanda
- CEA, CNRS, Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, Grenoble, France.,Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
4
|
Arhar T, Shkedi A, Nadel CM, Gestwicki JE. The interactions of molecular chaperones with client proteins: why are they so weak? J Biol Chem 2021; 297:101282. [PMID: 34624315 PMCID: PMC8567204 DOI: 10.1016/j.jbc.2021.101282] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 12/30/2022] Open
Abstract
The major classes of molecular chaperones have highly variable sequences, sizes, and shapes, yet they all bind to unfolded proteins, limit their aggregation, and assist in their folding. Despite the central importance of this process to protein homeostasis, it has not been clear exactly how chaperones guide this process or whether the diverse families of chaperones use similar mechanisms. For the first time, recent advances in NMR spectroscopy have enabled detailed studies of how unfolded, "client" proteins interact with both ATP-dependent and ATP-independent classes of chaperones. Here, we review examples from four distinct chaperones, Spy, Trigger Factor, DnaK, and HscA-HscB, highlighting the similarities and differences between their mechanisms. One striking similarity is that the chaperones all bind weakly to their clients, such that the chaperone-client interactions are readily outcompeted by stronger, intra- and intermolecular contacts in the folded state. Thus, the relatively weak affinity of these interactions seems to provide directionality to the folding process. However, there are also key differences, especially in the details of how the chaperones release clients and how ATP cycling impacts that process. For example, Spy releases clients in a largely folded state, while clients seem to be unfolded upon release from Trigger Factor or DnaK. Together, these studies are beginning to uncover the similarities and differences in how chaperones use weak interactions to guide protein folding.
Collapse
Affiliation(s)
- Taylor Arhar
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Arielle Shkedi
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Cory M Nadel
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA
| | - Jason E Gestwicki
- Department of Pharmaceutical Chemistry and the Institute for Neurodegenerative Disease, University of California San Francisco, San Francisco California, USA.
| |
Collapse
|
5
|
Abstract
Gram-negative bacteria have a multicomponent and constitutively active periplasmic chaperone system to ensure the quality control of their outer membrane proteins (OMPs). Recently, OMPs have been identified as a new class of vulnerable targets for antibiotic development, and therefore a comprehensive understanding of OMP quality control network components will be critical for discovering antimicrobials. Here, we demonstrate that the periplasmic chaperone Spy protects certain OMPs against protein-unfolding stress and can functionally compensate for other periplasmic chaperones, namely Skp and FkpA, in the Escherichia coli K-12 MG1655 strain. After extensive in vivo genetic experiments for functional characterization of Spy, we use nuclear magnetic resonance and circular dichroism spectroscopy to elucidate the mechanism by which Spy binds and folds two different OMPs. Along with holding OMP substrates in a dynamic conformational ensemble, Spy binding enables OmpX to form a partially folded β-strand secondary structure. The bound OMP experiences temperature-dependent conformational exchange within the chaperone, pointing to a multitude of local dynamics. Our findings thus deepen the understanding of functional compensation among periplasmic chaperones during OMP biogenesis and will promote the development of innovative antimicrobials against pathogenic Gram-negative bacteria.
Collapse
|
6
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
7
|
Hiller S. Molecular chaperones and their denaturing effect on client proteins. JOURNAL OF BIOMOLECULAR NMR 2021; 75:1-8. [PMID: 33136251 PMCID: PMC7897196 DOI: 10.1007/s10858-020-00353-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/23/2020] [Indexed: 05/05/2023]
Abstract
Advanced NMR methods combined with biophysical techniques have recently provided unprecedented insight into structure and dynamics of molecular chaperones and their interaction with client proteins. These studies showed that several molecular chaperones are able to dissolve aggregation-prone polypeptides in aqueous solution. Furthermore, chaperone-bound clients often feature fluid-like backbone dynamics and chaperones have a denaturing effect on clients. Interestingly, these effects that chaperones have on client proteins resemble the effects of known chaotropic substances. Following this analogy, chaotropicity could be a fruitful concept to describe, quantify and rationalize molecular chaperone function. In addition, the observations raise the possibility that at least some molecular chaperones might share functional similarities with chaotropes. We discuss these concepts and outline future research in this direction.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstr. 70, 4056, Basel, Switzerland.
| |
Collapse
|
8
|
Rocchio S, Duman R, El Omari K, Mykhaylyk V, Orr C, Yan Z, Salmon L, Wagner A, Bardwell JCA, Horowitz S. Identifying dynamic, partially occupied residues using anomalous scattering. Acta Crystallogr D Struct Biol 2019; 75:1084-1095. [PMID: 31793902 PMCID: PMC6889914 DOI: 10.1107/s2059798319014475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 10/22/2019] [Indexed: 11/24/2022] Open
Abstract
Although often presented as taking single `snapshots' of the conformation of a protein, X-ray crystallography provides an averaged structure over time and space within the crystal. The important but difficult task of characterizing structural ensembles in crystals is typically limited to small conformational changes, such as multiple side-chain conformations. A crystallographic method was recently introduced that utilizes residual electron and anomalous density (READ) to characterize structural ensembles encompassing large-scale structural changes. Key to this method is an ability to accurately measure anomalous signals and distinguish them from noise or other anomalous scatterers. This report presents an optimized data-collection and analysis strategy for partially occupied iodine anomalous signals. Using the long-wavelength-optimized beamline I23 at Diamond Light Source, the ability to accurately distinguish the positions of anomalous scatterers with occupancies as low as ∼12% is demonstrated. The number and positions of these anomalous scatterers are consistent with previous biophysical, kinetic and structural data that suggest that the protein Im7 binds to the chaperone Spy in multiple partially occupied conformations. Finally, READ selections demonstrate that re-measured data using the new protocols are consistent with the previously characterized structural ensemble of the chaperone Spy with its client Im7. This study shows that a long-wavelength beamline results in easily validated anomalous signals that are strong enough to be used to detect and characterize highly disordered sections of crystal structures.
Collapse
Affiliation(s)
- Serena Rocchio
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biochemical Sciences ‘A. Rossi Fanelli’, Sapienza University of Roma, 00185 Rome, Italy
| | - Ramona Duman
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Kamel El Omari
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Vitaliy Mykhaylyk
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Christian Orr
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - Zhen Yan
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, 69100 Villeurbanne, France
| | - Armin Wagner
- Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, Didcot OX11 0DE, England
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, England
| | - James C. A. Bardwell
- Department of Molecular, Cellular and Developmental Biology, and the Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Scott Horowitz
- Department of Chemistry and Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
9
|
Moayed F, Bezrukavnikov S, Naqvi MM, Groitl B, Cremers CM, Kramer G, Ghosh K, Jakob U, Tans SJ. The Anti-Aggregation Holdase Hsp33 Promotes the Formation of Folded Protein Structures. Biophys J 2019; 118:85-95. [PMID: 31757359 DOI: 10.1016/j.bpj.2019.10.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 11/26/2022] Open
Abstract
Holdase chaperones are known to be central to suppressing aggregation, but how they affect substrate conformations remains poorly understood. Here, we use optical tweezers to study how the holdase Hsp33 alters folding transitions within single maltose binding proteins and aggregation transitions between maltose binding protein substrates. Surprisingly, we find that Hsp33 not only suppresses aggregation but also guides the folding process. Two modes of action underlie these effects. First, Hsp33 binds unfolded chains, which suppresses aggregation between substrates and folding transitions within substrates. Second, Hsp33 binding promotes substrate states in which most of the chain is folded and modifies their structure, possibly by intercalating its intrinsically disordered regions. A statistical ensemble model shows how Hsp33 function results from the competition between these two contrasting effects. Our findings reveal an unexpectedly comprehensive functional repertoire for Hsp33 that may be more prevalent among holdases and dispels the notion of a strict chaperone hierarchy.
Collapse
Affiliation(s)
| | | | | | - Bastian Groitl
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Claudia M Cremers
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | - Guenter Kramer
- Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Kingshuk Ghosh
- Department of Physics and Astronomy, University of Denver, Denver, Colorado
| | - Ursula Jakob
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
10
|
Wu K, Stull F, Lee C, Bardwell JCA. Protein folding while chaperone bound is dependent on weak interactions. Nat Commun 2019; 10:4833. [PMID: 31645566 PMCID: PMC6811625 DOI: 10.1038/s41467-019-12774-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/23/2019] [Indexed: 12/31/2022] Open
Abstract
It is generally assumed that protein clients fold following their release from chaperones instead of folding while remaining chaperone-bound, in part because binding is assumed to constrain the mobility of bound clients. Previously, we made the surprising observation that the ATP-independent chaperone Spy allows its client protein Im7 to fold into the native state while continuously bound to the chaperone. Spy apparently permits sufficient client mobility to allow folding to occur while chaperone bound. Here, we show that strengthening the interaction between Spy and a recently discovered client SH3 strongly inhibits the ability of the client to fold while chaperone bound. The more tightly Spy binds to its client, the more it slows the folding rate of the bound client. Efficient chaperone-mediated folding while bound appears to represent an evolutionary balance between interactions of sufficient strength to mediate folding and interactions that are too tight, which tend to inhibit folding. Spy is an ATP independent chaperone that allows folding of its client protein Im7 while continuously bound to Spy. Here the authors employ kinetics measurements to study the folding of another Spy client protein SH3 and find that Spy’s ability to allow a client to fold while bound is inversely related to how strongly it interacts with that client.
Collapse
Affiliation(s)
- Kevin Wu
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Biophysics, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Frederick Stull
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Chemistry, Western Michigan University, Kalamazoo, MI, 49008-5413, USA
| | - Changhan Lee
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, 48109-1085, USA. .,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109-1085, USA.
| |
Collapse
|
11
|
The molecular basis of chaperone-mediated interleukin 23 assembly control. Nat Commun 2019; 10:4121. [PMID: 31511508 PMCID: PMC6739322 DOI: 10.1038/s41467-019-12006-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/14/2019] [Indexed: 01/20/2023] Open
Abstract
The functionality of most secreted proteins depends on their assembly into a defined quaternary structure. Despite this, it remains unclear how cells discriminate unassembled proteins en route to the native state from misfolded ones that need to be degraded. Here we show how chaperones can regulate and control assembly of heterodimeric proteins, using interleukin 23 (IL-23) as a model. We find that the IL-23 α-subunit remains partially unstructured until assembly with its β-subunit occurs and identify a major site of incomplete folding. Incomplete folding is recognized by different chaperones along the secretory pathway, realizing reliable assembly control by sequential checkpoints. Structural optimization of the chaperone recognition site allows it to bypass quality control checkpoints and provides a secretion-competent IL-23α subunit, which can still form functional heterodimeric IL-23. Thus, locally-restricted incomplete folding within single-domain proteins can be used to regulate and control their assembly. It is unclear how unassembled secretory pathway proteins are discriminated from misfolded ones. Here the authors combine biophysical and cellular experiments to study the folding of heterodimeric interleukin 23 and describe how ER chaperones recognize unassembled proteins and aid their assembly into protein complexes while preventing the premature degradation of unassembled units.
Collapse
|
12
|
Hiller S. Chaperone-Bound Clients: The Importance of Being Dynamic. Trends Biochem Sci 2019; 44:517-527. [PMID: 30611607 DOI: 10.1016/j.tibs.2018.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
Several recent atomic-resolution studies have resolved how chaperones interact with their client proteins. In some cases, molecular chaperones recognize and bind their clients in conformational ensembles that are locally highly dynamic and interconvert, while in other cases clients bind in unique conformations. The presence of a locally dynamic client ensemble state has important consequences, both for the interpretation of experimental data and for the functionality of chaperones, as local dynamics facilitate rapid client release, folding on and from the chaperone surface, and client recognition without shape complementarity. Facilitated by the local dynamics, at least some chaperones appear to specifically recognize energetically frustrated sites of partially folded client proteins, such that the release of frustration contributes to the interaction affinity.
Collapse
|
13
|
|
14
|
Hiller S, Burmann BM. Chaperone-client complexes: A dynamic liaison. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 289:142-155. [PMID: 29544626 DOI: 10.1016/j.jmr.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/08/2017] [Accepted: 12/10/2017] [Indexed: 06/08/2023]
Abstract
Living cells contain molecular chaperones that are organized in intricate networks to surveil protein homeostasis by avoiding polypeptide misfolding, aggregation, and the generation of toxic species. In addition, cellular chaperones also fulfill a multitude of alternative functionalities: transport of clients towards a target location, help them fold, unfold misfolded species, resolve aggregates, or deliver clients towards proteolysis machineries. Until recently, the only available source of atomic resolution information for virtually all chaperones were crystal structures of their client-free, apo-forms. These structures were unable to explain details of the functional mechanisms underlying chaperone-client interactions. The difficulties to crystallize chaperones in complexes with clients arise from their highly dynamic nature, making solution NMR spectroscopy the method of choice for their study. With the advent of advanced solution NMR techniques, in the past few years a substantial number of structural and functional studies on chaperone-client complexes have been resolved, allowing unique insight into the chaperone-client interaction. This review summarizes the recent insights provided by advanced high-resolution NMR-spectroscopy to understand chaperone-client interaction mechanisms at the atomic scale.
Collapse
Affiliation(s)
- Sebastian Hiller
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | - Björn M Burmann
- Department of Chemistry and Molecular Biology, Wallenberg Centre for Molecular and Translational Medicine, University for Gothenburg, 405 30 Göteborg, Sweden.
| |
Collapse
|
15
|
Paul F, Noé F, Weikl TR. Identifying Conformational-Selection and Induced-Fit Aspects in the Binding-Induced Folding of PMI from Markov State Modeling of Atomistic Simulations. J Phys Chem B 2018. [PMID: 29522679 DOI: 10.1021/acs.jpcb.7b12146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Unstructured proteins and peptides typically fold during binding to ligand proteins. A challenging problem is to identify the mechanism and kinetics of these binding-induced folding processes in experiments and atomistic simulations. In this Article, we present a detailed picture for the folding of the inhibitor peptide PMI into a helix during binding to the oncoprotein fragment 25-109Mdm2 obtained from atomistic, explicit-water simulations and Markov state modeling. We find that binding-induced folding of PMI is highly parallel and can occur along a multitude of pathways. Some pathways are induced-fit-like with binding occurring prior to PMI helix formation, while other pathways are conformational-selection-like with binding after helix formation. On the majority of pathways, however, binding is intricately coupled to folding, without clear temporal ordering. A central feature of these pathways is PMI motion on the Mdm2 surface, along the binding groove of Mdm2 or over the rim of this groove. The native binding groove of Mdm2 thus appears as an asymmetric funnel for PMI binding. Overall, binding-induced folding of PMI does not fit into the classical picture of induced fit or conformational selection that implies a clear temporal ordering of binding and folding events. We argue that this holds in general for binding-induced folding processes because binding and folding events in these processes likely occur on similar time scales and do exhibit the time-scale separation required for temporal ordering.
Collapse
Affiliation(s)
- Fabian Paul
- Max Planck Institute of Colloids and Interfaces , Department of Theory and Bio-Systems , Science Park Golm , 14424 Potsdam , Germany.,Freie Universität Berlin , Department of Mathematics and Computer Science , Arnimallee 6 , 14195 Berlin , Germany
| | - Frank Noé
- Freie Universität Berlin , Department of Mathematics and Computer Science , Arnimallee 6 , 14195 Berlin , Germany
| | - Thomas R Weikl
- Max Planck Institute of Colloids and Interfaces , Department of Theory and Bio-Systems , Science Park Golm , 14424 Potsdam , Germany
| |
Collapse
|
16
|
Sachsenhauser V, Bardwell JC. Directed evolution to improve protein folding in vivo. Curr Opin Struct Biol 2018; 48:117-123. [PMID: 29278775 PMCID: PMC5880552 DOI: 10.1016/j.sbi.2017.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
Recently, several innovative approaches have been developed that allow one to directly screen or select for improved protein folding in the cellular context. These methods have the potential of not just leading to a better understanding of the in vivo folding process, they may also allow for improved production of proteins of biotechnological interest.
Collapse
Affiliation(s)
- Veronika Sachsenhauser
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Lotz SD, Dickson A. Unbiased Molecular Dynamics of 11 min Timescale Drug Unbinding Reveals Transition State Stabilizing Interactions. J Am Chem Soc 2018; 140:618-628. [DOI: 10.1021/jacs.7b08572] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samuel D Lotz
- Michigan State University, East Lansing, Michigan 48823, United States
| | - Alex Dickson
- Michigan State University, East Lansing, Michigan 48823, United States
| |
Collapse
|
18
|
Salmon L, Ahlstrom LS, Bardwell JCA, Horowitz S. Selecting Conformational Ensembles Using Residual Electron and Anomalous Density (READ). Methods Mol Biol 2018; 1764:491-504. [PMID: 29605935 PMCID: PMC6148353 DOI: 10.1007/978-1-4939-7759-8_31] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Heterogeneous and dynamic biomolecular complexes play a central role in many cellular processes but are poorly understood due to experimental challenges in characterizing their structural ensembles. To address these difficulties, we developed a hybrid methodology that combines X-ray crystallography with ensemble selections typically used in NMR studies to determine structural ensembles of heterogeneous biomolecular complexes. The method, termed READ, for residual electron and anomalous density, enables the visualization of heterogeneous conformational ensembles of complexes within crystals. Here we present a detailed protocol for performing the ensemble selections to construct READ ensembles. From a diverse pool of binding poses, a selection scheme is used to determine a subset of conformations that maximizes agreement with the X-ray data. Overall, READ is a general approach for obtaining a high-resolution view of dynamic protein-protein complexes.
Collapse
Affiliation(s)
- Loïc Salmon
- Centre de RMN à Très Hauts Champs, Institut des Sciences Analytiques, UMR 5280, CNRS, ENS Lyon, UCB Lyon 1, Université de Lyon, Villeurbanne, France.
| | - Logan S Ahlstrom
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Horowitz
- Department of Chemistry and Biochemistry, Knoebel Institute for Healthy Aging, University of Denver, Denver, CO, USA.
| |
Collapse
|
19
|
Rutsdottir G, I Rasmussen M, Hojrup P, Bernfur K, Emanuelsson C, Söderberg CAG. Chaperone-client interactions between Hsp21 and client proteins monitored in solution by small angle X-ray scattering and captured by crosslinking mass spectrometry. Proteins 2017; 86:110-123. [PMID: 29082555 DOI: 10.1002/prot.25413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 10/13/2017] [Accepted: 10/27/2017] [Indexed: 11/07/2022]
Abstract
The small heat shock protein (sHsp) chaperones are important for stress survival, yet the molecular details of how they interact with client proteins are not understood. All sHsps share a folded middle domain to which is appended flexible N- and C-terminal regions varying in length and sequence between different sHsps which, in different ways for different sHsps, mediate recognition of client proteins. In plants there is a chloroplast-localized sHsp, Hsp21, and a structural model suggests that Hsp21 has a dodecameric arrangement with six N-terminal arms located on the outside of the dodecamer and six inwardly-facing. Here, we investigated the interactions between Hsp21 and thermosensitive model substrate client proteins in solution, by small-angle X-ray scattering (SAXS) and crosslinking mass spectrometry. The chaperone-client complexes were monitored and the Rg -values were found to increase continuously during 20 min at 45°, which could reflect binding of partially unfolded clients to the flexible N-terminal arms of the Hsp21 dodecamer. No such increase in Rg -values was observed with a mutational variant of Hsp21, which is mainly dimeric and has reduced chaperone activity. Crosslinking data suggest that the chaperone-client interactions involve the N-terminal region in Hsp21 and only certain parts in the client proteins. These parts are peripheral structural elements presumably the first to unfold under destabilizing conditions. We propose that the flexible and hydrophobic N-terminal arms of Hsp21 can trap and refold early-unfolding intermediates with or without dodecamer dissociation.
Collapse
Affiliation(s)
- Gudrun Rutsdottir
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | - Morten I Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Peter Hojrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Katja Bernfur
- Department of Biochemistry and Structural Biology, Lund University, Sweden
| | | | | |
Collapse
|
20
|
Horowitz S, Koldewey P, Stull F, Bardwell JC. Folding while bound to chaperones. Curr Opin Struct Biol 2017; 48:1-5. [PMID: 28734135 DOI: 10.1016/j.sbi.2017.06.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023]
Abstract
Chaperones are important in preventing protein aggregation and aiding protein folding. How chaperones aid protein folding remains a key question in understanding their mechanism. The possibility of proteins folding while bound to chaperones was reintroduced recently with the chaperone Spy, many years after the phenomenon was first reported with the chaperones GroEL and SecB. In this review, we discuss the salient features of folding while bound in the cases for which it has been observed and speculate about its biological importance and possible occurrence in other chaperones.
Collapse
Affiliation(s)
- Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E. Wesley Avenue, Denver, CO 80208, USA.
| | - Philipp Koldewey
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - Frederick Stull
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA
| | - James Ca Bardwell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA; Howard Hughes Medical Institute, University of Michigan, 830 N. University, Ann Arbor, MI 48109, USA.
| |
Collapse
|
21
|
Bernfur K, Rutsdottir G, Emanuelsson C. The chloroplast-localized small heat shock protein Hsp21 associates with the thylakoid membranes in heat-stressed plants. Protein Sci 2017; 26:1773-1784. [PMID: 28608391 PMCID: PMC5563132 DOI: 10.1002/pro.3213] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 11/16/2022]
Abstract
The small heat shock protein (sHsp) chaperones are crucial for cell survival and can prevent aggregation of client proteins that partially unfold under destabilizing conditions. Most investigations on the chaperone activity of sHsps are based on a limited set of thermosensitive model substrate client proteins since the endogenous targets are often not known. There is a high diversity among sHsps with a single conserved β‐sandwich fold domain defining the family, the α‐crystallin domain, whereas the N‐terminal and C‐terminal regions are highly variable in length and sequence among various sHsps and conserved only within orthologues. The endogenous targets are probably also varying among various sHsps, cellular compartments, cell type and organism. Here we have investigated Hsp21, a non‐metazoan sHsp expressed in the chloroplasts in green plants which experience huge environmental fluctuations not least in temperature. We describe how Hsp21 can also interact with the chloroplast thylakoid membranes, both when isolated thylakoid membranes are incubated with Hsp21 protein and when plants are heat‐stressed. The amount of Hsp21 associated with the thylakoid membranes was precisely determined by quantitative mass spectrometry after metabolic 15N‐isotope labeling of either recombinantly expressed and purified Hsp21 protein or intact Arabidopsis thaliana plants. We found that Hsp21 is among few proteins that become associated with the thylakoid membranes in heat‐stressed plants, and that approximately two thirds of the pool of chloroplast Hsp21 is affected. We conclude that for a complete picture of the role of sHsps in plant stress resistance also their association with the membranes should be considered.
Collapse
Affiliation(s)
- Katja Bernfur
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Sweden
| | - Gudrun Rutsdottir
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Sweden
| | - Cecilia Emanuelsson
- Department of Biochemistry and Structural Biology, Center for Molecular Protein Science, Lund University, Sweden
| |
Collapse
|
22
|
Koldewey P, Horowitz S, Bardwell JCA. Chaperone-client interactions: Non-specificity engenders multifunctionality. J Biol Chem 2017; 292:12010-12017. [PMID: 28620048 DOI: 10.1074/jbc.r117.796862] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we provide an overview of the different mechanisms whereby three different chaperones, Spy, Hsp70, and Hsp60, interact with folding proteins, and we discuss how these chaperones may guide the folding process. Available evidence suggests that even a single chaperone can use many mechanisms to aid in protein folding, most likely due to the need for most chaperones to bind clients promiscuously. Chaperone mechanism may be better understood by always considering it in the context of the client's folding pathway and biological function.
Collapse
Affiliation(s)
- Philipp Koldewey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Scott Horowitz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109; Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109.
| |
Collapse
|
23
|
Chaperone–substrate interactions monitored via a robust TEM-1 β-lactamase fragment complementation assay. Biotechnol Lett 2017; 39:1191-1199. [DOI: 10.1007/s10529-017-2347-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
24
|
Horowitz S, Salmon L, Koldewey P, Ahlstrom LS, Martin R, Quan S, Afonine PV, van den Bedem H, Wang L, Xu Q, Trievel RC, Brooks CL, Bardwell JCA. Visualizing chaperone-assisted protein folding. Nat Struct Mol Biol 2016; 23:691-7. [PMID: 27239796 PMCID: PMC4937829 DOI: 10.1038/nsmb.3237] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/04/2016] [Indexed: 12/26/2022]
Abstract
Challenges in determining the structures of heterogeneous and dynamic protein complexes have greatly hampered past efforts to obtain a mechanistic understanding of many important biological processes. One such process is chaperone-assisted protein folding. Obtaining structural ensembles of chaperone-substrate complexes would ultimately reveal how chaperones help proteins fold into their native state. To address this problem, we devised a new structural biology approach based on X-ray crystallography, termed residual electron and anomalous density (READ). READ enabled us to visualize even sparsely populated conformations of the substrate protein immunity protein 7 (Im7) in complex with the Escherichia coli chaperone Spy, and to capture a series of snapshots depicting the various folding states of Im7 bound to Spy. The ensemble shows that Spy-associated Im7 samples conformations ranging from unfolded to partially folded to native-like states and reveals how a substrate can explore its folding landscape while being bound to a chaperone.
Collapse
Affiliation(s)
- Scott Horowitz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| | - Loïc Salmon
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| | - Philipp Koldewey
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| | - Logan S Ahlstrom
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Raoul Martin
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| | - Pavel V Afonine
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Henry van den Bedem
- Division of Biosciences, SLAC National Accelerator Laboratory, Stanford University, Stanford, California, USA
| | - Lili Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| | - Qingping Xu
- Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Laboratory, Menlo Park, California, USA
| | - Raymond C Trievel
- Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles L Brooks
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - James C A Bardwell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
- Howard Hughes Medical Institute, Ann Arbor, Michigan, USA
| |
Collapse
|