1
|
Ding Y, Zheng D, Xie L, Zhang X, Zhang Z, Wang L, Hu ZW, Yang Z. Enzyme-Instructed Peptide Assembly Favored by Preorganization for Cancer Cell Membrane Engineering. J Am Chem Soc 2023; 145:4366-4371. [PMID: 36669158 DOI: 10.1021/jacs.2c11823] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Innovative methods for engineering cancer cell membranes promise to manipulate cell-cell interactions and boost cell-based cancer therapeutics. Here, we illustrate an in situ approach to selectively modify cancer cell membranes by employing an enzyme-instructed peptide self-assembly (EISA) strategy. Using three phosphopeptides (pY1, pY2, and pY3) targeting the membrane-bound epidermal growth factor receptor (EGFR) and differing in just one phosphorylated tyrosine, we reveal that site-specific phosphorylation patterns in pY1, pY2, and pY3 can distinctly command their preorganization levels, self-assembling kinetics, and spatial distributions of the resultant peptide assemblies in cellulo. Overall, pY1 is the most capable of producing preorganized assemblies and shows the fastest dephosphorylation reaction in the presence of alkaline phosphatase (ALP), as well as the highest binding affinity for EGFR after dephosphorylation. Consequently, pY1 exhibits the greatest capacity to construct stable peptide assemblies on cancer cell membranes with the assistance of both ALP and EGFR. We further use peptide-protein and peptide-peptide co-assembly strategies to apply two types of antigens, namely ovalbumin (OVA) protein and dinitrophenyl (DNP) hapten respectively, on cancer cell membranes. This study demonstrates a very useful technique for the in situ construction of membrane-bound peptide assemblies around cancer cells and implies a versatile strategy to artificially enrich cancer cell membrane components for potential cancer immunotherapy.
Collapse
Affiliation(s)
- Yinghao Ding
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Debin Zheng
- Medical Innovation Research Department, General Hospital of PLA, No. 28 Fu Xing Road, Beijing 100853, P. R. China
| | - Limin Xie
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Ling Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
2
|
Mastrotto F, Pirazzini M, Negro S, Salama A, Martinez-Pomares L, Mantovani G. Sulfation at Glycopolymer Side Chains Switches Activity at the Macrophage Mannose Receptor (CD206) In Vitro and In Vivo. J Am Chem Soc 2022; 144:23134-23147. [PMID: 36472883 PMCID: PMC9782796 DOI: 10.1021/jacs.2c10757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 12/12/2022]
Abstract
The mannose receptor (CD206) is an endocytic receptor expressed by selected innate immune cells and nonvascular endothelium, which plays a critical role in both homeostasis and pathogen recognition. Although its involvement in the development of several diseases and viral infections is well established, molecular tools able to both provide insight on the chemistry of CD206-ligand interactions and, importantly, effectively modulate its activity are currently lacking. Using novel SO4-3-Gal-glycopolymers targeting its cysteine-rich lectin ectodomain, this study uncovers and elucidates a previously unknown mechanism of CD206 blockade involving the formation of stable intracellular SO4-3-Gal-glycopolymer-CD206 complexes that prevents receptor recycling to the cell membrane. Further, we show that SO4-3-Gal glycopolymers inhibit CD206 both in vitro and in vivo, revealing hitherto unknown receptor function and demonstrating their potential as CD206 modulators within future immunotherapies.
Collapse
Affiliation(s)
- Francesca Mastrotto
- School
of Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
- School
of Life Sciences, University of Nottingham, Nottingham NG7 2RD, U.K.
- Department
of Pharmaceutical and Pharmacological Sciences, University of Padova, via F. Marzolo 5, Padova 35131, Italy
| | - Marco Pirazzini
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Samuele Negro
- Department
of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Alan Salama
- Department
of Renal Medicine, University College London, London NW3 2PF, U.K.
| | | | | |
Collapse
|
3
|
Zhu B, Yang J, Van R, Yang F, Yu Y, Yu A, Ran K, Yin K, Liang Y, Shen X, Yin W, Choi SH, Lu Y, Wang C, Shao Y, Shi L, Tanzi RE, Zhang C, Cheng Y, Zhang Z, Ran C. Epitope alteration by small molecules and applications in drug discovery. Chem Sci 2022; 13:8104-8116. [PMID: 35919434 PMCID: PMC9278120 DOI: 10.1039/d2sc02819k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
Small molecules and antibodies are normally considered separately in drug discovery, except in the case of covalent conjugates. We unexpectedly discovered several small molecules that could inhibit or enhance antibody–epitope interactions which opens new possibilities in drug discovery and therapeutic modulation of auto-antibodies. We first discovered a small molecule, CRANAD-17, that enhanced the binding of an antibody to amyloid beta (Aβ), one of the major hallmarks of Alzheimer's disease, by stable triplex formation. Next, we found several small molecules that altered antibody–epitope interactions of tau and PD-L1 proteins, demonstrating the generality of this phenomenon. We report a new screening technology for ligand discovery, screening platform based on epitope alteration for drug discovery (SPEED), which is label-free for both the antibody and small molecule. SPEED, applied to an Aβ antibody, led to the discovery of a small molecule, GNF5837, that inhibits Aβ aggregation and another, obatoclax, that binds Aβ plaques and can serve as a fluorescent reporter in brain slices of AD mice. We also found a small molecule that altered the binding between Aβ and auto-antibodies from AD patient serum. SPEED reveals the sensitivity of antibody–epitope interactions to perturbation by small molecules and will have multiple applications in biotechnology and drug discovery. A screening platform based on epitope alteration for drug discovery (SPEED).![]()
Collapse
Affiliation(s)
- Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jing Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Richard Van
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Fan Yang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Yue Yu
- Department of Chemistry and Chemical Biology, University of California, Merced, California, 95343, USA
| | - Astra Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Kathleen Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Keyi Yin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Yingxia Liang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Xunuo Shen
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Wei Yin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Se Hoon Choi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Ying Lu
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, USA, 02115
| | - Changning Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Liang Shi
- Department of Chemistry and Chemical Biology, University of California, Merced, California, 95343, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| | - Yan Cheng
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery Systems, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital/Harvard Medical School, Charlestown, Boston, Massachusetts, USA, 02129
| |
Collapse
|
4
|
Anderluh M, Berti F, Bzducha-Wróbel A, Chiodo F, Colombo C, Compostella F, Durlik K, Ferhati X, Holmdahl R, Jovanovic D, Kaca W, Lay L, Marinovic-Cincovic M, Marradi M, Ozil M, Polito L, Reina JJ, Reis CA, Sackstein R, Silipo A, Švajger U, Vaněk O, Yamamoto F, Richichi B, van Vliet SJ. Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS J 2021; 289:4251-4303. [PMID: 33934527 PMCID: PMC9542079 DOI: 10.1111/febs.15909] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/09/2021] [Accepted: 04/30/2021] [Indexed: 01/01/2023]
Abstract
Vaccination is one of the greatest achievements in biomedical research preventing death and morbidity in many infectious diseases through the induction of pathogen-specific humoral and cellular immune responses. Currently, no effective vaccines are available for pathogens with a highly variable antigenic load, such as the human immunodeficiency virus or to induce cellular T-cell immunity in the fight against cancer. The recent SARS-CoV-2 outbreak has reinforced the relevance of designing smart therapeutic vaccine modalities to ensure public health. Indeed, academic and private companies have ongoing joint efforts to develop novel vaccine prototypes for this virus. Many pathogens are covered by a dense glycan-coat, which form an attractive target for vaccine development. Moreover, many tumor types are characterized by altered glycosylation profiles that are known as "tumor-associated carbohydrate antigens". Unfortunately, glycans do not provoke a vigorous immune response and generally serve as T-cell-independent antigens, not eliciting protective immunoglobulin G responses nor inducing immunological memory. A close and continuous crosstalk between glycochemists and glycoimmunologists is essential for the successful development of efficient immune modulators. It is clear that this is a key point for the discovery of novel approaches, which could significantly improve our understanding of the immune system. In this review, we discuss the latest advancements in development of vaccines against glycan epitopes to gain selective immune responses and to provide an overview on the role of different immunogenic constructs in improving glycovaccine efficacy.
Collapse
Affiliation(s)
- Marko Anderluh
- Faculty of Pharmacy, Faculty of Pharmacy, Chair of Pharmaceutical Chemistry, University of Ljubljana, Slovenia
| | | | - Anna Bzducha-Wróbel
- Department of Biotechnology and Food Microbiology, Warsaw University of Life Sciences-SGGW, Warszawa, Poland
| | - Fabrizio Chiodo
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands.,Institute of Biomolecular Chemistry (ICB), Italian National Research Council (CNR), Pozzuoli, Italy
| | - Cinzia Colombo
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Federica Compostella
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milano, Italy
| | - Katarzyna Durlik
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Xhenti Ferhati
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Rikard Holmdahl
- Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Dragana Jovanovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Wieslaw Kaca
- Department of Microbiology and Parasitology, Jan Kochanowski University, Kielce, Poland
| | - Luigi Lay
- Department of Chemistry and CRC Materiali Polimerici (LaMPo), University of Milan, Italy
| | - Milena Marinovic-Cincovic
- Vinča Institute of Nuclear Sciences - National Institute of thе Republic of Serbia, University of Belgrade, Serbia
| | - Marco Marradi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Musa Ozil
- Faculty of Arts and Sciences, Department of Chemistry, Recep Tayyip Erdogan University, Rize, Turkey
| | - Laura Polito
- National Research Council, CNR-SCITEC, Milan, Italy
| | - Josè Juan Reina
- Departamento de Química Orgánica, Universidad de Málaga-IBIMA, Spain.,Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, Málaga, Spain
| | - Celso A Reis
- I3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal.,IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Portugal
| | - Robert Sackstein
- Department of Translational Medicine, Translational Glycobiology Institute, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte Sant'Angelo, Napoli, Italy
| | - Urban Švajger
- Blood Transfusion Center of Slovenia, Ljubljana, Slovenia
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fumiichiro Yamamoto
- Immunohematology & Glycobiology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Spain
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Infection and Immunity Institute, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
5
|
McEnaney P, Balzarini M, Park H, Kodadek T. Structural characterization of a peptoid-inspired conformationally constrained oligomer (PICCO) bound to streptavidin. Chem Commun (Camb) 2020; 56:10560-10563. [PMID: 32785302 DOI: 10.1039/d0cc02588g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A high affinity Streptavidin ligand was mined from a DNA-encoded library of non-peptidic oligimers and characterized structurally.
Collapse
Affiliation(s)
- Patrick McEnaney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 3345, USA.
| | | | | | | |
Collapse
|
6
|
Hong H, Zhou Z, Zhou K, Liu S, Guo Z, Wu Z. Site-specific C-terminal dinitrophenylation to reconstitute the antibody Fc functions for nanobodies. Chem Sci 2019; 10:9331-9338. [PMID: 32110296 PMCID: PMC7006623 DOI: 10.1039/c9sc03840j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/19/2019] [Indexed: 12/13/2022] Open
Abstract
Nanobodies are a class of camelid-derived single-domain antibodies that have many potential advantages over conventional antibodies and have been utilized to develop new therapeutic strategies for cancer and other diseases. However, nanobodies lack the Fc region of a conventional antibody, which possesses many functions, e.g., eliciting antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC), essential for effective immunotherapy. The small molecular size of nanobodies also leads to poor pharmacokinetics, such as short in vivo half-life. To address these deficiencies, an endogenous antibody-based strategy to reconstitute the Fc functions for nanobodies was developed. As a proof-of-principle, an anti-human EGFR nanobody, 7D12, was selected to conduct C-terminal modification with the dinitrophenyl (DNP) hapten through Sortase A-mediated site-specific ligation. It was expected that the DNP motif would recruit endogenous human anti-DNP antibodies to indirectly reinstate the Fc functions. The resultant nanobody-DNP conjugates were shown to exhibit specific and high affinity binding to human EGFR expressed on target cancer cells. It was further proved that in the presence of anti-DNP antibody, these conjugates could mediate potent ADCC and CDC in vitro and exhibit significantly elongated half-life in vivo. Ultimately, it was proven in severe combined immunodeficiency (SCID) mice that treatment with the nanobody 7D12-DNP conjugate and anti-DNP mouse serum could inhibit xenograft tumor growth efficiently. In view of the abundance of anti-DNP and other endogenous antibodies in the human blood system, this could be a generally applicable approach employed to reconstitute the Fc functions for nanobodies and develop nanobody-based cancer immunotherapy and other therapies.
Collapse
Affiliation(s)
- Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Kun Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Shaozhong Liu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| | - Zhongwu Guo
- Department of Chemistry , University of Florida , 214 Leigh Hall , Gainesville , Florida 32611 , USA .
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi , 214122 , China .
| |
Collapse
|
7
|
Cretich M, Gori A, D'Annessa I, Chiari M, Colombo G. Peptides for Infectious Diseases: From Probe Design to Diagnostic Microarrays. Antibodies (Basel) 2019; 8:E23. [PMID: 31544829 PMCID: PMC6640701 DOI: 10.3390/antib8010023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 02/28/2019] [Accepted: 03/04/2019] [Indexed: 01/03/2023] Open
Abstract
Peptides and peptidomimetics have attracted revived interest regarding their applications in chemical biology over the last few years. Their chemical versatility, synthetic accessibility and the ease of storage and management compared to full proteins have made peptides particularly interesting in diagnostic applications, where they proved to efficiently recapitulate the molecular recognition properties of larger protein antigens, and were proven to be able to capture antibodies circulating in the plasma and serum of patients previously exposed to bacterial or viral infections. Here, we describe the development, integration and application of strategies for computational prediction and design, advanced chemical synthesis, and diagnostic deployment in multiplexed assays of peptide-based materials which are able to bind antibodies of diagnostic as well as therapeutic interest. By presenting successful applications of such an integrated strategy, we argue that they will have an ever-increasing role in both basic and clinical realms of research, where important advances can be expected in the next few years.
Collapse
Affiliation(s)
- Marina Cretich
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Alessandro Gori
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Ilda D'Annessa
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Marcella Chiari
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
| | - Giorgio Colombo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica del Riconoscimento Molecolare (ICRM), Via Mario Bianco 9, 20131 Milano, Italy.
- Dipartimento di Chimica, Università di Pavia, V.le Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
8
|
Erharuyi O, Simanski S, McEnaney PJ, Kodadek T. Screening one bead one compound libraries against serum using a flow cytometer: Determination of the minimum antibody concentration required for ligand discovery. Bioorg Med Chem Lett 2018; 28:2773-2778. [PMID: 29395976 PMCID: PMC6064678 DOI: 10.1016/j.bmcl.2018.01.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 10/18/2022]
Abstract
One bead one compound (OBOC) libraries can be screened against serum samples to identify ligands to antibodies in this mixture. In this protocol, hit beads are identified by staining with a fluorescent labeled secondary antibody. When screens are conducted against two different sets of serum, antibodies, and ligands to them, can be discovered that distinguish the two populations. The application of DNA-encoding technology to OBOC libraries has allowed the use of 10 µm beads for library preparation and screening, which pass through a standard flow cytometer, allowing the fluorescent hit beads to be separated from beads displaying non-ligands easily. An important issue in using this approach for the discovery of antibody biomarkers is its analytical sensitivity. In other words, how abundant must an IgG be to allow it to be pulled out of serum in an unbiased screen using a flow cytometer? We report here a model study in which monoclonal antibodies with known ligands of varying affinities are doped into serum. We find that for antibody ligands typical of what one isolates from an unbiased combinatorial library, the target antibody must be present at 10-50 nM. True antigens, which bind with significantly higher affinity, can detect much less abundant serum antibodies.
Collapse
Affiliation(s)
- Osayemwenre Erharuyi
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Scott Simanski
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Patrick J McEnaney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA
| | - Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
9
|
Ghosh T, Fridman N, Kosa M, Maayan G. Self-Assembled Cyclic Structures from Copper(II) Peptoids. Angew Chem Int Ed Engl 2018; 57:7703-7708. [DOI: 10.1002/anie.201800583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/01/2018] [Indexed: 01/11/2023]
Affiliation(s)
- Totan Ghosh
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| | - Monica Kosa
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| |
Collapse
|
10
|
Ghosh T, Fridman N, Kosa M, Maayan G. Self-Assembled Cyclic Structures from Copper(II) Peptoids. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Totan Ghosh
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| | - Monica Kosa
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| | - Galia Maayan
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Technion City Haifa 3200008 Israel
| |
Collapse
|
11
|
Hayakawa M, Ohsawa A, Takeda K, Torii R, Kitamura Y, Katagiri H, Ikeda M. Cyclic arylopeptoid oligomers: synthesis and conformational propensities of peptide-mimetic aromatic macrocycles. Org Biomol Chem 2018; 16:8505-8512. [DOI: 10.1039/c8ob01962b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dynamic macrocyclic peptide-mimetic molecule bearing sequence-controlled side chains.
Collapse
Affiliation(s)
- Masahide Hayakawa
- Department of Life Science and Chemistry
- Graduate School of Natural Science and Technology
- Gifu University
- Gifu 501-1193
- Japan
| | - Ayaka Ohsawa
- Department of Life Science and Chemistry
- Graduate School of Natural Science and Technology
- Gifu University
- Gifu 501-1193
- Japan
| | - Kumi Takeda
- Department of Life Science and Chemistry
- Graduate School of Natural Science and Technology
- Gifu University
- Gifu 501-1193
- Japan
| | - Ryo Torii
- Department of Life Science and Chemistry
- Graduate School of Natural Science and Technology
- Gifu University
- Gifu 501-1193
- Japan
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry
- Graduate School of Natural Science and Technology
- Gifu University
- Gifu 501-1193
- Japan
| | - Hiroshi Katagiri
- Graduate School of Science and Engineering
- Yamagata University
- Yamagata 992-8510
- Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry
- Graduate School of Natural Science and Technology
- Gifu University
- Gifu 501-1193
- Japan
| |
Collapse
|
12
|
Gourlay L, Peri C, Bolognesi M, Colombo G. Structure and Computation in Immunoreagent Design: From Diagnostics to Vaccines. Trends Biotechnol 2017; 35:1208-1220. [PMID: 28739221 DOI: 10.1016/j.tibtech.2017.06.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/28/2017] [Accepted: 06/30/2017] [Indexed: 11/26/2022]
Abstract
Novel immunological tools for efficient diagnosis and treatment of emerging infections are urgently required. Advances in the diagnostic and vaccine development fields are continuously progressing, with reverse vaccinology and structural vaccinology (SV) methods for antigen identification and structure-based antigen (re)design playing increasingly relevant roles. SV, in particular, is predicted to be the front-runner in the future development of diagnostics and vaccines targeting challenging diseases such as AIDS and cancer. We review state-of-the-art methodologies for structure-based epitope identification and antigen design, with specific applicative examples. We highlight the implications of such methods for the engineering of biomolecules with improved immunological properties, potential diagnostic and/or therapeutic uses, and discuss the perspectives of structure-based rational design for the production of advanced immunoreagents.
Collapse
Affiliation(s)
- Louise Gourlay
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Claudio Peri
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy
| | - Martino Bolognesi
- Dipartimento di Bioscienze, Università di Milano, Via Celoria 26, 20133, Milan, Italy; Centro di Ricerca Pediatrica Romeo ed Enrica Invernizzi, Università di Milano, Milan, Italy.
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche, Via Mario Bianco, 9, 20131, Milan, Italy.
| |
Collapse
|