1
|
Wang Z, Huang Y, Deng D, Li S, Yu Y, Ye Y, Chen Y, Lei J. Facile synthesis and antifungal evaluation of hypervalent organoantimony(III) and organobismuth(III) thioates with tridentate C,N,C-coordinating ligands. Org Biomol Chem 2024; 22:7164-7172. [PMID: 39145686 DOI: 10.1039/d4ob00702f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
In the present work, a series of organometallic thioates bearing a 5,6,7,12-tetrahydrodibenzo[c,f][1,5]azastibocine or -azabismocine framework were synthesized through the cross-coupling reactions of the corresponding halide precursors with thiols and disulfides at room temperature. The former transformation can be achieved under additive-free conditions, and mild dithiothreitol (DTT) is the only additive in the latter. Both methods feature simple operation, a broad substrate scope, and good reaction yields. Antifungal assays showed that the synthesized organobismuth(III) thioates possess significantly higher antibiotic activity against Candida albicans than clinical fluconazole, while the inhibitory effects of Sb-sulfenylated products are low to negligible. Furthermore, the antibiofilm potential of such Bi-S bond-containing compounds was discovered as well.
Collapse
Affiliation(s)
- Zixiu Wang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yan Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Dandan Deng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Shan Li
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yimei Yu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yifei Ye
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| | - Yi Chen
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China.
| | - Jian Lei
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Disease of the Ministry of Education, Jiangxi Provincial Key Laboratory of Tissue Engineering (2024SSY06291), College of Pharmacy, Gannan Medical University, Ganzhou 341000, PR China.
| |
Collapse
|
2
|
Gan Z, Liu S, Chen J, Chen Z, Zhang Y, Wang L, Wang H, Li Y, Jin Y. A Modular Three-Component Approach for Site-selective Tandem Arene Thiophosphorylation. Org Lett 2024; 26:7155-7160. [PMID: 39167484 DOI: 10.1021/acs.orglett.4c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Thiophosphates serve as pivotal reagents within the realms of both organic and inorganic synthesis, with their most notable applications observed in agricultural chemistry. This manuscript delineates a modular three-component synthetic strategy for site-selective arene C-H thiophosphorylation with thianthrenium salt, 1,4-diazabicyclo[2.2.2]octane-sulfur dioxide (DABSO), and diarylphosphine oxides as substrates. This approach facilitates the metal-free and green synthesis of a diverse spectrum of S-aryl phosphorothioates through C-H functionalization and late-stage modification showcasing practicality and broad applicability.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yihao Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Shi S, Chen H, Yang S, Dong H, Zhu J, Zheng B, Wang X, Liang Z, Ren H, Gao Y. Photoredox/Copper Dual-Catalyzed Phosphorothiolation of Propargylic Derivatives for the Switchable Synthesis of S-Alkyl, S-Vinyl and S-Allenyl Phosphorothioates. Org Lett 2024; 26:7049-7054. [PMID: 39119922 DOI: 10.1021/acs.orglett.4c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Herein, we report a photoredox/copper dual-catalyzed selective phosphorothiolation of propargylic derivatives from easily accessible [P(O)SH] compounds. This reaction provides a general, mild and versatile procedure to synthesize a variety of synthetically useful S-alkyl, S-vinyl and S-allenyl phosphorothioates selectively from the same set of simple starting materials.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Hu Chen
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Shiwei Yang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Huaze Dong
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Jinmiao Zhu
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Bin Zheng
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Xiaohong Wang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Zhaoyang Liang
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Hongyu Ren
- Department of Chemical and Pharmaceutical Engineering, Hefei Normal University, 230061, Hefei, Anhui, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| |
Collapse
|
4
|
Sarkar B, Hajra A. Hydro-phosphorothiolation of Styrene and Cyclopropane with S-Hydrogen Phosphorothioates under Ambient Conditions. Org Lett 2024; 26:5141-5145. [PMID: 38848455 DOI: 10.1021/acs.orglett.4c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
A metal-free hexafluoroisopropanol-mediated hydro-phosphorothiolation of styrenes and donor-acceptor cyclopropanes with S-hydrogen phosphorothioates in a Markovnikov fashion has been developed under ambient reaction conditions to afford a library of S-alkyl phosphorothioates. Notably, this strategy provides a simple and efficient way to produce biologically significant kitazin and iprobenfos derivatives. Mechanistic studies disclose that the reaction proceeds through a carbocation intermediate.
Collapse
Affiliation(s)
- Biswajit Sarkar
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan 731235, India
| |
Collapse
|
5
|
Sun R, Junpeng Y, Zhang Z, Luo R, Tang W, Liu X, Liu X, Ding A, Fu Z, Guo S, Cai H. Efficient synthesis of α-amino-vinylphosphine oxides from alkyl nitriles via manganese-catalyzed phosphinoenamination. Org Biomol Chem 2024; 22:4993-5000. [PMID: 38840509 DOI: 10.1039/d4ob00489b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A protocol for the synthesis of α-amino-vinylphosphine oxides by phosphinoenamination reaction between alkyl nitriles and phosphine oxides was developed. The combination of Mn(OAc)2 as a Lewis acid and guanidine as a Lewis base was found to be an efficient catalytic system for this reaction. A series of alkyl nitriles and phosphine oxides are compatible with this conversion, furnishing the desired products in up to 95% yield under mild conditions. Furthermore, this method demonstrates the capability of gram-scale synthesis.
Collapse
Affiliation(s)
- Runbo Sun
- Department of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China.
| | - Yang Junpeng
- Department of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China.
| | - Zheng Zhang
- The First Clinical Medical College, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China
| | - Ruihang Luo
- The First Clinical Medical College, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China
| | - Wentao Tang
- The First Clinical Medical College, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China
| | - Xinyu Liu
- The First Clinical Medical College, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China
| | - Xiaoyong Liu
- Department of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China.
| | - Anjun Ding
- Department of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China.
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China.
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China.
| | - Hu Cai
- Department of Chemistry, Nanchang University, Xuefu Rd. 999, Nanchang, 330031, P. R. China.
| |
Collapse
|
6
|
Zhang P, Li W, Yang S, Qu W, Wang L, Lin J, Gao X. Construction of Phosphorothiolated 2-Pyrrolidinones via Photoredox/Copper-Catalyzed Cascade Radical Cyclization/Phosphorothiolation. J Org Chem 2024; 89:4947-4957. [PMID: 38498700 DOI: 10.1021/acs.joc.4c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A photoredox/copper-catalyzed cascade radical cyclization/phosphorothiolation reaction of N-allylbromoacetamides and P(O)SH compounds has been established. A broad range of novel nonfluorine- or difluoro-substituted 2-pyrrolidinones bearing the C(sp3)-SP(O)(OR)2 moiety can be conveniently constructed in moderate to good yields under mild conditions. Importantly, most of the tested phosphorothiolated 2-pyrrolidinones showed potent inhibitory effects toward both AChE and BChE.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Shuai Yang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Weilong Qu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Jinming Lin
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
7
|
Kathiravan S, Dhillon P, Zhang T, Nicholls IA. Metal free cross-dehydrogenative N-N coupling of primary amides with Lewis basic amines. Nat Commun 2024; 15:2643. [PMID: 38531886 PMCID: PMC10966042 DOI: 10.1038/s41467-024-46890-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Hydrazides, N-N containing structural motifs, are important due to their presence in a wide variety of biologically significant compounds. While the homo N-N coupling of two NH moieties to form the hydrazide N-N bond is well developed, the cross-dehydrogenative hetero N-N coupling remains very unevolved. Here we present an efficient intermolecular N-N cross-coupling of a series of primary benzamides with broad range of Lewis basic primary and secondary amines using PhI(OAc)2 as both a terminal oxidant and a cross-coupling mediator, without the need for metal catalysts, high temperatures, and inert atmospheres, and with substantial potential for use in the late-stage functionalization of drugs.
Collapse
Affiliation(s)
- Subban Kathiravan
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden.
- Attana AB, Greta Arwidssons väg 21, 11419, Stockholm, Sweden.
| | - Prakriti Dhillon
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Tianshu Zhang
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden
| | - Ian A Nicholls
- Bioorganic & Biophysical Chemistry Laboratory, Centre for Biomaterials Chemistry, Department of Chemistry & Biomedical Sciences, Linnaeus University, Kalmar, SE-39182, Sweden.
| |
Collapse
|
8
|
Zhang Y, Guo Y, Zhao Y, Cao S. NaOAc-Assisted Aerobic Oxidation Protocol for the Synthesis of Pentacoordinate Chalcogenyl Spirophosphoranes with P-Se/P-S Bonds under Open Air. J Org Chem 2024; 89:3259-3270. [PMID: 38380616 DOI: 10.1021/acs.joc.3c02716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The NaOAc-assisted aerobic oxidation reaction of pentacoordinate hydrospirophosphoranes and dichalcogenyl compounds with open air as a green oxidant has been developed under mild conditions. A series of novel pentacoordinate spirophosphoranes with P-Se/P-S bonds were synthesized in excellent yields. The reaction mechanism was determined by 31P nuclear magnetic resonance tracing experiments, high-resolution mass spectrometry tracing experiments, and X-ray diffraction analysis. The method features a broad substrate scope, good functional group tolerance, and a high degree of atomic utilization and is meaningful for the synthesis of bioactive chalcogenphosphate compounds with chalcogen and phosphorus moieties.
Collapse
Affiliation(s)
- Yang Zhang
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yanchun Guo
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| | - Yufen Zhao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Shuxia Cao
- Key Laboratory of Chemical Biology and Organic Chemistry of Henan Province, College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Li C, Chen Y, Ye F, Chen J, Zheng J. Low-Valent-Tungsten-Catalyzed Aerobic Oxidative Cross-Dehydrogenative Coupling Reaction. Molecules 2023; 28:8071. [PMID: 38138561 PMCID: PMC10745622 DOI: 10.3390/molecules28248071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
A straightforward and convenient protocol was established for the synthesis of thiophosphates and 3-sulfenylated indoles via low-valent-tungsten-catalyzed aerobic oxidative cross-dehydrogenative coupling reactions. These reactions occur under mild conditions and simple operations with commercially available starting materials, processing the advantage of excellent atom and step economy, broad substrate scope, and good functional groups tolerance. Moreover, this transformation could be practiced on the gram scale, which exhibits great potential in the preparation of drug-derived or bioactive molecules.
Collapse
Affiliation(s)
- Chunsheng Li
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Yaoyang Chen
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Feihua Ye
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Junhua Chen
- School of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China; (Y.C.); (F.Y.)
| | - Jia Zheng
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| |
Collapse
|
10
|
Shi S, Chen H, Zhao M, Yang S, Li P, Wang X, Zhu J, Fang Q, Xu W, Tang G, Gao Y. Copper-Catalyzed Fluoroalkylphosphorothiolation of Alkynes for the Synthesis of ( E)-β-Fluoroalkyl Vinyl Phosphorothioates. Org Lett 2023; 25:8296-8301. [PMID: 37947423 DOI: 10.1021/acs.orglett.3c03349] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
A convenient copper-catalyzed three-component radical-based fluoroalkylphosphorothiolation of terminal alkynes with (iPrO)2P(O)SH and fluoroalkylation reagent for the synthesis of a variety of (E)-β-fluoroalkyl vinyl phosphorothioates with excellent regioselectivity and stereoselectivity has been developed. All the starting materials used in this reaction are highly stable and readily available. Thus, this process features with mild reaction conditions, simple operation and good functional group tolerance (>40 examples). Furthermore, this modular reaction system allows the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Shanshan Shi
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Hu Chen
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Ming Zhao
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Shiwei Yang
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Pan Li
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Xiaohong Wang
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Jinmiao Zhu
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Qi Fang
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Wenbiao Xu
- Department of Chemistry and Chemical Engineering, Hefei Normal University, Hefei 230061, Anhui, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuzhen Gao
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
11
|
Urvashi, Mishra S, Patil NT. Gold-catalyzed alkenylation and arylation of phosphorothioates. Chem Sci 2023; 14:13134-13139. [PMID: 38023501 PMCID: PMC10664589 DOI: 10.1039/d3sc04888h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Reported herein is the ligand-enabled gold-catalyzed alkenylation and arylation of phosphorothioates using alkenyl and aryl iodides. Mechanistic studies revealed a crucial role of the in situ generated Ag-sulfur complex, which undergoes a facile transmetalation with the Au(iii) intermediate, thereby leading to the successful realization of the present reaction. Moreover, for the first time, the alkenylation of phosphoroselenoates under gold redox catalysis has been presented.
Collapse
Affiliation(s)
- Urvashi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal - 462 066 India
| | - Sampoorna Mishra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal - 462 066 India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal - 462 066 India
| |
Collapse
|
12
|
Piedra HF, Gebler V, Valdés C, Plaza M. Photochemical halogen-bonding assisted carbothiophosphorylation reactions of alkenyl and 1,3-dienyl bromides. Chem Sci 2023; 14:12767-12773. [PMID: 38020380 PMCID: PMC10646874 DOI: 10.1039/d3sc05263j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/28/2023] [Indexed: 12/01/2023] Open
Abstract
Herein, we present a synthetic procedure for the facile and general preparation of novel S-alkenyl and dienyl phosphoro(di)thioates for the first time. Extensive mechanistic investigations support that the reactions rely on a photochemical excitation of a halogen-bonding complex, formed with a phosphorothioate salt and an alkenyl or dienyl bromide, which light-induced fragmentation leads to the formation of the desired products through a radical-based pathway. The substrate scope is broad and exhibits a wide functional group tolerance in the formation of the final compounds, including molecules derived from natural products, all with unknown and potentially interesting biological properties. Eventually, a very efficient continuous flow protocol was developed for the upscale of these reactions.
Collapse
Affiliation(s)
- Helena F Piedra
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Victoria Gebler
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles", Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
13
|
Goulart HA, Araujo DR, Iarocz LEB, Pizzi BR, Barcellos T, Silva MS, Perin G. Synthesis of Phosphate Esters by Using Diphenyl Ditelluride as Organocatalyst. European J Org Chem 2023. [DOI: 10.1002/ejoc.202300021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Helen A. Goulart
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Daniela R. Araujo
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Lucas E. B. Iarocz
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Bruna R. Pizzi
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Thiago Barcellos
- Laboratório de Biotecnologia de Produtos Naturais e Sintéticos Universidade de Caxias do Sul – UCS 95070-560 Caxias do Sul RS Brazil
| | - Márcio S. Silva
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| | - Gelson Perin
- Laboratório de Síntese Orgânica Limpa LASOL CCQFA Universidade Federal de Pelotas – UFPel p.o. box 534 6010-900 Pelotas RS Brazil
| |
Collapse
|
14
|
Ash J, Kang JY. Catalyst-free thiophosphorylation of in situ formed ortho-quinone methides. Org Biomol Chem 2023; 21:2370-2374. [PMID: 36852656 DOI: 10.1039/d2ob02169b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A metal-, chloride reagent and base-free thiophosphorylation reaction of in situ formed ortho-quinone methide (o-QM) to synthesize functionalized thiophosphates has been developed. The reaction is an atom-economical process, producing water as the sole byproduct. (EtO)2P(O)SH functions as both a Brønsted acid and nucleophilic thiolate to produce the o-QM intermediate and the thiophosphate product, respectively. The aza o-QMs were also successfully thiophosphorylated in the presence of catalytic TsOH to form sulfonamido thiophosphates.
Collapse
Affiliation(s)
- Jeffrey Ash
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| | - Jun Yong Kang
- Department of Chemistry and Biochemistry, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada, 89154-4003, USA.
| |
Collapse
|
15
|
Si L, Xiong B, Xu S, Zhu L, Liu Y, Xu W, Tang KW. Copper-Catalyzed Cross-Dehydrogenative Coupling of P(O)−H Compounds with O-/S-nucleophiles. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
16
|
Liu C, Xing YY, Zhou T, Chen T, Hong X, Szostak M. Carboxylic-Phosphoric Anhydrides as Direct Electrophiles for Decarbonylative Hirao Cross-Coupling of Carboxylic Acids: DFT Investigation of Mechanistic Pathway. Chem Asian J 2023; 18:e202201262. [PMID: 36748306 DOI: 10.1002/asia.202201262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/08/2023]
Abstract
In this anniversary issue, we present a DFT study of the mechanism of decarbonylative Hirao cross-coupling of carboxylic-phosphoric anhydrides to afford aryl phosphonates. Traditionally, the direct activation of carboxylic acids to participate in decarbonylative couplings is performed in the presence of carboxylic acid anhydride activators. We discovered that direct dehydrogenative decarbonylative phosphorylation of benzoic acid can be performed in high yield via dehydrogenative and decarbonylative coupling in the presence of phosphite as dual activating and nucleophilic reagent, enabling direct decarbonylative phosphorylation. Control studies demonstrated that carboxylic-phosphoric anhydride (acyl phosphate) is an intermediate in this process. DFT studies were conducted to gain insight into this decarbonylative process and compare the selectivity of C-O and P-O bond activations. Considering the utility of ubiquitous carboxylic acids, this alternative activation pathway may find applications in decarbonylative coupling of carboxylic acids for the synthesis of valuable molecules in organic synthesis.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China.,Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, United States
| | - Yang-Yang Xing
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan, 250014, P. R. China
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, United States
| | - Tieqiao Chen
- Hainan Provincial Key Lab of Fine Chem, Hainan University, Haikou, 570228, P. R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street NO. 2, Beijing, 100190, P. R. China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, P. R. China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ, 07102, United States
| |
Collapse
|
17
|
Sarkar S, Kalek M. Metal-Free S-Arylation of Phosphorothioate Diesters and Related Compounds with Diaryliodonium Salts. Org Lett 2023; 25:671-675. [PMID: 36662120 PMCID: PMC9903330 DOI: 10.1021/acs.orglett.2c04310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We developed a direct metal-free S-arylation of phosphorothioate diesters using diaryliodonium salts. The method allows for the preparation under simple conditions of a broad range of S-aryl phosphorothioates, including complex molecules (e.g., dinucleotide or TADDOL derivatives), as well as other related organophosphorus compounds arylated at a chalcogen. The reaction proceeds with a full retention of the stereogenic center at the phosphorus atom, opening convenient access to P-chiral products. The mechanism of the reaction was established using DFT calculations.
Collapse
Affiliation(s)
- Sudeep Sarkar
- Centre
of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland,Faculty
of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Marcin Kalek
- Centre
of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland,
| |
Collapse
|
18
|
Chen ZW, Pratheepkumar A, Bai R, Hu Y, Badsara SS, Huang KW, Lee CF. Cesium carbonate-catalyzed synthesis of phosphorothioates via S-phosphination of thioketones. Chem Commun (Camb) 2022; 58:11001-11004. [PMID: 36093933 DOI: 10.1039/d2cc04331a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient and environmentally-friendly base-mediated transition metal-free direct thiophilic catalytic approach is reported for the synthesis of S-benzhydryl-phosphorothioates by reacting phosphite nucleophiles with diarylmethanethione. A wide variety of thioketones were coupled with different phosphite derivatives to provide the corresponding phosphorothioates in good to excellent yields. The control experiments and density functional theory (DFT) calculations rely on the regio-selective thiophilic addition of a phosphite nucleophile via umpolung protocols.
Collapse
Affiliation(s)
- Ze-Wei Chen
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).
| | - Annamalai Pratheepkumar
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).
| | - Yongyi Hu
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Satpal Singh Badsara
- MFOS Laboratory, Department of Chemistry, University of Rajasthan, JLN Marg, Jaipur, Rajasthan, 302004, India
| | - Kuo-Wei Huang
- KAUST Catalysis Center and Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.). .,i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.).,Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, (R.O.C.)
| |
Collapse
|
19
|
Zhang Z, Lao T, Deng L, Zhang C, Liu J, Fu M, Su Z, Yu Y, Cao H. Mechanochemical Electrophilic Mono- or Disulfur Transfer: Construction of P(O)-S or P(O)-S-S Bonds. Org Lett 2022; 24:7222-7226. [PMID: 36169201 DOI: 10.1021/acs.orglett.2c03018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Under mechanochemically induced conditions, a wide range of diarylphosphine oxides or H-phosphonates react with trisulfide dioxides to afford various thiophosphate derivatives in good yields. Selective S-S bond cleavage of trisulfide dioxides determined by connecting groups is proposed as the key step in the construction of P(O)-S or P(O)-S-S bonds, which is supported by calculations.
Collapse
Affiliation(s)
- Ziwu Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Tianfeng Lao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Lichan Deng
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Chen Zhang
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jubin Liu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Min Fu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhengquan Su
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yue Yu
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering and Guangdong Cosmetics Engineering and Technology Research Center, Guangdong Pharmaceutical University, Zhongshan 528458, China.,Guangdong Pharmaceutical University-University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan 528437, China
| |
Collapse
|
20
|
Wang J, Han F, Hao S, Tang YJ, Xiong C, Xiong L, Li X, Lu J, Zhou Q. Metal-Free Regioselective Hydrophosphorodithioation of Spirovinylcyclopropyl Oxindoles: Rapid Access to Allyl Dialkylphosphorodithioates. J Org Chem 2022; 87:12844-12853. [PMID: 36166737 DOI: 10.1021/acs.joc.2c01435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphorodithioates are important substructures due to their great use in bioactive compounds and functional materials. A metal-free 1,5-addition of spirovinylcyclopropyl oxindoles have been developed by choosing P4S10 and alcohol as nucleophiles through the regioselective ring-opening of spirovinylcyclopropyl oxindoles. This method provides access to allylic organothiophosphates with high efficiency, wide functional group tolerance, good chemo- and regioselectivity, and E-selectivity. 1,3-Addition products were also prepared in high yield. Furthermore, the resulting organothiophosphates could be readily transformed into other allylic derivatives.
Collapse
Affiliation(s)
- Jiahua Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Fang Han
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Siyuan Hao
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Yu-Jiang Tang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Cheng Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Lin Xiong
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Xiancheng Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Jinrong Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 210009, P. R. China
| |
Collapse
|
21
|
Balašova A, Žalubovskis R. Synthetic Methods toward Phosphacoumarins (microreview). Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Shen BR, Annamalai P, Wang SF, Bai R, Lee CF. Blue LED-Promoted Syntheses of Phosphorothioates and Phosphorodithioates. J Org Chem 2022; 87:8858-8870. [PMID: 35762987 DOI: 10.1021/acs.joc.2c00323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An environmentally friendly and resourceful modular protocol for the synthesis of phosphorochalcogenoates, phosphorochalcogenothioates, and phosphinothioates under blue light-emitting diode irradiation is described. The blue LED-promoted P-S, P-Se, and P-Te bond constructions occurred under metal-free, ligand-free, oxidant-free, and photocatalyst-free conditions with minimum chemical waste generation and high atom economy providing the resulting phosphorochalcogenoates, phosphorochalcogenothioates, and phosphinothioates in good to excellent yields.
Collapse
Affiliation(s)
- Bo-Ru Shen
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | | | - Shih-Fang Wang
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | - Rekha Bai
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C
| | - Chin-Fa Lee
- Department of Chemistry, National Chung Hsing University, Taichung City, Taiwan 402, R.O.C.,i-Center for Advanced Science and Technology (iCAST), National Chung Hsing University, Taichung City, Taiwan 402, R.O.C.,Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung City 402, Taiwan, R.O.C
| |
Collapse
|
23
|
Zhang Y, Cao Y, Chi Y, Chen S, Zeng X, Liu Y, Tang G, Zhao Y. Formation of N−P(O)−S Bonds from White Phosphorus via a Four‐Component Reaction. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yinwei Cao
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yangyang Chi
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Shuanghui Chen
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Xiangzhe Zeng
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yan Liu
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Guo Tang
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yufen Zhao
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| |
Collapse
|
24
|
Diem Ferreira Xavier MC, Hartwig D, Lima Valente LC, Silva MS. Ditelluride-Catalyzed synthesis of phosphoramidates: A design of experiment approach. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Qiao H, Yang L, Yang X, Wang J, Chen Y, Zhang L, Sun W, Zhai L, Mi L. Design of Photoactive Covalent Organic Frameworks as Heterogeneous Catalyst for Preparation of Thiophosphinates from Phosphine Oxides and Thiols. Chemistry 2022; 28:e202200600. [DOI: 10.1002/chem.202200600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Huijie Qiao
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liting Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Xiubei Yang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Jialin Wang
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Ya Chen
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lin Zhang
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Wuxuan Sun
- School of Materials and Chemical Engineering Zhongyuan University of Technology Henan 450007 P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials Center for Advanced Materials Research Zhongyuan University of Technology Henan 450007 P. R. China
| |
Collapse
|
26
|
Zhang B, Fu Z, Yang H, Liu D, Sun Y, Xu Y, Yu F, Yan S. Transition‐Metal‐Free C(
sp
2
)−H Phosphorothiolation/Cyclization of
o
‐Hydroxyarylenaminones: Access to
S
‐3‐Chromon Phosphorothioates. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Biao Zhang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Zhonghui Fu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haoqi Yang
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Donghan Liu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yulin Sun
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yu Xu
- School of nursing Xi'An Innovation College of Yan'An University Xi'An 710100 People's Republic of China
| | - Fuchao Yu
- Faculty of Life Science and Technology Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Sheng‐Jiao Yan
- Key Laboratory of Medicinal Chemistry for Natural Resources Ministry of Education and Yunnan Province School of Chemical Science and Technology Yunnan University Kunming 650091 People's Republic of China
| |
Collapse
|
27
|
Zhang Y, Du S, Yang T, Jin F, Zhou J, Cao B, Mao ZJ, Song XR, Xiao Q. Direct and Efficient Synthesis of Tetrasubstituted Allenyl organothiophosphates from Propargylic Alcohols under Catalyst- and Additive-Free Conditions. Org Chem Front 2022. [DOI: 10.1039/d2qo00455k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An environment-friendly approach that affords tetrasubstituted allenyl organothiophosphates containing highly congested carbon centers from easily prepared propargylic alcohols and phosphorothioic acids [(RO)2P(O)SH] with water as the only by-product is developed....
Collapse
|
28
|
Li H, Yan W, Ren P, Hu H, Sun R, Liu M, Fu Z, Guo S, Cai H. Bromide ion promoted practical synthesis of phosphinothioates of sulfinic acid derivatives and H-phosphine oxides. RSC Adv 2022; 12:32350-32354. [DOI: 10.1039/d2ra06351d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Herein, a method for the practical synthesis of thiophosphinates under metal free and open flask conditions is reported.
Collapse
Affiliation(s)
- Haoyuan Li
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Wenjie Yan
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Peipei Ren
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Huimin Hu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Runbo Sun
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Meixia Liu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Zhengjiang Fu
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Shengmei Guo
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| | - Hu Cai
- Department of Chemistry, Nanchang University, No. 999, Xuefu Rd, Nanchang, 330031, P. R. China
| |
Collapse
|
29
|
Fang S, Liu Z, Zhang H, Pan J, Chen Y, Ren X, Wang T. Access to S-Stereogenic Free Sulfoximines via Bifunctional Phosphonium Salt-Catalyzed Desymmetrization of Bisphenols. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Zanjiao Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, P. R. China
| |
Collapse
|
30
|
Rather SA, Bhat MY, Hussain F, Ahmed QN. Sulfonyl-Promoted Michaelis-Arbuzov-Type Reaction: An Approach to S/Se-P Bonds. J Org Chem 2021; 86:13644-13663. [PMID: 34516111 DOI: 10.1021/acs.joc.1c01681] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
By facilitating the chemical conversion of thiols to thiosulfonates, phosphoramidite/phosphite bearing sp3-hybridized carbon serves as an ideal coupling material to forge new connections at room temperature. In this work, a functional group-induced, additive-free, novel, S-P bond-forming approach is presented. This protocol exhibits good functional group tolerance with wide applications that include phosphorylation of cysteine derivatives, development of a one-pot approach to mixed unsymmetrical thiophosphonates, and extension of the concept to different Se-P bonds. Meticulously, our reaction also generated a S-P bond against cyclic 1,2-dithiane-1-dioxide in a byproduct-free manner. These Michaelis-Arbuzov-type reactions are easy to conduct, work efficiently in a reduced reaction time, and are applicable to gram-scale preparation as well.
Collapse
Affiliation(s)
- Suhail A Rather
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammad Yaqoob Bhat
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Feroze Hussain
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Qazi Naveed Ahmed
- Natural Product and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
31
|
Guo Y, Luo Y, Mu S, Xu J, Song Q. Photoinduced Decarboxylative Phosphorothiolation of N-Hydroxyphthalimide Esters. Org Lett 2021; 23:6729-6734. [PMID: 34410131 DOI: 10.1021/acs.orglett.1c02300] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A visible-light-induced protocol for the synthesis of phosphorothioates is developed by employing the Ir-catalyzed decarboxylative phosphorothiolation of N-hydroxyphthalimide esters. This novel synthesis method utilizes carboxylic acids as raw material, which is stable, cheap, and commercially available. Scope studies show that this reaction has good compatibility of functional groups. Notably, both the synthesis of steric hindrance phosphorothioates and the later modification of some bioactive compounds are successfully achieved.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Ying Luo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Shiqiang Mu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering at Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
32
|
Electrochemically driven synthesis of phosphorothioates from trialkyl phosphites and aryl thiols. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Zhang P, Yu G, Li W, Shu Z, Wang L, Li Z, Gao X. Copper-Catalyzed Multicomponent Trifluoromethylphosphorothiolation of Alkenes: Access to CF 3-Containing Alkyl Phosphorothioates. Org Lett 2021; 23:5848-5852. [PMID: 34250811 DOI: 10.1021/acs.orglett.1c01985] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An unprecedented copper-catalyzed multicomponent radical-based reaction involving alkenes, P(O)H compounds, sulfur powder, and Togni reagent II at room temperature has been developed. A variety of highly functionalized CF3-containing S-alkyl phosphorothioates can be directly prepared from a wide range of activated and unactivated alkenes. Moreover, this protocol highlights its potential in the late-stage functionalization of complex molecules and opens up a new avenue for the construction of C(sp3)-S-P bonds.
Collapse
Affiliation(s)
- Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Guo Yu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenwu Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhigang Shu
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Longyu Wang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhaoting Li
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Xia Gao
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
34
|
Fang S, Tan J, Pan J, Zhang H, Chen Y, Ren X, Wang T. Enantiodivergent Kinetic Resolution of 1,1′‐Biaryl‐2,2′‐Diols and Amino Alcohols by Dipeptide‐Phosphonium Salt Catalysis Inspired by the Atherton–Todd Reaction. Angew Chem Int Ed Engl 2021; 60:14921-14930. [DOI: 10.1002/anie.202102352] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
35
|
Fang S, Tan J, Pan J, Zhang H, Chen Y, Ren X, Wang T. Enantiodivergent Kinetic Resolution of 1,1′‐Biaryl‐2,2′‐Diols and Amino Alcohols by Dipeptide‐Phosphonium Salt Catalysis Inspired by the Atherton–Todd Reaction. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Siqiang Fang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jian‐Ping Tan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jianke Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Hongkui Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yuan Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Xiaoyu Ren
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Tianli Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|
36
|
Tian Z, Gong Q, Huang T, Liu L, Chen T. Practical Electro-Oxidative Sulfonylation of Phenols with Sodium Arenesulfinates Generating Arylsulfonate Esters. J Org Chem 2021; 86:15914-15926. [PMID: 33789426 DOI: 10.1021/acs.joc.1c00260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A practical and sustainable synthesis of arylsulfonate esters has been developed through electro-oxidation. This reaction employed the stable and readily available phenols and sodium arenesulfinates as the starting materials and took place under mild reaction conditions without additional oxidants. A wide range of arylsulfonate esters including those bearing functional groups were produced in good to excellent yields. This reaction could also be conducted at a gram scale without a decrease of reaction efficiency. Those results well demonstrated the potential synthetic value of this reaction in organic synthesis.
Collapse
Affiliation(s)
- Zhibin Tian
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Qihang Gong
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chemicals, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
37
|
Moghaddam FM, Daneshfar M, Azaryan R. A green and efficient route for P − S − C bond construction using copper ferrite nanoparticles as catalyst: a TD-DFT study. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1833331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Maryam Daneshfar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Reza Azaryan
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
38
|
Shen J, Li QW, Zhang XY, Wang X, Li GZ, Li WZ, Yang SD, Yang B. Tf2O/DMSO-Promoted P–O and P–S Bond Formation: A Scalable Synthesis of Multifarious Organophosphinates and Thiophosphates. Org Lett 2021; 23:1541-1547. [DOI: 10.1021/acs.orglett.0c04127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jian Shen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Qi-Wei Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xin-Yue Zhang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Gui-Zhi Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen-Zuo Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bin Yang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
39
|
Xiong B, Xu S, Liu Y, Tang KW, Qian PC, Wong WY. Recent Progress in the Selective Functionalization of P(O)-OH Bonds. Top Curr Chem (Cham) 2021; 379:5. [PMID: 33428018 DOI: 10.1007/s41061-020-00319-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 10/22/2022]
Abstract
As we all know, organic phosphorus compounds have high application values in chemical industries. Compared with traditional compounds with P-X (X = Cl, Br, I) and P-H bonds, phosphorylation reagents containing P(O)-OH bonds are stable, environmentally friendly, and inexpensive. However, in recent years, there have been few studies on the selective functionalization of P(O)-OH bonds for the fabrication of P-C and P-Z bonds. In general, four-coordinated P(O)-OH compounds have reached coordination saturation due to the phosphorus atom center, but cannot evolve the phosphorus coordination center through intra-molecular tautomerization; however, the weak coordination effects between the P=O bond and transition metals can be utilized to activate P(O)-OH bonds. This review highlights the most important recent contributions toward the selective functionalization of P(O)-OH bonds via cyclization/cross coupling/esterification reactions using transition metals or small organic molecules as the catalyst.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China. .,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China.
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, People's Republic of China.
| | - Peng-Cheng Qian
- Key Laboratory of Environmental Functional Materials Technology and Application of Wenzhou City, Institute of New Materials and Industry Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, People's Republic of China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, People's Republic of China.
| |
Collapse
|
40
|
Zheng Z, Shi S, Ma Q, Yang Y, Liu Y, Tang G, Zhao Y. Synthesis of δ-phosphorothiolated alcohols by photoredox/copper catalyzed remote C(sp 3)–H phosphorothiolation of N-alkoxypyridinium salts. Org Chem Front 2021. [DOI: 10.1039/d1qo01178b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Incorporation of the (RO)2P(O)S group through unreactive C(sp3)–H phosphorothiolation remains a challenging area of research.
Collapse
Affiliation(s)
- Zhipeng Zheng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Shanshan Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Qianru Ma
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufei Yang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Liu
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
41
|
Liu C, Wang L, Zhang X. Advances in the Synthesis of Phosphorothioate and Phosphinothioate. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202104002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Ma D, Hu S, Chen S, Pan J, Tu S, Yin Y, Gao Y, Zhao Y. Palladium-Catalyzed Addition/Cyclization of (2-Hydroxyaryl)boronic Acids with Alkynylphosphonates: Access to Phosphacoumarins. Org Lett 2020; 22:8156-8160. [DOI: 10.1021/acs.orglett.0c03151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dumei Ma
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Shanshan Hu
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Sirui Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Jiaoting Pan
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Song Tu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yingwu Yin
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
43
|
Zhang JS, Liu L, Chen T, Han LB. Cross-Dehydrogenative Alkynylation: A Powerful Tool for the Synthesis of Internal Alkynes. CHEMSUSCHEM 2020; 13:4776-4794. [PMID: 32667732 DOI: 10.1002/cssc.202001165] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Alkynes are among the most fundamentally important organic compounds and are widely used in synthetic chemistry, biochemistry, and materials science. Thus, the development of an efficient and sustainable method for the preparation of alkynes has been a central concern in organic synthesis. Cross-dehydrogenative coupling utilizing E-H and Z-H bonds in two different molecules can avoid the need for prefunctionalization of starting materials and has become one of the most straightforward methods for the construction of E-Z chemical bonds. This Review summarizes recent progress in the preparation of internal alkynes by cross-dehydrogenative coupling with terminal alkynes.
Collapse
Affiliation(s)
- Ji-Shu Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Tieqiao Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, College of Chemical Engineering and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Li-Biao Han
- Division of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 3058571, Japan
| |
Collapse
|
44
|
Xiong B, Xu S, Zhu Y, Yao L, Zhou C, Liu Y, Tang KW, Wong WY. Metal-Free, N-Iodosuccinimide-Induced Regioselective Iodophosphoryloxylation of Alkenes with P(O)-OH Bonds. Chemistry 2020; 26:9556-9560. [PMID: 32220090 DOI: 10.1002/chem.202000575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/08/2020] [Indexed: 12/16/2022]
Abstract
A simple and efficient method for the regioselective iodophosphoryloxylation of alkenes with P(O)-OH bonds has been established by using NIS (N-iodosuccinimide) as the iodination reagent under transition-metal-free conditions. The present protocol is compatible with different functional groups, and suitable for various alkenes and P(O)-OH compounds. A variety of functionalized β-iodo-1-ethyl phosphinic/phosphoric acid esters are obtained in good to excellent yields, which could be further transformed to diversified building blocks for the synthesis of bioactive compounds, pharmaceuticals and functional materials.
Collapse
Affiliation(s)
- Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yu Zhu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Lei Yao
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Congshan Zhou
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
45
|
Kaboudin B, Noori F, Dehghani L, Alavi S, Kazemi F. Two Routes for the Synthesis of Phosphorothioates via P‐S Coupling Reaction of Dialkyl Phosphites with Thiols or a Mixture of Alkyl Halides and Thiourea in the Presence of CaO. ChemistrySelect 2020. [DOI: 10.1002/slct.202002384] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Babak Kaboudin
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Fariba Noori
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Leila Dehghani
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Sajedeh Alavi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| | - Foad Kazemi
- Department of ChemistryInstitute for Advanced Studies in Basic Sciences, Gava Zang Zanjan 45137-66731 Iran
| |
Collapse
|
46
|
Handoko, Benslimane Z, Arora PS. Diselenide-Mediated Catalytic Functionalization of Hydrophosphoryl Compounds. Org Lett 2020; 22:5811-5816. [DOI: 10.1021/acs.orglett.0c01858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Handoko
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Zacharia Benslimane
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Paramjit S. Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
47
|
Jones DJ, O'Leary EM, O'Sullivan TP. Modern Synthetic Approaches to Phosphorus‐Sulfur Bond Formation in Organophosphorus Compounds. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000458] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork Ireland
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|
48
|
Peng K, Dong Z. Recent Advances in Sulfur‐Centered S–X (X = N, P, O) Bond Formation Catalyzed by Transition Metals. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Kang Peng
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
| | - Zhi‐Bing Dong
- School of Chemistry and Environmental Engineering Wuhan Institute of Technology 430205 Wuhan China
- Key Laboratory of Green Chemical Process Ministry of Education Wuhan Institute of Technology 430205 Wuhan China
- Ministry‐of‐Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules Hubei University 430062 Wuhan China
- Hubei key Laboratory of Novel Reactor and Green Chemistry Technology Wuhan Institute of Technology 430205 Wuhan China
| |
Collapse
|
49
|
Jones DJ, O'Leary EM, O'Sullivan TP. A Robust Methodology for the Synthesis of Phosphorothioates, Phosphinothioates and Phosphonothioates. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- David J. Jones
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
| | - Eileen M. O'Leary
- Department of Physical SciencesCork Institute of Technology Cork Ireland
| | - Timothy P. O'Sullivan
- School of ChemistryUniversity College Cork Cork
- Analytical and Biological Chemistry Research FacilityUniversity College Cork Cork Ireland
- School of PharmacyUniversity College Cork Cork Ireland
| |
Collapse
|
50
|
Shi S, Zhang P, Luo C, Zhuo S, Zhang Y, Tang G, Zhao Y. Copper-Catalyzed Remote C(sp3)–H Phosphorothiolation of Sulfonamides and Carboxamides in a Multicomponent Reaction. Org Lett 2020; 22:1760-1764. [DOI: 10.1021/acs.orglett.0c00044] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shanshan Shi
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Chen Luo
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Shaohua Zhuo
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yumeng Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|