1
|
Liu X, Jin Z, Qiu F, Guo Y, Chen Y, Sun Z, Zhang L. Hexabenzoheptacene: A Longitudinally Multihelicene Nanocarbon with Local Aromaticity and Enhanced Stability. Angew Chem Int Ed Engl 2024; 63:e202407547. [PMID: 38725308 DOI: 10.1002/anie.202407547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 06/13/2024]
Abstract
We report the synthesis of a longitudinally helical molecular nanocarbon, hexabenzoheptacene (HBH), along with its dimethylated derivative (HBH-Me), which are composed of six benzene rings periodically benzannulated to both zigzag edges of a heptacene core. This benzannulation pattern endows the resulting nanocarbons with a helical heptacene core and local aromaticity, imparting enhanced solubility and stability to the system. The chiral HBH-Me adopts a more highly twisted conformation with an end-to-end twist angle of 95°, enabling the separation of the enantiomers. Both HBH and HBH-Me can be facilely oxidized into their corresponding dications, which exhibit enhanced planarity and aromaticity upon loss of electrons. Notably, both longitudinally helical nanocarbons readily promote solid state packing into two-dimensional (2D) arrangement. Single-crystal microbelts of HBH-Me show hole mobility up to 0.62 cm2 V-1 s-1, illustrating the promising potential of these longitudinally helical molecules for organic electronic devices.
Collapse
Affiliation(s)
- Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengxiong Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fei Qiu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yupeng Guo
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformation, Tianjin University, 92 Weijin Road, Tianjin, 300072, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Lab of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Freudenberg J, Bunz UHF. How to Stabilize Large Soluble (Hetero-)Acenes. J Am Chem Soc 2024; 146:16937-16949. [PMID: 38862130 PMCID: PMC11212629 DOI: 10.1021/jacs.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The higher acenes and azaacenes (>(aza)heptacenes) are fascinating, yet elusive materials. Their reactivity and sensitivity increases concomitantly with their size. In recent years, confinement techniques, that is isolation of acenes in matrices and on surfaces, has surpassed solution-based chemistry with respect to accessing the larger (hetero)acenes at the price of the accessibility of no more than a couple thousands of molecules. Isolating acenes in bulk quantities and in processable form is vital for applications in organic electronics as well as from a viewpoint from basic research. In this Perspective, we will discuss after a short historical outline their degradation pathways, and then will selectively highlight recent efforts in stabilizing soluble (aza)acenes.
Collapse
Affiliation(s)
- Jan Freudenberg
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Trinquier G, David G, Veillon E, Malrieu JP. On Entangled Singlet Pure Diradicals. J Phys Chem A 2024; 128:4252-4267. [PMID: 38748985 DOI: 10.1021/acs.jpca.4c01328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
This work addresses a class of conjugated hydrocarbons that are expected to be singlet diradicals according to the topological Hückel Hamiltonian while possibly satisfying full on-bond electron pairing. These systems possess two degenerate singly occupied molecular orbitals (SOMOs), but aromaticity brought by properly positioned six-membered rings does prevent Jahn-Teller distortions. Density functional theory (DFT) calculations performed on two emblematic examples confirm the strong bond-length alternation in the closed-shell solutions and the clear spatial symmetry in the open-shell spin-unrestricted determinants, the latter solution always being found to have significantly lower energy. Since the SOMOs are here of different symmetry, the wave function is free from ionic valence-bond component, and spin decontamination of the unrestricted DFT solutions and wave function calculations at the CASSCF-plus-second-order-perturbation level confirm the expected pure diradical character of such molecules. In contrast to disjoint diradicals, the SOMOs of present systems have large amplitudes on neighbor atoms, and we propose to name them entangled pure diradicals, further providing some prescription rules for their design. Additional calculations point out the qualitative contrast between these molecules and the related diradicaloids.
Collapse
Affiliation(s)
- Georges Trinquier
- Laboratoire de chimie et physique quantiques, IRSAMC-CNRS-UMR 5626, Université Paul-Sabatier (Toulouse III), Toulouse 31062, Cedex 4, France
| | - Grégoire David
- Institut des sciences chimiques de rennes, ISCR-CNRS-UMR 6226, Université de Rennes, Rennes 35000, France
| | - Elohan Veillon
- Laboratoire de chimie et physique quantiques, IRSAMC-CNRS-UMR 5626, Université Paul-Sabatier (Toulouse III), Toulouse 31062, Cedex 4, France
| | - Jean-Paul Malrieu
- Laboratoire de chimie et physique quantiques, IRSAMC-CNRS-UMR 5626, Université Paul-Sabatier (Toulouse III), Toulouse 31062, Cedex 4, France
| |
Collapse
|
4
|
Marongiu M, Ha T, Gil-Guerrero S, Garg K, Mandado M, Melle-Franco M, Diez-Perez I, Mateo-Alonso A. Molecular Graphene Nanoribbon Junctions. J Am Chem Soc 2024; 146:3963-3973. [PMID: 38305745 PMCID: PMC10870704 DOI: 10.1021/jacs.3c11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.
Collapse
Affiliation(s)
- Mauro Marongiu
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Tracy Ha
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Sara Gil-Guerrero
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kavita Garg
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Manuel Melle-Franco
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Granhøj J, Zalibera M, Malček M, Bliksted Roug Pedersen V, Erbs Hillers-Bendtsen A, Mikkelsen KV, Rapta P, Brøndsted Nielsen M. Extended Tetrathiafulvalenes with Fluoreno[3,2-b]fluorene and Diindeno[1,2-b : 1',2'-i]anthracene Cores. Chemistry 2024; 30:e202302688. [PMID: 37930277 DOI: 10.1002/chem.202302688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
In one-dimensional polycyclic aromatic hydrocarbons (PAHs) containing five- and six-membered rings fused together, one key question is whether the structures possess a quinoidal or aromatic diradical character. Here, we generate such PAHs by reversible oxidation of PAH-extended tetrathiafulvalenes (TTFs). Extended TTFs were thus prepared and studied for their geometrical properties (crystallography), redox properties, and UV/Vis/NIR/EPR characteristics as a function of charge state. The EPR measurements of radical cations showed unique features for each PAH-TTF. The dications, formally composed of fluoreno[3,2-b]fluorene and diindeno[1,2-b:1',2'-i]anthracene cores, were experimentally found to exhibit singlet ground states. For the latter, calculations reveal the closed shell, quinoid singlet state to be isoenergetic with the open shell singlet diradical. Each charge state exhibited unique optical properties with radical cations absorbing strongly in the NIR region with signatures from π-dimers for the large core. The experimental results were paralleled and supported by detailed computations, including spin density distribution calculations, EPR simulations, and nucleus independent chemical shift (NICS) xy scans.
Collapse
Affiliation(s)
- Jeppe Granhøj
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Michal Zalibera
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava Faculty of Chemical and Food Technology, Radlinského 9, SK-81237, Bratislava, Slovak Republic
| | - Michal Malček
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava Faculty of Chemical and Food Technology, Radlinského 9, SK-81237, Bratislava, Slovak Republic
| | | | | | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| | - Peter Rapta
- Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava Faculty of Chemical and Food Technology, Radlinského 9, SK-81237, Bratislava, Slovak Republic
| | - Mogens Brøndsted Nielsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Zeitter N, Hippchen N, Weidlich A, Jäger P, Ludwig P, Rominger F, Dreuw A, Freudenberg J, Bunz UHF. Hexakis-TIPS-Alkynylated Nonacenes: Persistent and Processible. Chemistry 2023; 29:e202302323. [PMID: 37490332 DOI: 10.1002/chem.202302323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
Four substituted nonacenes were prepared and characterized by UV-vis and EPR spectroscopy and X-ray crystallography. The compounds are the most stable and soluble nonacenes to date - due to six strategically placed triisopropylsilyl(TIPS)-ethynyl groups. They are stable for several weeks in the solid state. In dilute solution their half-life is 5-9 h. Crystal structure analyses of two nonacenes prove their structures. A nonacene derivative was tested in a solution-processed transistor and exhibits ambipolar charge transport (μe =0.007 cm2 /Vs; μh =0.023 cm2 /Vs).
Collapse
Affiliation(s)
- Nico Zeitter
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Anna Weidlich
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Patrick Jäger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Philipp Ludwig
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Andreas Dreuw
- Interdisciplinary Center for Scientific Computing, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
7
|
Li L, Prindle CR, Shi W, Nuckolls C, Venkataraman L. Radical Single-Molecule Junctions. J Am Chem Soc 2023; 145:18182-18204. [PMID: 37555594 DOI: 10.1021/jacs.3c04487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Radicals are unique molecular systems for applications in electronic devices due to their open-shell electronic structures. Radicals can function as good electrical conductors and switches in molecular circuits while also holding great promise in the field of molecular spintronics. However, it is both challenging to create stable, persistent radicals and to understand their properties in molecular junctions. The goal of this Perspective is to address this dual challenge by providing design principles for the synthesis of stable radicals relevant to molecular junctions, as well as offering current insight into the electronic properties of radicals in single-molecule devices. By exploring both the chemical and physical properties of established radical systems, we will facilitate increased exploration and development of radical-based molecular systems.
Collapse
Affiliation(s)
- Liang Li
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Claudia R Prindle
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Wanzhuo Shi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
8
|
Dai Y, Zerbini A, Casado J, Negri F. Ambipolar Charge Transport in Organic Semiconductors: How Intramolecular Reorganization Energy Is Controlled by Diradical Character. Molecules 2023; 28:4642. [PMID: 37375198 DOI: 10.3390/molecules28124642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The charged forms of π-conjugated chromophores are relevant in the field of organic electronics as charge carriers in optoelectronic devices, but also as energy storage substrates in organic batteries. In this context, intramolecular reorganization energy plays an important role in controlling material efficiency. In this work, we investigate how the diradical character influences the reorganization energies of holes and electrons by considering a library of diradicaloid chromophores. We determine the reorganization energies with the four-point adiabatic potential method using quantum-chemical calculations at density functional theory (DFT) level. To assess the role of diradical character, we compare the results obtained, assuming both closed-shell and open-shell representations of the neutral species. The study shows how the diradical character impacts the geometrical and electronic structure of neutral species, which in turn control the magnitude of reorganization energies for both charge carriers. Based on computed geometries of neutral and charged species, we propose a simple scheme to rationalize the small, computed reorganization energies for both n-type and p-type charge transport. The study is supplemented with the calculation of intermolecular electronic couplings governing charge transport for selected diradicals, further supporting the ambipolar character of the investigated diradicals.
Collapse
Affiliation(s)
- Yasi Dai
- Department of Chemistry 'Giacomo Ciamician', Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
| | - Andrea Zerbini
- Department of Chemistry 'Giacomo Ciamician', Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
| | - Juan Casado
- Department of Physical Chemistry, University of Málaga, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Fabrizia Negri
- Department of Chemistry 'Giacomo Ciamician', Università di Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
- INSTM, UdR Bologna, Via F. Selmi, 2, 40126 Bologna, Italy
| |
Collapse
|
9
|
Closed-shell and open-shell dual nature of singlet diradical compounds. PURE APPL CHEM 2023. [DOI: 10.1515/pac-2023-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Abstract
Unlike triplet diradicals, singlet diradicals can vary in diradical character from 0 % to 100 % depending on linker units that allow two formally unpaired electrons to couple covalently. In principle, the electronic structure of singlet diradicals can be described as a quantum superposition of closed-shell and open-shell structures. This means that, depending on the external environment, singlet diradicals can behave as either closed-shell or open-shell species. This paper summarizes our progress in understanding the electronic structure of π-conjugated singlet diradical molecules in terms of closed-shell and open-shell dual nature. We first discuss the coexistence of intra- and intermolecular covalent bonding interactions in the π-dimer of a singlet diradical molecule. The intra- and intermolecular coupling of two formally unpaired electrons are related to closed-shell and open-shell nature of singlet diradical, respectively. Then we demonstrate the coexistence of the covalent bonding interactions in the one-dimensional stack of singlet diradical molecules having different diradical character. The relative strength of the interactions is varied with the magnitude of singlet diradical index y
0. Finally, we show the dual reactivity of a singlet diradical molecule, which undergoes rapid [4 + 2] and [4 + 4] cycloaddition reactions in the dark at room temperature. Closed-shell and open-shell nature endow the singlet diradical molecule with the reaction manner as diene and diradical species, respectively.
Collapse
|
10
|
Wu Z, Hippchen N, Han J, Ji L, Friedrich A, Krummenacher I, Braunschweig H, Krebs J, Moos M, Biegger P, Tverskoy O, Maier S, Lambert C, Dreuw A, Marder TB, Freudenberg J, Bunz UHF. The Radical Anion and Dianion of Benzo[3,4]cyclobuta[1,2- b]phenazine. J Org Chem 2023. [PMID: 36802620 DOI: 10.1021/acs.joc.2c02279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We present the reduction of two azaacenes (a benzo-[3,4]cyclobuta[1,2-b]phenazine and a benzo[3,4]cyclobuta[1,2-b]naphtho[2,3-i]phenazine derivative), featuring a single cyclobutadiene unit, to their radical anions and dianions. The reduced species were produced using potassium naphthalenide in the presence of 18-crown-6 in THF. Crystal structures of the reduced representatives were obtained and their optoelectronic properties evaluated. Charging these 4n Hückel systems gives dianionic 4n + 2 π-electron systems with increased antiaromaticity, according to NICS(1.7)zz calculations, featuring unusually red-shifted absorption spectra.
Collapse
Affiliation(s)
- Zhu Wu
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jie Han
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen and Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Johannes Krebs
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Philipp Biegger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Olena Tverskoy
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Andreas Dreuw
- Interdisziplinares Zentrum für Wissenschaftliches Rechnen and Physikalisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 205, 69120 Heidelberg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Luo T, Wang Y, Hao J, Chen PA, Hu Y, Chen B, Zhang J, Yang K, Zeng Z. Furan-Extended Helical Rylenes with Fjord Edge Topology and Tunable Optoelectronic Properties. Angew Chem Int Ed Engl 2023; 62:e202214653. [PMID: 36470852 DOI: 10.1002/anie.202214653] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Lateral furan-expansion of polycyclic aromatics, which enables multiple O-doping and peripheral edge evolution of rylenes, is developed for the first time. Tetrafuranylperylene TPF-4CN and octafuranylquaterrylene OFQ-8CN were prepared as model compounds bearing unique fjord edge topology and helical conformations. Compared to TPF-4CN, the higher congener OFQ-8CN displays a largely red-shifted (≈333 nm) and intensified absorption band (λmax =829 nm) as well as a narrowed electrochemical band gap (≈1.08 eV) due to its pronounced π-delocalization and emerging of open-shell diradicaloid upon the increase of fjord edge length. Moreover, strong circular dichroism signals in a broad range until 900 nm are observed for open-shell chiral OFQ-8CN, owing to the excellent conformational stability of its central bis(tetraoxa[5]helicene) fragments. Our studies provide insights into the relationships between edge topologies and (chir)optoelectronic properties for this novel type of O-doped PAHs.
Collapse
Affiliation(s)
- Teng Luo
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yanpei Wang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jiahang Hao
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Ping-An Chen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Yuanyuan Hu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education, Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices School of Physics and Electronics, Hunan University, Changsha, 410082, P. R. China
| | - Bo Chen
- Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, 230039, P. R. China
| | - Kun Yang
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Zebing Zeng
- Shenzhen Research Institute of Hunan University, Shenzhen, 518000, P. R. China.,State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
12
|
Maier S, Hippchen N, Jester F, Dodds M, Weber M, Skarjan L, Rominger F, Freudenberg J, Bunz UHF. Azaarenes: 13 Rings in a Row by Cyclopentannulation. Angew Chem Int Ed Engl 2023; 62:e202214031. [PMID: 36383088 PMCID: PMC10107455 DOI: 10.1002/anie.202214031] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Cyclopentannulation was explored as a strategy to access large, stable azaarenes. Buchwald-Hartwig coupling of previously reported di- and tetrabrominated cyclopentannulated N,N'-dihydrotetraazapentacenes furnished stable azaarenes with up to 13 six-membered rings in a row and a length of 3.1 nm. Their optoelectronic and semi-conducting properties as well as their aromaticity were investigated.
Collapse
Affiliation(s)
- Steffen Maier
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Fabian Jester
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Marcus Dodds
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Michel Weber
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Leon Skarjan
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Kuriakose F, Commodore M, Hu C, Fabiano CJ, Sen D, Li RR, Bisht S, Üngör Ö, Lin X, Strouse GF, DePrince AE, Lazenby RA, Mentink-Vigier F, Shatruk M, Alabugin IV. Design and Synthesis of Kekulè and Non-Kekulè Diradicaloids via the Radical Periannulation Strategy: The Power of Seven Clar's Sextets. J Am Chem Soc 2022; 144:23448-23464. [PMID: 36516873 DOI: 10.1021/jacs.2c09637] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This work introduces an approach to uncoupling electrons via maximum utilization of localized aromatic units, i.e., the Clar's π-sextets. To illustrate the utility of this concept to the design of Kekulé diradicaloids, we have synthesized a tridecacyclic polyaromatic system where a gain of five Clar's sextets in the open-shell form overcomes electron pairing and leads to the emergence of a high degree of diradical character. According to unrestricted symmetry-broken UCAM-B3LYP calculations, the singlet diradical character in this core system is characterized by the y0 value of 0.98 (y0 = 0 for a closed-shell molecule, y0 = 1 for pure diradical). The efficiency of the new design strategy was evaluated by comparing the Kekulé system with an isomeric non-Kekulé diradical of identical size, i.e., a system where the radical centers cannot couple via resonance. The calculated singlet-triplet gap, i.e., the ΔEST values, in both of these systems approaches zero: -0.3 kcal/mol for the Kekulé and +0.2 kcal/mol for the non-Kekulé diradicaloids. The target isomeric Kekulé and non-Kekulé systems were assembled using a sequence of radical periannulations, cross-coupling, and C-H activation. The diradicals are kinetically stabilized by six tert-butyl substituents and (triisopropylsilyl)acetylene groups. Both molecules are NMR-inactive but electron paramagnetic resonance (EPR)-active at room temperature. Cyclic voltammetry revealed quasi-reversible oxidation and reduction processes, consistent with the presence of two nearly degenerate partially occupied molecular orbitals. The experimentally measured ΔEST value of -0.14 kcal/mol confirms that K is, indeed, a nearly perfect singlet diradical.
Collapse
Affiliation(s)
- Febin Kuriakose
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Michael Commodore
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Catherine J Fabiano
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Debashis Sen
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Run R Li
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Shubham Bisht
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Geoffrey F Strouse
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - A Eugene DePrince
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Robert A Lazenby
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Frederic Mentink-Vigier
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida32310, United States
| | - Michael Shatruk
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida32306-4390, United States
| |
Collapse
|
14
|
Dey M, Ghosh D. Curious Case of Singlet Triplet Gaps in Nonlinear Polyaromatic Hydrocarbons. J Phys Chem Lett 2022; 13:11795-11800. [PMID: 36516993 DOI: 10.1021/acs.jpclett.2c03170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The singlet triplet (ST) gap of linear polyacenes decays exponentially with the system size as a result of extended conjugation and reducing highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps. These low ST gaps can ideally be leveraged toward energy applications but are hindered by the decreasing stability of the systems. Thus, there is the need to understand the ST gap of nonlinear polyacenes, which are markedly more stable than their linear counterparts. Here, we show that the ST gaps of the nonlinear polyacenes do not decrease with the system size and have no correlation with the HOMO-LUMO gaps or increased conjugation. The reason behind this is identified as the high multireference character of the triplet high-spin state. These unprecedented results are in stark contrast to the observations in linear polyacenes and are due to the combined effects of topology and geometrical factors.
Collapse
Affiliation(s)
- Mandira Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata700032, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata700032, India
| |
Collapse
|
15
|
3-Morpholino-7-[N-methyl-N-(4′-carboxyphenyl)amino]phenothiazinium Chloride. MOLBANK 2022. [DOI: 10.3390/m1493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The synthesis of 3-morpholino-7-[N-methyl-N-(4′-carboxyphenyl)amino]phenothiazinium chloride is reported here. Interestingly, non-symmetric phenothiazinium salt is functionalized with a carboxylic acid group that allows the easy and stable anchoring on metal oxides. In addition, the morpholine unit reduces the dye aggregation tendency; thus, improving its potential applications in the biomedical and photo-electrocatalytic field.
Collapse
|
16
|
Wen ECH, Jacobse PH, Jiang J, Wang Z, McCurdy RD, Louie SG, Crommie MF, Fischer FR. Magnetic Interactions in Substitutional Core-Doped Graphene Nanoribbons. J Am Chem Soc 2022; 144:13696-13703. [PMID: 35867847 DOI: 10.1021/jacs.2c04432] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design of a spin imbalance within the crystallographic unit cell of bottom-up engineered 1D graphene nanoribbons (GNRs) gives rise to nonzero magnetic moments within each cell. Here, we demonstrate the bottom-up assembly and spectroscopic characterization of a one-dimensional Kondo spin chain formed by a chevron-type GNR (cGNR) physisorbed on Au(111). Substitutional nitrogen core doping introduces a pair of low-lying occupied states per monomer within the semiconducting gap of cGNRs. Charging resulting from the interaction with the gold substrate quenches one electronic state for each monomer, leaving behind a 1D chain of radical cations commensurate with the unit cell of the ribbon. Scanning tunneling microscopy (STM) and spectroscopy (STS) reveal the signature of a Kondo resonance emerging from the interaction of S = 1/2 spin centers in each monomer core with itinerant electrons in the Au substrate. STM tip lift-off experiments locally reduce the effective screening of the unpaired radical cation being lifted, revealing a robust exchange coupling between neighboring spin centers. First-principles DFT-LSDA calculations support the presence of magnetic moments in the core of this GNR when it is placed on Au.
Collapse
Affiliation(s)
- Ethan Chi Ho Wen
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Peter H Jacobse
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Jingwei Jiang
- Department of Physics, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ziyi Wang
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Ryan D McCurdy
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Steven G Louie
- Department of Physics, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Felix R Fischer
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at the University of California Berkeley and the Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene-Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022; 61:e202205018. [PMID: 35467070 PMCID: PMC9321727 DOI: 10.1002/anie.202205018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 12/16/2022]
Abstract
Molecular nanoribbons are a class of atomically-precise nanomaterials for a broad range of applications. An iterative approach that allows doubling the length of the longest pyrene-pyrazinoquinoxaline molecular nanoribbons is described. The largest nanoribbon obtained through this approach-with a 60 linearly-fused ring backbone (14.9 nm) and a 324-atoms core (C276 N48 )-shows an extremely high molar absorptivity (values up to 1 198 074 M-1 cm-1 ) that also endows it with a high molar fluorescence brightness (8700 M-1 cm-1 ).
Collapse
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of MaterialsDepartment of ChemistryUniversity of Aveiro3810–193AveiroPortugal
| | - Aurelio Mateo‐Alonso
- POLYMATUniversity of the Basque Country UPV/EHUAvenida de Tolosa 7220018Donostia-San SebastiánSpain
- IkerbasqueBasque Foundation for Science48009BilbaoSpain
| |
Collapse
|
18
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022; 61:e202200855. [DOI: 10.1002/anie.202200855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yulin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Tingting Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering Anhui Jianzhu University Hefei 230039 P. R. China
| | - Teng Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Bo Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
- School of Materials Science and Engineering Nanchang Hangkong University Nanchang 330063 P. R. China
| | - Sheng Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 P. R. China
- Shenzhen Research Institute of Hunan University Shenzhen 518000 P. R. China
| |
Collapse
|
19
|
Hernández‐Culebras F, Melle‐Franco M, Mateo‐Alonso A. Doubling the Length of the Longest Pyrene‐Pyrazinoquinoxaline Molecular Nanoribbons. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Félix Hernández‐Culebras
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
| | - Manuel Melle‐Franco
- CICECO—Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810–193 Aveiro Portugal
| | - Aurelio Mateo‐Alonso
- POLYMAT University of the Basque Country UPV/EHU Avenida de Tolosa 72 20018 Donostia-San Sebastián Spain
- Ikerbasque Basque Foundation for Science 48009 Bilbao Spain
| |
Collapse
|
20
|
Abstract
Ambipolar transistor properties have been observed in various small-molecule materials. Since a small energy gap is necessary, many types of molecular designs including extended π-skeletons as well as the incorporation of donor and acceptor units have been attempted. In addition to the energy levels, an inert passivation layer is important to observe ambipolar transistor properties. Ambipolar transport has been observed in extraordinary π-electron systems such as antiaromatic compounds, biradicals, radicals, metal complexes, and hydrogen-bonded materials. Several donor/acceptor cocrystals show ambipolar transport as well.
Collapse
Affiliation(s)
- Toshiki Higashino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Takehiko Mori
- Department of Materials Science and Engineering, Tokyo Institute of Technology, O-okayama 2-12-1, Meguro-ku, 152-8552, Japan.
| |
Collapse
|
21
|
Franco LR, Toledo KCF, Matias TA, Benavides PA, Cezar HM, Araujo CM, Coutinho K, Araki K. Unraveling the acid-base characterization and solvent effects on the structural and electronic properties of a bis-bidentate bridging ligand. Phys Chem Chem Phys 2022; 24:10222-10240. [PMID: 35420602 DOI: 10.1039/d1cp03912a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interactions and the solvent effects on the distribution of several species in equilibrium and how it can influence the 1H-NMR properties, spectroscopy (UV-vis absorption), and the acid-base equilibria can be especially challenging. This is the case of a bis-bidentate bridging ligand bis(2-pyridyl)-benzo-bis(imidazole), where the two pyridyl and four imidazolyl nitrogen atoms can be protonated in different ways, depending on the solvent, generating many isomeric/tautomeric species. Herein, we report a combined theoretical-experimental approach based on a sequential quantum mechanics/molecular mechanics procedure that was successfully applied to describe in detail the acid-base characterization and its effects on the electronic properties of such a molecule in solution. The calculated free-energies allowed the identification of the main species present in solution as a function of the solvent polarity, and its effects on the magnetic shielding of protons (1H-NMR chemical shifts), the UV-vis absorption spectra, and the acid-base equilibrium constants (pKas) in aqueous solution. Three acid-base equilibrium constants were experimentally/theoretically determined (pKa1 = 1.3/1.2, pKa2 = 2.1/2.2 and pKa5 = 10.1/11.3) involving mono-deprotonated and mono-protonated cis and trans species. Interestingly, other processes with pKa3 = 3.7 and pKa4 = 6.0 were also experimentally determined and assigned to the protonation and deprotonation of dimeric species. The dimerization of the most stable neutral species was investigated by Monte Carlo simulations and its electronic effects were considered for the elucidation of the UV-vis absorption bands, revealing transitions mainly with the charge-transfer characteristic and involving both the monomeric species and the dimeric species. The good matching of the theoretical and experimental results provides an atomistic insight into the solvent effects on the electronic properties of this bis-bidentate bridging ligand.
Collapse
Affiliation(s)
- Leandro Rezende Franco
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, 05508-090 São Paulo, SP, Brazil. .,Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden
| | | | - Tiago Araujo Matias
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil.
| | - Paola Andrea Benavides
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil.
| | - Henrique Musseli Cezar
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, 05508-090 São Paulo, SP, Brazil.
| | - C Moyses Araujo
- Department of Engineering and Physics, Karlstad University, 65188 Karlstad, Sweden.,Materials Theory Division, Department of Physics and Astronomy, Ångström Laboratory, Uppsala University, 75120 Uppsala, Sweden
| | - Kaline Coutinho
- Instituto de Física, Universidade de São Paulo, Cidade Universitária, 05508-090 São Paulo, SP, Brazil.
| | - Koiti Araki
- Instituto de Química, Universidade de São Paulo, Av. Lineu Prestes 748, Butantã, 05508-000 São Paulo, SP, Brazil.
| |
Collapse
|
22
|
Zhou Y, Pan S, Dong X, Wang L, Zhou M, Frenking G. Generation and Characterization of the Charge-Transferred Diradical Complex CaCO 2 with an Open-Shell Singlet Ground State. J Am Chem Soc 2022; 144:8355-8361. [PMID: 35482295 DOI: 10.1021/jacs.2c02768] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The CaCO2 complex is generated via the reaction of excited-state calcium atom with carbon dioxide in a solid neon matrix. Infrared absorption spectroscopy and quantum chemical calculations reveal that the complex has a planar four-membered ring structure with a strongly bent CO2 ligand side-on coordinated to the calcium center in an η2-O, O manner. The complex has an open-shell singlet ground state, which can be described as the bonding interactions between a Ca+ (4s1) cation in the doublet ground state and a doublet ground state CO2- anion. The analysis of the bonding situation suggests that the Ca-O2C bonds have a large (75%) electrostatic character. The covalent (orbital) interactions come from the coupling of the unpaired electrons of Ca+ and CO2- giving rise to electron-sharing bonding and a stronger contribution from dative bonding (Ca+)←(CO2-). The atomic orbitals (AOs) of Ca+ that are engaged in the covalent bonds are the 4s AO for the electron-sharing bonds and the 3d AOs for the dative bonds. This is further evidence for the assignment of the heavier alkaline-earth atoms as transition metals rather than main-group elements.
Collapse
Affiliation(s)
- Yangyu Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Sudip Pan
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany
| | - Xuelin Dong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lina Wang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Mingfei Zhou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse 4, D-35043 Marburg, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.,Donostia International Physics Center (DIPC), 20018 San Sebastian, Spain
| |
Collapse
|
23
|
Abstract
Parent 2,3:10,11-dibenzoheptazethrene is a singlet diradicaloid polycyclic hydrocarbon in the ground state that did not change its diradical character upon substitution (methyl and triisopropylsilylethynyl). Described herein are the synthesis and characterization of an ethoxy/3,5-(CF3)2C6H3-substituted 2,3:10,11-dibenzoheptazethrene 3 that prefers to retain its p-quinoidal core and shows zero diradical character, as determined by single-crystal analysis and density functional theory calculations. Negative solvatochromism, π-π interactions, Csp2-H···O hydrogen bonding, intramolecular charge transfer, redox amphotericity, and a narrow HOMO-LUMO energy gap make 3 a potential candidate for application in optoelectronics.
Collapse
Affiliation(s)
- Priyank Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Soumyajit Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
24
|
Wang Y, Huang Y, Huang T, Zhang J, Luo T, Ni Y, Li B, Xie S, Zeng Z. Perylene‐Based Linear Nonalternant Nanoribbons with Bright Emission and Ambipolar Redox Behavior. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yanpei Wang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yulin Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Tingting Huang
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Jun Zhang
- Anhui Jianzhu University School of Materials and Chemical Engineering CHINA
| | - Teng Luo
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Yong Ni
- National University of Singapore Department of Chemistry SINGAPORE
| | - Bo Li
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Sheng Xie
- Hunan University College of Chemistry and Chemical Engineering CHINA
| | - Zebing Zeng
- Hunan University College of Chemistry and Chemical Engineering State Key Laboratory of Chemo/Biosensing and Chemometrics,College of Chemistry and Chemical EngineeringHunan University, Changsha 410082, P. R. China 410082 Changsha CHINA
| |
Collapse
|
25
|
Dubey RK, Melle-Franco M, Mateo-Alonso A. Inducing Single-Handed Helicity in a Twisted Molecular Nanoribbon. J Am Chem Soc 2022; 144:2765-2774. [PMID: 35099195 PMCID: PMC8855342 DOI: 10.1021/jacs.1c12385] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Molecular conformation has an important role in chemistry and materials science. Molecular nanoribbons can adopt chiral twisted helical conformations. However, the synthesis of single-handed helically twisted molecular nanoribbons still represents a considerable challenge. Herein, we describe an asymmetric approach to induce single-handed helicity with an excellent degree of conformational discrimination. The chiral induction is the result of the chiral strain generated by fusing two oversized chiral rings and of the propagation of that strain along the nanoribbon's backbone.
Collapse
Affiliation(s)
- Rajeev K Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
26
|
Kaur P, Ali ME. Influence of the Radicaloid Character of Polyaromatic Hydrocarbon Couplers on Magnetic Exchange Interactions. Phys Chem Chem Phys 2022; 24:13094-13101. [DOI: 10.1039/d1cp02044g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The molecular properties of the conjugated spacers, such as the π-conjugation, aromaticity, length of the couplers, etc., that couple two localized spin-centers influence the intramolecular magnetic exchange interactions (2J) mediated...
Collapse
|
27
|
Han H, Zhang D, Zhu Z, Wei R, Xiao X, Wang X, Liu Y, Ma Y, Zhao D. Aromatic Stacking Mediated Spin-Spin Coupling in Cyclophane-Assembled Diradicals. J Am Chem Soc 2021; 143:17690-17700. [PMID: 34637282 DOI: 10.1021/jacs.1c08262] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To investigate the capability of π-π stacking motifs to enable spin-spin coupling, we designed and synthesized three pairs of regio-isomers featuring two radical moieties joined by a [2.2]paracyclophane (CP) unit. By fusing indeno units to CP, two partially stacked fluorene radicals are covalently linked, exhibiting evident antiferromagnetic (AFM) coupling regardless of the orientation of two spins. Remarkably, while possessing high diradical indices of 0.8 and 0.9, the two molecules demonstrate good air stability by virtue of their singlet ground state. Single crystals help unravel the structural basis of their AFM coupling behaviors. When two radical centers are arranged at the pseudometa-positions around CP, the face-to-face stacked phenylene rings intrinsically confer orbital interactions that promote AFM coupling. On the other hand, if two radicals are directed in the pseudopara-orientation, significant orbital overlapping is observed between the radical centers (i.e., C9 of fluorene) and the aromatic carbons laid on the side, rendering AFM coupling between the two spins. In contrast, when two fluorene radicals are tethered to CP via C9 through a single C-C bond, ferromagnetic (FM) coupling is manifested by both diradical isomers featuring pseudometa- and pseudopara-connectivity. With minimal spin distributed on CP and thus limited contribution from π-π stacking, their spin-spin coupling properties are more similar to a pair of nitroxide diradical analogues, in which the two spins are dominantly coupled via through-space interactions. From these results, important conclusions are elucidated such as that although through-space interactions may confer FM coupling, with weakened strength shown by PAH radicals due to their lower polarity, face-to-face stacked π-frameworks tend to induce AFM coupling, because favorable orbital interactions are readily achieved by PAH systems hosting delocalized spins that are capable of adopting varied stacking motifs.
Collapse
Affiliation(s)
- Han Han
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Di Zhang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Ziqi Zhu
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Rong Wei
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiao Xiao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Xiaoge Wang
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yiming Liu
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Yuguo Ma
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| | - Dahui Zhao
- Beijing National Laboratory for Molecular Sciences, Center for the Soft Matter Science and Engineering, the Key Laboratory of Polymer Chemistry and Physics of the Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China
| |
Collapse
|
28
|
Postils V, Ruipérez F, Casanova D. Mild Open-Shell Character of BODIPY and Its Impact on Singlet and Triplet Excitation Energies. J Chem Theory Comput 2021; 17:5825-5838. [PMID: 34517706 DOI: 10.1021/acs.jctc.1c00544] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study describes and rationalizes the electronic structure of BODIPY combining a large variety of quantum chemistry methods and computational tools. Examination of the obtained results using state-of-the-art electronic structure analyses provides a new and complete interpretation of the nature of low-lying electronic states in BODIPY and elucidates the limitations of excited-state methods in the computation of T1 and S1 energies, that is, systematic under- and overestimation of time-dependent density functional theory energies, respectively, and a large overestimation of the T1/S1 energy gap. Our analysis identifies the important role and physical origin of the mild open-shell character in the BODIPY ground state, that is, strong highest occupied and lowest unoccupied molecular orbital exchange interactions. The study provides guidelines for the accurate quantification of the T1/S1 gap, which is extremely relevant for the computational investigation of the photophysical properties of BODIPY and its derivatives. These conclusions should be taken into consideration in order to predict and interpret conspicuous photoactivated phenomena such as intersystem crossing, singlet fission, and triplet-triplet annihilation. Moreover, we believe that our study might provide new ideas and strategies for the analysis of other molecular chromophores.
Collapse
Affiliation(s)
- Verònica Postils
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, University of the Basque Country UPV/EHU, 20018 Donostia, Euskadi, Spain.,Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
| | - Fernando Ruipérez
- POLYMAT, University of the Basque Country UPV/EHU, 20018 Donostia, Euskadi, Spain
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain.,Ikerbasque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| |
Collapse
|
29
|
Turco E, Mishra S, Melidonie J, Eimre K, Obermann S, Pignedoli CA, Fasel R, Feng X, Ruffieux P. On-Surface Synthesis and Characterization of Super-nonazethrene. J Phys Chem Lett 2021; 12:8314-8319. [PMID: 34428064 DOI: 10.1021/acs.jpclett.1c02381] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Beginning with the early work of Clar et al. in 1955, zethrenes and their laterally extended homologues, super-zethrenes, have been intensively studied in the solution phase and widely investigated as optical and charge transport materials. Superzethrenes are also considered to exhibit an open-shell ground state and may thus serve as model compounds to investigate nanoscale π-magnetism. However, their synthesis is extremely challenging due to their high reactivity. We report here the on-surface synthesis of the hitherto largest zethrene homologue-super-nonazethrene-on Au(111). Using single-molecule scanning tunneling microscopy and spectroscopy, we show that super-nonazethrene exhibits an open-shell singlet ground state featuring a large spin polarization-driven electronic gap of 1 eV. Consistent with the emergence of an open-shell ground state, high-resolution tunneling spectroscopy reveals singlet-triplet spin excitations in super-nonazethrene, characterized by a strong intramolecular magnetic exchange coupling of 51 meV. Given the paucity of zethrene chemistry on surfaces, our results therefore provide unprecedented access to large, open-shell zethrene compounds amenable to scanning probe measurements, with potential application in molecular spintronics.
Collapse
Affiliation(s)
- Elia Turco
- nanotech@surfaces laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Shantanu Mishra
- nanotech@surfaces laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Jason Melidonie
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, 01069 Dresden, Germany
| | - Kristjan Eimre
- nanotech@surfaces laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Sebastian Obermann
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, 01069 Dresden, Germany
| | - Carlo A Pignedoli
- nanotech@surfaces laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Roman Fasel
- nanotech@surfaces laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Xinliang Feng
- Faculty of Chemistry and Food Chemistry, and Center for Advancing Electronics Dresden, Technical University of Dresden, 01069 Dresden, Germany
- Department of Synthetic Materials and Functional Devices, Max Planck Institute of Microstructure Physics, 06120 Halle, Germany
| | - Pascal Ruffieux
- nanotech@surfaces laboratory, Empa - Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
30
|
Minkin VI, Starikov AG, Starikova AA. Acene-Linked Zethrenes and Bisphenalenyls: A DFT Search for Organic Tetraradicals. J Phys Chem A 2021; 125:6562-6570. [PMID: 34310142 DOI: 10.1021/acs.jpca.1c02794] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons are of special interest due to their promising nonlinear optical and magnetic properties. A series of acene-linked zethrenes and bisphenalenyls comprising from five to nine benzene rings in the linker group have been computationally studied by the DFT UB3LYP/6-311++G(d,p) quantum-chemical modeling of their electronic structure, possible spin states, and exchange interactions. The zethrenes with octacene and nonacene linkers as well as bisphenalenyls comprising heptacene, octacene, and nonacene linker groups have been revealed to possess tetraradicaloid nature, which makes them promising building blocks for organic optoelectronic and spintronic devices. The results obtained open a way of constructing tetraradicaloid organic molecules characterized by the presence of two types of paramagnetic centers.
Collapse
Affiliation(s)
- Vladimir I Minkin
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| | - Andrey G Starikov
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University, 344090 Rostov-on-Don, Russian Federation
| |
Collapse
|
31
|
Deng X, Liu X, Wei L, Ye T, Yu X, Zhang C, Xiao J. Pentagon-Containing π-Expanded Systems: Synthesis and Photophysical Properties. J Org Chem 2021; 86:9961-9969. [PMID: 34279110 DOI: 10.1021/acs.joc.1c00332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have designed and synthesized three novel twistacene-modified enlarged pentagon-containing π-systems (6 and 9) with mismatched structures. The introduction of electron-withdrawing cyclopenta rings in the parent skeleton effectively stabilizes the electron-rich arenes. Their optoelectronic properties were studied via ultraviolet-visible (UV-vis) absorption spectra, fluorescence spectra, cyclic voltammetry, and density functional theory (DFT) calculation. In addition, chemical oxidation of the as-prepared compounds with nitrosonium hexafluoroantimonate could form the corresponding cationic radicals.
Collapse
Affiliation(s)
- Xin Deng
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Xinqun Liu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Leping Wei
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Tongtong Ye
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Xiaohui Yu
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Chunfang Zhang
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| | - Jinchong Xiao
- College of Chemistry and Environmental Science, Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
32
|
Zong C, Zhu X, Xu Z, Zhang L, Xu J, Guo J, Xiang Q, Zeng Z, Hu W, Wu J, Li R, Sun Z. Isomeric Dibenzoheptazethrenes for Air‐Stable Organic Field‐Effect Transistors. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaoyang Zong
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Zhanqiang Xu
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Lifeng Zhang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Jun Xu
- Health Science Platform Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics Center for Aggregation-Induced Emission College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Qin Xiang
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics Center for Aggregation-Induced Emission College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences Department of Chemistry School of Science Tianjin University 92 Weijin Road Tianjin 300072 China
| | - Zhe Sun
- Institute of Molecular Plus Tianjin Key Laboratory of Molecular Optoelectronic Sciences Tianjin university 92 Weijin Road Tianjin 300072 China
| |
Collapse
|
33
|
Takeda T, Kasahara Y, Akutagawa T. Color-tunable arylaminoanthraquinone dyes through hydrogen-bond-assisted charge transfer interaction. RSC Adv 2021; 11:24217-24231. [PMID: 35479002 PMCID: PMC9036828 DOI: 10.1039/d1ra03985g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
We prepared a series of arylaminoanthraquinone derivatives, including those with electron-accepting sulfone units and/or with electron-donating dialkylamino units. A color-tunable anthraquinone library that reached into the NIR region could be prepared through the precise control of frontier orbitals. Fine color-tuning was achieved through proper selection and positioning of the substituents. Effective intramolecular hydrogen-bond-assisted charge transfer interaction between electron-donating aniline/p-phenylenediamine and electron-accepting anthraquinone substructures induced a significant bathochromic shift of anthraquinone. The number and position of the substituents and the molecular conformation also significantly contributed to determining photophysical properties. A color-tunable anthraquinone library based on arylaminoanthraquinone was prepared through hydrogen-bond-assisted charge transfer interaction.![]()
Collapse
Affiliation(s)
- Takashi Takeda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Aoba-ku Sendai 980-8577 Japan .,Department of Applied Chemistry, Graduate School of Engineering, Tohoku University Sendai Miyagi 980-8579 Japan
| | - Yotaro Kasahara
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University Sendai Miyagi 980-8579 Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University Katahira 2-1-1, Aoba-ku Sendai 980-8577 Japan .,Department of Applied Chemistry, Graduate School of Engineering, Tohoku University Sendai Miyagi 980-8579 Japan
| |
Collapse
|
34
|
Zong C, Zhu X, Xu Z, Zhang L, Xu J, Guo J, Xiang Q, Zeng Z, Hu W, Wu J, Li R, Sun Z. Isomeric Dibenzoheptazethrenes for Air-Stable Organic Field-Effect Transistors. Angew Chem Int Ed Engl 2021; 60:16230-16236. [PMID: 33999484 DOI: 10.1002/anie.202105872] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Indexed: 01/15/2023]
Abstract
Singlet diradicaloids hold great potential as semiconductors for organic field-effect transistors (OFETs). However, their relative low material and device stabilities impede the practical applications. Here, to achieve balanced stability and performance, two isomeric dibenzoheptazethrene derivatives with singlet diradical character were synthesized in a concise manner. Benefitting from the aromatic stabilization, both compounds display a small diradical character and large singlet-triplet gap, as corroborated by variable-temperature electron paramagnetic resonance spectra, single-crystal analysis, and theoretical calculations. OFET devices based on single crystals showed a high hole mobility of 0.15 cm2 V-1 s-1 , which is the highest for zethrene-based semiconductors. Both isomers exhibited remarkable material stability in air-saturated solutions as well as excellent bias-stress and storage stability in device under ambient air.
Collapse
Affiliation(s)
- Chaoyang Zong
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xiaoting Zhu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Zhanqiang Xu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Lifeng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jun Xu
- Health Science Platform, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jing Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qin Xiang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Center for Aggregation-Induced Emission, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Wenping Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Jishan Wu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China.,Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Rongjin Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
35
|
Mishra S, Yao X, Chen Q, Eimre K, Gröning O, Ortiz R, Di Giovannantonio M, Sancho-García JC, Fernández-Rossier J, Pignedoli CA, Müllen K, Ruffieux P, Narita A, Fasel R. Large magnetic exchange coupling in rhombus-shaped nanographenes with zigzag periphery. Nat Chem 2021; 13:581-586. [PMID: 33972756 DOI: 10.1038/s41557-021-00678-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 03/08/2021] [Indexed: 02/03/2023]
Abstract
Nanographenes with zigzag edges are predicted to manifest non-trivial π-magnetism resulting from the interplay of concurrent electronic effects, such as hybridization of localized frontier states and Coulomb repulsion between valence electrons. This provides a chemically tunable platform to explore quantum magnetism at the nanoscale and opens avenues towards organic spintronics. The magnetic stability in nanographenes is thus far greatly limited by the weak magnetic exchange coupling, which remains below the room-temperature thermal energy. Here, we report the synthesis of large rhombus-shaped nanographenes with zigzag peripheries on gold and copper surfaces. Single-molecule scanning probe measurements show an emergent magnetic spin singlet ground state with increasing nanographene size. The magnetic exchange coupling in the largest nanographene (C70H22, containing five benzenoid rings along each edge), determined by inelastic electron tunnelling spectroscopy, exceeds 100 meV or 1,160 K, which outclasses most inorganic nanomaterials and survives on a metal electrode.
Collapse
Affiliation(s)
- Shantanu Mishra
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Xuelin Yao
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Qiang Chen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Kristjan Eimre
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Oliver Gröning
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Ricardo Ortiz
- Department of Applied Physics, University of Alicante, Sant Vicent del Raspeig, Spain.,Department of Chemical Physics, University of Alicante, Sant Vicent del Raspeig, Spain
| | - Marco Di Giovannantonio
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | | | | | - Carlo A Pignedoli
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Klaus Müllen
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Mainz, Germany
| | - Pascal Ruffieux
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Akimitsu Narita
- Department of Synthetic Chemistry, Max Planck Institute for Polymer Research, Mainz, Germany. .,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| | - Roman Fasel
- nanotech@surfaces Laboratory, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland. .,Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland.
| |
Collapse
|
36
|
Dubey RK, Melle-Franco M, Mateo-Alonso A. Twisted Molecular Nanoribbons with up to 53 Linearly-Fused Rings. J Am Chem Soc 2021; 143:6593-6600. [PMID: 33876941 DOI: 10.1021/jacs.1c01849] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The synthesis of three molecular nanoribbons with a twisted aromatic framework is described. The largest one shows a 53 linearly fused rings backbone (12.9 nm) and 322 conjugated atoms in its aromatic core (C296N24S2). This new family of nanoribbons shows extremely high molar absorptivities, reaching 986 100 M-1 cm-1, and red-emitting properties.
Collapse
Affiliation(s)
- Rajeev K Dubey
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Manuel Melle-Franco
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
37
|
Koçak R, Daştan A. Synthesis of dibenzosuberenone-based novel polycyclic π-conjugated dihydropyridazines, pyridazines and pyrroles. Beilstein J Org Chem 2021; 17:719-729. [PMID: 33796159 PMCID: PMC7991620 DOI: 10.3762/bjoc.17.61] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/26/2021] [Indexed: 11/25/2022] Open
Abstract
The synthesis of novel polycyclic π-conjugated dihydropyridazines, pyridazines, and pyrroles was studied. Dihydropyridazine dyes were synthesized by inverse electron-demand Diels–Alder cycloaddition reactions between a dibenzosuberenone and tetrazines that bear various substituents. The pyridazines were synthesized in high yields by oxidation of dihydropyridazine-appended dibenzosuberenones with PIFA or NO. p-Quinone derivatives of pyridazines were also obtained by H-shift isomerization following the inverse electron-demand Diels–Alder reaction of tetrazines with p-quinone dibenzosuberenone. Then these pyridazines were converted to the corresponding pyrroles by reductive treatment with zinc. It was observed that all the dihydropyridazines obtained gave absorbance and emission at long wavelengths.
Collapse
Affiliation(s)
- Ramazan Koçak
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| | - Arif Daştan
- Department of Chemistry, Faculty of Sciences, Atatürk University, Erzurum, 25240, Turkey
| |
Collapse
|
38
|
Zhu J, Han Y, Ni Y, Li G, Wu J. Facile Synthesis of Nitrogen-Doped [(6.)m8]nCyclacene Carbon Nanobelts by a One-Pot Self-Condensation Reaction. J Am Chem Soc 2021; 143:2716-2721. [DOI: 10.1021/jacs.1c00409] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Jun Zhu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Guangwu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
39
|
|
40
|
|
41
|
Liu J, Feng X. Maßgeschneiderte Synthese von Graphennanostrukturen mit Zickzack‐Rändern. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008838] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
- Center for Advancing Electronics Dresden (cfaed), und Fakultät für Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Deutschland
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed), und Fakultät für Chemie und Lebensmittelchemie Technische Universität Dresden 01062 Dresden Deutschland
| |
Collapse
|
42
|
Liu J, Feng X. Synthetic Tailoring of Graphene Nanostructures with Zigzag-Edged Topologies: Progress and Perspectives. Angew Chem Int Ed Engl 2020; 59:23386-23401. [PMID: 32720441 PMCID: PMC7756885 DOI: 10.1002/anie.202008838] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/01/2023]
Abstract
Experimental and theoretical investigations have revealed that the chemical and physical properties of graphene are crucially determined by their topological structures. Therefore, the atomically precise synthesis of graphene nanostructures is essential. A particular example is graphene nanostructures with zigzag-edged structures, which exhibit unique (opto)electronic and magnetic properties owing to their spin-polarized edge state. Recent progress in the development of synthetic methods and strategies as well as characterization methods has given access to this class of unprecedented graphene nanostructures, which used to be purely molecular objectives in theoretical chemistry. Thus, clear insight into the structure-property relationships has become possible as well as new applications in organic carbon-based electronic and spintronic devices. In this Minireview, we discuss the recent progress in the controlled synthesis of zigzag-edged graphene nanostructures with different topologies through a bottom-up synthetic strategy.
Collapse
Affiliation(s)
- Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.,Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
43
|
Zhang G, Xue N, Gu W, Yang X, Lv A, Zheng Y, Zhang L. Regiocontrolled dimerization of asymmetric diazaheptacene derivatives toward X-shaped porous semiconductors. Chem Sci 2020; 11:11235-11243. [PMID: 34094364 PMCID: PMC8162510 DOI: 10.1039/d0sc03744c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conformationally rigid X-shaped PAHs are attracting interest due to their self-assembly into unique networks and as models to study through-space exciton and charge delocalization in one single molecule. We report here the synthesis of X-shaped PAHs by dimerization of diazaheptacene diimides. The diimide groups are employed to effectively direct the self-assembly into antiparallel dimer aggregates, which assist the compounds to undergo a regiocontrolled [4 + 4] dimerization, leading to an X-shaped conformation bearing electron-poor and -rich subunits. The resulting PAHs are found to pack in 2D layers with large open channels and infinite π⋯π arrays. Furthermore, these highly crystalline porous materials serve as electron-transporting materials in OFETs due to the long-range π-stacked arrays in the layers. This work presents a potentially generalizable strategy, which may provide a unique class of porous semiconductors for organic devices, taking advantage of their open channels. The synthesis of conformationally rigid X-shaped PAHs by regiocontrolled cyclodimerization of diazaheptacene diimides is presented. The resulting porous materials exhibit enhanced semiconducting behaviors with large open channels.![]()
Collapse
Affiliation(s)
- Guowei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Ning Xue
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Wen Gu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Xingzhou Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 610054 P. R. China
| | - Aifeng Lv
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science Shanghai 201620 P. R. China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC) Chengdu 610054 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
44
|
Jousselin-Oba T, Mamada M, Okazawa A, Marrot J, Ishida T, Adachi C, Yassar A, Frigoli M. Modulating the ground state, stability and charge transport in OFETs of biradicaloid hexahydro-diindenopyrene derivatives and a proposed method to estimate the biradical character. Chem Sci 2020; 11:12194-12205. [PMID: 34094431 PMCID: PMC8162832 DOI: 10.1039/d0sc04583g] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/15/2020] [Indexed: 11/21/2022] Open
Abstract
Biradicaloid compounds with an open-shell ground state have been the subject of intense research in the past decade. Although diindenoacenes are one of the most developed families, only a few examples have been reported as active layers in organic field-effect transistors (OFETs) with a charge mobility of around 10-3 cm2 V-1 s-1 due to a steric disadvantage of the mesityl group to kinetically stabilize compounds. Herein, we disclose our efforts to improve the charge transport of the diindenoacene family based on hexahydro-diindenopyrene (HDIP) derivatives with different annelation modes for which the most reactive position has been functionalized with (triisopropylsilyl)ethynyl (TIPS) groups. All the HDIP derivatives show remarkably higher stability than that of TIPS-pentacene, enduring for 2 days to more than 30 days, which depends on the oxidation potential, the contribution of the singlet biradical form in the ground state and the annelation mode. The annelation mode affects not only the band gap and the biradical character (y 0) but also the value of the singlet-triplet energy gap (ΔE S-T) that does not follow the reverse trend of y 0. A method based on comparison between experimental and theoretical bond lengths has been disclosed to estimate y 0 and shows that y 0 computed at the projected unrestricted Hartree-Fock (PUHF) level is the most relevant among those reported by all other methods. Thanks to their high stability, thin-film OFETs were successfully fabricated. Well balanced ambipolar transport was obtained in the order of 10-3 cm2 V-1 s-1 in the bottom-gate/top-contact configuration, and unipolar transport in the top-gate/bottom-contact configuration was obtained in the order of 10-1 cm2 V-1 s-1 which is the highest value obtained for biradical compounds with a diindenoacene skeleton.
Collapse
Affiliation(s)
- Tanguy Jousselin-Oba
- UMR CNRS 8180, UVSQ, Institut Lavoisier de Versailles, Université Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Masashi Mamada
- Center for Organic Photonics and Electronics Research (OPERA), JST ERATO Adachi Molecular Exciton Engineering Project, Academia-Industry Molecular Systems for Devices Research and Education Center, Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Atsushi Okazawa
- Division of Chemistry, Institute of Liberal Education, Nihon University School of Medicine Itabashi Tokyo 173-8610 Japan
| | - Jérome Marrot
- UMR CNRS 8180, UVSQ, Institut Lavoisier de Versailles, Université Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| | - Takayuki Ishida
- Department of Engineering Science, The University of Electro-Communications Chofu Tokyo 182-8585 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), JST ERATO Adachi Molecular Exciton Engineering Project, Academia-Industry Molecular Systems for Devices Research and Education Center, Kyushu University Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University Nishi Fukuoka 819-0395 Japan
| | - Abderrahim Yassar
- Ecole Polytechnique, Institut Polytechnique de Paris, LPICM, CNRS route de Saclay 91128 Palaiseau France
| | - Michel Frigoli
- UMR CNRS 8180, UVSQ, Institut Lavoisier de Versailles, Université Paris-Saclay 45 avenue des Etats-Unis 78035 Versailles Cedex France
| |
Collapse
|
45
|
Ni Y, Gordillo-Gámez F, Peña Alvarez M, Nan Z, Li Z, Wu S, Han Y, Casado J, Wu J. A Chichibabin's Hydrocarbon-Based Molecular Cage: The Impact of Structural Rigidity on Dynamics, Stability, and Electronic Properties. J Am Chem Soc 2020; 142:12730-12742. [PMID: 32589415 DOI: 10.1021/jacs.0c04876] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A three-dimensional π-conjugated polyradicaloid molecular cage c-Ph14, consisting of three Chichibabin's hydrocarbon motifs connected by two benzene-1,3,5-triyl bridgeheads, was synthesized. Compared with its linear model compound l-Ph4, the prism-like c-Ph14 has a more rigid structure, which shows significant impact on the molecular dynamics, stability, and electronic properties. A higher rotation energy barrier for the quinoidal biphenyl units was determined in c-Ph14 (15.64 kcal/mol) than that of l-Ph4 (11.40 kcal/mol) according to variable-temperature NMR measurements, leading to improved stability, a smaller diradical character, and an increased singlet-triplet energy gap. The pressure-dependent Raman spectroscopic studies on the rigid cage c-Ph14 revealed a quinoidal-to-aromatic transformation along the biphenyl bridges. In addition, the ellipsoidal cavity in the cage allowed selective encapsulation of fullerene C70 over C60, with an associate constant of about 1.43 × 104 M-1. Moreover, c-Ph14 and l-Ph4 exhibited similar redox behavior and their cationic species (c-Ph146+ and l-Ph42+) were obtained by chemical oxidation, and the structures were identified by X-ray crystallographic analysis. The biphenyl unit showed a twisted conformation in l-Ph42+ and remained coplanarity in c-Ph146+. Notably, molecules of c-Ph146+ form a one-dimensional columnar structure via close π-π stacking between the bridgeheads.
Collapse
Affiliation(s)
- Yong Ni
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Fernando Gordillo-Gámez
- Department of Physical Chemistry, Faculty of Science, University of Málaga, CEI Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Miriam Peña Alvarez
- Center for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, EH9 3JZ Edinburgh, United Kingdom
| | - Zhihan Nan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Zhengtao Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Shaofei Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, CEI Andalucía Tech, Campus de Teatinos s/n, 29071 Málaga, Spain
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
46
|
Li Q, Kan YH, Xu HL, Su ZM. Hydrogen Migration-Triggered Diradicaloid Singlet-Fission Switch. J Am Chem Soc 2020; 142:11791-11803. [DOI: 10.1021/jacs.0c02778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, P. R. China
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji 133002, P. R. China
| | - Yu-He Kan
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- Jiangsu Province Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, P. R. China
| | - Hong-Liang Xu
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry, National and Local United Engineering Laboratory for Power Batteries, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130024, P. R. China
| |
Collapse
|
47
|
Chen W, Yu F, Xu Q, Zhou G, Zhang Q. Recent Progress in High Linearly Fused Polycyclic Conjugated Hydrocarbons (PCHs, n > 6) with Well-Defined Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1903766. [PMID: 32596114 PMCID: PMC7312318 DOI: 10.1002/advs.201903766] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/17/2020] [Indexed: 05/05/2023]
Abstract
Although polycyclic conjugated hydrocarbons (PCHs) and their analogues have gained great progress in the fields of organic photoelectronic materials, the in-depth study on present PCHs is still limited to hexacene or below because longer PCHs are insoluble, unstable, and tediously synthesized. Very recently, various strategies including on-surface synthesis are developed to address these issues and many higher novel PCHs are constructed. Therefore, it is necessary to review these advances. Here, the recent synthetic approach, basic physicochemical properties, single-crystal packing behaviors, and potential applications of the linearly fused PCHs (higher than hexacene), including acenes or π-extended acenes with fused six-membered benzenoid rings and other four-membered, five-membered or even seven-membered and eight-membered fused compounds, are summarized.
Collapse
Affiliation(s)
- Wangqiao Chen
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper DisplaysNational Center for International Research on Green OptoelectronicsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Fei Yu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Qun Xu
- College of Materials Science and EngineeringZhengzhou UniversityZhengzhou450001P. R. China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology and Institute of Electronic Paper DisplaysNational Center for International Research on Green OptoelectronicsSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006P. R. China
| | - Qichun Zhang
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| |
Collapse
|
48
|
Tang C, Song C, Wei Z, Liang C, Ran J, Cai Y, Dong X, Han W. Polycyclic naphthalenediimide-based nanoparticles for NIR-II fluorescence imaging guided phototherapy. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9723-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
49
|
Naskar S, Das M. The use of low-lying excited states of zethrene and its homologs in singlet fission within Pariser-Parr-Pople model Hamiltonian: A Density Matrix Renormalization Group study. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Lischka H, Shepard R, Müller T, Szalay PG, Pitzer RM, Aquino AJA, Araújo do Nascimento MM, Barbatti M, Belcher LT, Blaudeau JP, Borges I, Brozell SR, Carter EA, Das A, Gidofalvi G, González L, Hase WL, Kedziora G, Kertesz M, Kossoski F, Machado FBC, Matsika S, do Monte SA, Nachtigallová D, Nieman R, Oppel M, Parish CA, Plasser F, Spada RFK, Stahlberg EA, Ventura E, Yarkony DR, Zhang Z. The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. J Chem Phys 2020; 152:134110. [PMID: 32268762 DOI: 10.1063/1.5144267] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.
Collapse
Affiliation(s)
- Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Thomas Müller
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Péter G Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Russell M Pitzer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | - Lachlan T Belcher
- Laser and Optics Research Center, Department of Physics, US Air Force Academy, Colorado 80840, USA
| | | | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ 22290-270, Brazil
| | - Scott R Brozell
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Emily A Carter
- Office of the Chancellor and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Box 951405, Los Angeles, California 90095-1405, USA
| | - Anita Das
- Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, USA
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Gary Kedziora
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057-1227, USA
| | | | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19122, USA
| | | | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 160610 Prague 6, Czech Republic
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, USA
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rene F K Spada
- Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Eric A Stahlberg
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Elizete Ventura
- Universidade Federal da Paraíba, 58059-900 João Pessoa, PB, Brazil
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Zhiyong Zhang
- Stanford Research Computing Center, Stanford University, 255 Panama Street, Stanford, California 94305, USA
| |
Collapse
|