1
|
Zhou W, Li Y, Partridge BE, Mirkin CA. Engineering Anisotropy into Organized Nanoscale Matter. Chem Rev 2024; 124:11063-11107. [PMID: 39315621 DOI: 10.1021/acs.chemrev.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Programming the organization of discrete building blocks into periodic and quasi-periodic arrays is challenging. Methods for organizing materials are particularly important at the nanoscale, where the time required for organization processes is practically manageable in experiments, and the resulting structures are of interest for applications spanning catalysis, optics, and plasmonics. While the assembly of isotropic nanoscale objects has been extensively studied and described by empirical design rules, recent synthetic advances have allowed anisotropy to be programmed into macroscopic assemblies made from nanoscale building blocks, opening new opportunities to engineer periodic materials and even quasicrystals with unnatural properties. In this review, we define guidelines for leveraging anisotropy of individual building blocks to direct the organization of nanoscale matter. First, the nature and spatial distribution of local interactions are considered and three design rules that guide particle organization are derived. Subsequently, recent examples from the literature are examined in the context of these design rules. Within the discussion of each rule, we delineate the examples according to the dimensionality (0D-3D) of the building blocks. Finally, we use geometric considerations to propose a general inverse design-based construction strategy that will enable the engineering of colloidal crystals with unprecedented structural control.
Collapse
Affiliation(s)
- Wenjie Zhou
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yuanwei Li
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Benjamin E Partridge
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Duan M, Lv C, Zang J, Leng X, Zhao G, Zhang T. Metals at the Helm: Revolutionizing Protein Assembly and Applications. Macromol Biosci 2024:e2400126. [PMID: 39239781 DOI: 10.1002/mabi.202400126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/23/2024] [Indexed: 09/07/2024]
Abstract
Protein assembly is an essential process in biological systems, where proteins self-assemble into complex structures with diverse functions. Inspired by the exquisite control over protein assembly in nature, scientists have been exploring ways to design and assemble protein structures with precise control over their topologies and functions. One promising approach for achieving this goal is through metal coordination, which utilizes metal-binding motifs to mediate protein-protein interactions and assemble protein complexes with controlled stoichiometry and geometry. Metal coordination provides a modular and tunable approach for protein assembly and de novo structure design, where the metal ion acts as a molecular glue that holds the protein subunits together in a specific orientation. Metal-coordinated protein assemblies have shown great potential for developing functional metalloproteinase, novel biomaterials and integrated drug delivery systems. In this review, an overview of the recent advances in protein assemblies benefited from metal coordination is provided, focusing on various protein arrangements in different dimensions including protein oligomers, protein nanocage and higher-order protein architectures. Moreover, the key metal-binding motifs and strategies used to assemble protein structures with precise control over their properties are highlighted. The potential applications of metal-mediated protein assemblies in biotechnology and biomedicine are also discussed.
Collapse
Affiliation(s)
- Maoping Duan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Jiachen Zang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xiaojing Leng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Guanghua Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tuo Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
3
|
Anaya-Plaza E, Özdemir Z, Wimmer Z, Kostiainen MA. Hierarchical peroxiredoxin assembly through orthogonal pH-response and electrostatic interactions. J Mater Chem B 2023; 11:11544-11551. [PMID: 37990925 DOI: 10.1039/d3tb00369h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Morpheeins are proteins that adapt their morphology and function to the environment. Therefore, their use in nanotechnology opens up the bottom-up preparation of anisotropic metamaterials, based on the sequential use of different stimuli. A prominent member of this family of proteins is peroxiredoxins (Prx), with dual peroxidase and chaperone function, depending on the pH of the media. At high pH, they show a toroidal morphology that turns into tubular stacks upon acidification. While the toroidal conformers have been explored as building blocks to yield 1D and 2D structures, the obtention of higher ordered materials remain unexplored. In this research, the morpheein behaviour of Prx is exploited to yield columnar aggregates, that are subsequently self-assembled into 3D anisotropic bundles. This is achieved by electrostatic recognition between the negatively charged protein rim and a positively charged porphyrin acting as molecular glue. The subsequent and orthogonal input lead to the alignment of the monodimensional stacks side-by-side, leading to the precise assembly of this anisotropic materials.
Collapse
Affiliation(s)
- Eduardo Anaya-Plaza
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Finland.
| | - Zulal Özdemir
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technická 5, 16628 Prague 6, Czech Republic
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Kemistintie 1, Finland.
| |
Collapse
|
4
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
5
|
Li X, Bai Y, Luo Q, Xu J, Chen T, Liu J. Morphological Selectivity of a Protein Self-Assembly System with a Repertoire of Diverse Interaction Modes. ACS Macro Lett 2022; 11:675-679. [PMID: 35570806 DOI: 10.1021/acsmacrolett.2c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multiple metal chelating sites were incorporated onto the second mitochondria-derived activator of caspase (SMAC) building blocks. The combination of different binding sites generated a repertoire of diverse binding modes, among which two different microfilament types (small and large) with distinct patterns were selected under thermodynamic control. Furthermore, the two microfilaments exhibited a pronounced secondary assembly trend due to the potential noncovalent interactions on the protein surfaces. Coupled with stereoselectivity, they presented a strong self-recognition effect and underwent two distinct reassembly patterns. That is, the large filaments self-associated in pairs to form "interlocked chain" structures, while the small ones twisted to form protein helical bundles. This work represents one of the few studies of selective self-assembly of self-assembled protein assemblies. Such an idea may provide inspiration for constructing more sophisticated protein architectures in the future.
Collapse
Affiliation(s)
- Xiumei Li
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yushi Bai
- Department of Preventative and Restorative Dental Sciences, School of Dentistry, University of California, San Francisco, California 94143, United States
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jiayun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, P. R. China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
6
|
Edwardson TGW, Levasseur MD, Tetter S, Steinauer A, Hori M, Hilvert D. Protein Cages: From Fundamentals to Advanced Applications. Chem Rev 2022; 122:9145-9197. [PMID: 35394752 DOI: 10.1021/acs.chemrev.1c00877] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins that self-assemble into polyhedral shell-like structures are useful molecular containers both in nature and in the laboratory. Here we review efforts to repurpose diverse protein cages, including viral capsids, ferritins, bacterial microcompartments, and designed capsules, as vaccines, drug delivery vehicles, targeted imaging agents, nanoreactors, templates for controlled materials synthesis, building blocks for higher-order architectures, and more. A deep understanding of the principles underlying the construction, function, and evolution of natural systems has been key to tailoring selective cargo encapsulation and interactions with both biological systems and synthetic materials through protein engineering and directed evolution. The ability to adapt and design increasingly sophisticated capsid structures and functions stands to benefit the fields of catalysis, materials science, and medicine.
Collapse
Affiliation(s)
| | | | - Stephan Tetter
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Angela Steinauer
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Mao Hori
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Donald Hilvert
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
7
|
Insua I, Bergueiro J, Méndez-Ardoy A, Lostalé-Seijo I, Montenegro J. Bottom-up supramolecular assembly in two dimensions. Chem Sci 2022; 13:3057-3068. [PMID: 35414883 PMCID: PMC8926289 DOI: 10.1039/d1sc05667k] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/19/2022] [Indexed: 01/17/2023] Open
Abstract
The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. Attracted by the interesting properties of two-dimensional inorganic analogues, monomers of different chemical natures are being explored for the assembly of dynamic 2D systems. Although many important discoveries have been already achieved, great challenges are still to be addressed in this field. Hierarchical multicomponent assembly, directional non-covalent growth and internal structural control are a just a few of the examples that will be discussed in this perspective about the exciting present and the bright future of two-dimensional supramolecular assemblies. The self-assembly of molecules in two dimensions (2D) is gathering attention from all disciplines across the chemical sciences. This perspective discusses the main strategies to direct the supramolecular self-assembly of organic monomers in 2D.![]()
Collapse
Affiliation(s)
- Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Julian Bergueiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Alejandro Méndez-Ardoy
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Irene Lostalé-Seijo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela 15705 Spain
| |
Collapse
|
8
|
Wang L, Shi S, Luo Z, Qu N, Liu B. Hierarchical, Highly Open Microtubes and Columnar Liquid Crystals Self‐Assembled from Symmetrical and Asymmetrical Colloidal Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Linna Wang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100149 China
| | - Shang Shi
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100149 China
| | - Zhang Luo
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Na Qu
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100149 China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100149 China
| |
Collapse
|
9
|
Zhu J, Avakyan N, Kakkis AA, Hoffnagle AM, Han K, Li Y, Zhang Z, Choi TS, Na Y, Yu CJ, Tezcan FA. Protein Assembly by Design. Chem Rev 2021; 121:13701-13796. [PMID: 34405992 PMCID: PMC9148388 DOI: 10.1021/acs.chemrev.1c00308] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Proteins are nature's primary building blocks for the construction of sophisticated molecular machines and dynamic materials, ranging from protein complexes such as photosystem II and nitrogenase that drive biogeochemical cycles to cytoskeletal assemblies and muscle fibers for motion. Such natural systems have inspired extensive efforts in the rational design of artificial protein assemblies in the last two decades. As molecular building blocks, proteins are highly complex, in terms of both their three-dimensional structures and chemical compositions. To enable control over the self-assembly of such complex molecules, scientists have devised many creative strategies by combining tools and principles of experimental and computational biophysics, supramolecular chemistry, inorganic chemistry, materials science, and polymer chemistry, among others. Owing to these innovative strategies, what started as a purely structure-building exercise two decades ago has, in short order, led to artificial protein assemblies with unprecedented structures and functions and protein-based materials with unusual properties. Our goal in this review is to give an overview of this exciting and highly interdisciplinary area of research, first outlining the design strategies and tools that have been devised for controlling protein self-assembly, then describing the diverse structures of artificial protein assemblies, and finally highlighting the emergent properties and functions of these assemblies.
Collapse
Affiliation(s)
| | | | - Albert A. Kakkis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Alexander M. Hoffnagle
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Kenneth Han
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Yiying Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Zhiyin Zhang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Tae Su Choi
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Youjeong Na
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - Chung-Jui Yu
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0340, United States
| |
Collapse
|
10
|
Wang L, Shi S, Luo Z, Qu N, Liu B. Hierarchical, Highly Open Microtubes and Columnar Liquid Crystals Self-Assembled from Symmetrical and Asymmetrical Colloidal Rings. Angew Chem Int Ed Engl 2021; 61:e202112507. [PMID: 34800076 DOI: 10.1002/anie.202112507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 11/11/2022]
Abstract
The use of simple building blocks to produce hierarchical and porous structured materials is highly desired. Rings are simple colloidal particles but unique for their internal cavities. Here we report the self-assembly (SA) of colloidal rings with tunable asymmetry mediated by a depletion force and demonstrate that a variety of porous colloidal superstructures from microtubes, flexible chains, (plastic) crystals to highly open liquid crystals (LCs) can be formed along the predesigned SA paths. In particular, the SA is staged in binary or ternary systems. Large rings first form complex ring-in-ring and ring-in-ring-in-ring assemblies by capturing smaller rings, which, as new building blocks, can further form multi-walled microtubes and open columnar LCs. Moreover, a plastic columnar LC with alternating intracolumnar stacking is found from asymmetrical rings. The SA with colloidal rings opens a new avenue to construct hierarchical and porous ordered metamaterials.
Collapse
Affiliation(s)
- Linna Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Shang Shi
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Zhang Luo
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Na Qu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100149, China
| | - Bing Liu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of Chinese Academy of Sciences, Beijing, 100149, China
| |
Collapse
|
11
|
Vázquez‐González V, Mayoral MJ, Aparicio F, Martínez‐Arjona P, González‐Rodríguez D. The Role of Peripheral Amide Groups as Hydrogen-Bonding Directors in the Tubular Self-Assembly of Dinucleobase Monomers. Chempluschem 2021; 86:1087-1096. [PMID: 34185949 PMCID: PMC8457134 DOI: 10.1002/cplu.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/11/2021] [Indexed: 11/29/2022]
Abstract
Nanotubes are a fascinating kind of self-assembled structure which have a wide interest and potential in supramolecular chemistry. We demonstrated that nanotubes of defined dimensions can be produced from dinucleobase monomers through two decoupled hierarchical cooperative processes: cyclotetramerization and supramolecular polymerization. Here we analyze the role of peripheral amide groups, which can form an array of hydrogen bonds along the tube axis, on this self-assembly process. A combination of 1 H NMR and CD spectroscopy techniques allowed us to analyze quantitatively the thermodynamics of each of these two processes separately. We found out that the presence of these amide directors is essential to guide the polymerization event and that their nature and number have a strong influence, not only on the stabilization of the stacks of macrocycles, but also on the supramolecular polymerization mechanism.
Collapse
Affiliation(s)
- Violeta Vázquez‐González
- Nanostructured Molecular Systems and Materials GroupOrganic Chemistry DepartmentScience FacultyUniversidad Autónoma de Madrid28049MadridSpain
| | - María J. Mayoral
- Nanostructured Molecular Systems and Materials GroupOrganic Chemistry DepartmentScience FacultyUniversidad Autónoma de Madrid28049MadridSpain
- Inorganic Chemistry DepartmentChemistry FacultyUniversidad Complutense de Madrid28040MadridSpain
| | - Fátima Aparicio
- Nanostructured Molecular Systems and Materials GroupOrganic Chemistry DepartmentScience FacultyUniversidad Autónoma de Madrid28049MadridSpain
| | - Paula Martínez‐Arjona
- Nanostructured Molecular Systems and Materials GroupOrganic Chemistry DepartmentScience FacultyUniversidad Autónoma de Madrid28049MadridSpain
| | - David González‐Rodríguez
- Nanostructured Molecular Systems and Materials GroupOrganic Chemistry DepartmentScience FacultyUniversidad Autónoma de Madrid28049MadridSpain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid28049MadridSpain
| |
Collapse
|
12
|
Chaperonins: Nanocarriers with Biotechnological Applications. NANOMATERIALS 2021; 11:nano11020503. [PMID: 33671209 PMCID: PMC7922521 DOI: 10.3390/nano11020503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/05/2021] [Accepted: 02/13/2021] [Indexed: 12/18/2022]
Abstract
Chaperonins are molecular chaperones found in all kingdoms of life, and as such they assist in the folding of other proteins. Structurally, chaperonins are cylinders composed of two back-to-back rings, each of which is an oligomer of ~60-kDa proteins. Chaperonins are found in two main conformations, one in which the cavity is open and ready to recognise and trap unfolded client proteins, and a "closed" form in which folding takes place. The conspicuous properties of this structure (a cylinder containing a cavity that allows confinement) and the potential to control its closure and aperture have inspired a number of nanotechnological applications that will be described in this review.
Collapse
|
13
|
Han S, Kim YN, Jo G, Kim YE, Kim HM, Choi JM, Jung Y. Multivalent-Interaction-Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano-Prisms. Angew Chem Int Ed Engl 2020; 59:23244-23251. [PMID: 32856385 DOI: 10.1002/anie.202010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Indexed: 12/25/2022]
Abstract
Current approaches to design monodisperse protein assemblies require rigid, tight, and symmetric interactions between oligomeric protein units. Herein, we introduce a new multivalent-interaction-driven assembly strategy that allows flexible, spaced, and asymmetric assembly between protein oligomers. We discovered that two polygonal protein oligomers (ranging from triangle to hexagon) dominantly form a discrete and stable two-layered protein prism nanostructure via multivalent interactions between fused binding pairs. We demonstrated that protein nano-prisms with long flexible peptide linkers (over 80 amino acids) between protein oligomer layers could be discretely formed. Oligomers with different structures could also be monodispersely assembled into two-layered but asymmetric protein nano-prisms. Furthermore, producing higher-order architectures with multiple oligomer layers, for example, 3-layered nano-prisms or nanotubes, was also feasible.
Collapse
Affiliation(s)
- Suyeong Han
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Yu-Na Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Gyunghee Jo
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon, 34141, Korea
| | - Young Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering, KAIST, Daejeon, 34141, Korea.,Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon, 34126, Korea
| | - Jeong-Mo Choi
- Natural Science Research Institute, KAIST, Daejeon, 34141, Korea.,Department of Chemistry, Busan National University, Busan, 46241, Korea
| | - Yongwon Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
14
|
Han S, Kim Y, Jo G, Kim YE, Kim HM, Choi J, Jung Y. Multivalent‐Interaction‐Driven Assembly of Discrete, Flexible, and Asymmetric Supramolecular Protein Nano‐Prisms. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suyeong Han
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Yu‐na Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Gyunghee Jo
- Biomedical Science and Engineering Interdisciplinary Program KAIST Daejeon 34141 Korea
| | - Young Eun Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Ho Min Kim
- Graduate School of Medical Science & Engineering KAIST Daejeon 34141 Korea
- Center for Biomolecular & Cellular Structure Institute for Basic Science (IBS) Daejeon 34126 Korea
| | - Jeong‐Mo Choi
- Natural Science Research Institute KAIST Daejeon 34141 Korea
- Department of Chemistry Busan National University Busan 46241 Korea
| | - Yongwon Jung
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
15
|
Groeer S, Walther A. Switchable supracolloidal 3D DNA origami nanotubes mediated through fuel/antifuel reactions. NANOSCALE 2020; 12:16995-17004. [PMID: 32780076 PMCID: PMC7612458 DOI: 10.1039/d0nr04209a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
3D DNA origami provide access to the de novo design of monodisperse and functional bio(organic) nanoparticles, and complement structural protein engineering and inorganic and organic nanoparticle synthesis approaches for the design of self-assembling colloidal systems. We show small 3D DNA origami nanoparticles, which polymerize and depolymerize reversibly to nanotubes of micrometer lengths by applying fuel/antifuel switches. 3D DNA nanocylinders are engineered as a basic building block with different numbers of overhang strands at the open sides to allow for their assembly via fuel strands that bridge both overhangs, resulting in the supracolloidal polymerization. The influence of the multivalent interaction patterns and the length of the bridging fuel strand on efficient polymerization and nanotube length distribution is investigated. The polymerized multivalent nanotubes disassemble through toehold-mediated rehybridization by adding equimolar amounts of antifuel strands. Finally, Förster resonance energy transfer yields in situ insights into the kinetics and reversibility of the nanotube polymerization and depolymerization.
Collapse
Affiliation(s)
- Saskia Groeer
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Material Systems, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany. and Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Andreas Walther
- A3BMS Lab - Active, Adaptive and Autonomous Bioinspired Material Systems, Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 31, 79104 Freiburg, Germany. and Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany and Cluster of Excellence livMatS @ FIT, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Kashiwagi D, Shen HK, Sim S, Sano K, Ishida Y, Kimura A, Niwa T, Taguchi H, Aida T. Molecularly Engineered "Janus GroEL": Application to Supramolecular Copolymerization with a Higher Level of Sequence Control. J Am Chem Soc 2020; 142:13310-13315. [PMID: 32691585 DOI: 10.1021/jacs.0c05937] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report the synthesis and isolation of a shape-persistent Janus protein nanoparticle derived from the biomolecular machine chaperonin GroEL (AGroELB) and its application to DNA-mediated ternary supramolecular copolymerization. To synthesize AGroELB with two different DNA strands A and B at its opposite apical domains, we utilized the unique biological property of GroEL, i.e., Mg2+/ATP-mediated ring exchange between AGroELA and BGroELB with their hollow cylindrical double-decker architectures. This exchange event was reported more than 24 years ago but has never been utilized for molecular engineering of GroEL. We leveraged DNA nanotechnology to purely isolate Janus AGroELB and succeeded in its precision ternary supramolecular copolymerization with two DNA comonomers, A** and B*, that are partially complementary to A and B in AGroELB, respectively, and programmed to self-dimerize on the other side. Transmission electron microscopy allowed us to confirm the formation of the expected dual-periodic copolymer sequence -(B*/BGroELA/A**/A**/AGroELB/B*)- in the form of a laterally connected lamellar assembly rather than a single-chain copolymer.
Collapse
Affiliation(s)
- Daiki Kashiwagi
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hao K Shen
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seunghyun Sim
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Koki Sano
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yasuhiro Ishida
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Niwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Korpi A, Anaya-Plaza E, Välimäki S, Kostiainen M. Highly ordered protein cage assemblies: A toolkit for new materials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1578. [PMID: 31414574 DOI: 10.1002/wnan.1578] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022]
Abstract
Protein capsids are specialized and versatile natural macromolecules with exceptional properties. Their homogenous, spherical, rod-like or toroidal geometry, and spatially directed functionalities make them intriguing building blocks for self-assembled nanostructures. High degrees of functionality and modifiability allow for their assembly via non-covalent interactions, such as electrostatic and coordination bonding, enabling controlled self-assembly into higher-order structures. These assembly processes are sensitive to the molecules used and the surrounding conditions, making it possible to tune the chemical and physical properties of the resultant material and generate multifunctional and environmentally sensitive systems. These materials have numerous potential applications, including catalysis and drug delivery. This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Antti Korpi
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Eduardo Anaya-Plaza
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Salla Välimäki
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Mauri Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| |
Collapse
|
18
|
Real-time cell analysis of the cytotoxicity of a pH-responsive drug-delivery matrix based on mesoporous silica materials functionalized with ferrocenecarboxylic acid. Anal Chim Acta 2019; 1051:138-146. [DOI: 10.1016/j.aca.2018.11.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 10/19/2018] [Accepted: 11/07/2018] [Indexed: 12/18/2022]
|
19
|
Kuan SL, Bergamini FRG, Weil T. Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 2018; 47:9069-9105. [PMID: 30452046 PMCID: PMC6289173 DOI: 10.1039/c8cs00590g] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 01/08/2023]
Abstract
Nature has evolved an optimal synthetic factory in the form of translational and posttranslational processes by which millions of proteins with defined primary sequences and 3D structures can be built. Nature's toolkit gives rise to protein building blocks, which dictates their spatial arrangement to form functional protein nanostructures that serve a myriad of functions in cells, ranging from biocatalysis, formation of structural networks, and regulation of biochemical processes, to sensing. With the advent of chemical tools for site-selective protein modifications and recombinant engineering, there is a rapid development to develop and apply synthetic methods for creating structurally defined, functional protein nanostructures for a broad range of applications in the fields of catalysis, materials and biomedical sciences. In this review, design principles and structural features for achieving and characterizing functional protein nanostructures by synthetic approaches are summarized. The synthetic customization of protein building blocks, the design and introduction of recognition units and linkers and subsequent assembly into structurally defined protein architectures are discussed herein. Key examples of these supramolecular protein nanostructures, their unique functions and resultant impact for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| | - Fernando R. G. Bergamini
- Institute of Chemistry
, Federal University of Uberlândia – UFU
,
38400-902 Uberlândia
, MG
, Brazil
| | - Tanja Weil
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| |
Collapse
|
20
|
Sandanaraj BS, Reddy MM, Bhandari PJ, Kumar S, Aswal VK. Rational Design of Supramolecular Dynamic Protein Assemblies by Using a Micelle-Assisted Activity-Based Protein-Labeling Technology. Chemistry 2018; 24:16085-16096. [DOI: 10.1002/chem.201802824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Britto S. Sandanaraj
- Department of Chemistry & Biology; Indian Institute of Science Education and Research (IISER); Pune 411 008 India
| | - Mullapudi Mohan Reddy
- Department of Chemistry & Biology; Indian Institute of Science Education and Research (IISER); Pune 411 008 India
| | | | - Sugam Kumar
- Solid State Physics Division; Bhabha Atomic Research Centre (BARC); Mumbai 400085 India
| | - Vinod K. Aswal
- Solid State Physics Division; Bhabha Atomic Research Centre (BARC); Mumbai 400085 India
| |
Collapse
|
21
|
Kobayashi N, Inano K, Sasahara K, Sato T, Miyazawa K, Fukuma T, Hecht MH, Song C, Murata K, Arai R. Self-Assembling Supramolecular Nanostructures Constructed from de Novo Extender Protein Nanobuilding Blocks. ACS Synth Biol 2018; 7:1381-1394. [PMID: 29690759 DOI: 10.1021/acssynbio.8b00007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The design of novel proteins that self-assemble into supramolecular complexes is important for development in nanobiotechnology and synthetic biology. Recently, we designed and created a protein nanobuilding block (PN-Block), WA20-foldon, by fusing an intermolecularly folded dimeric de novo WA20 protein and a trimeric foldon domain of T4 phage fibritin (Kobayashi et al., J. Am. Chem. Soc. 2015, 137, 11285). WA20-foldon formed several types of self-assembling nanoarchitectures in multiples of 6-mers, including a barrel-like hexamer and a tetrahedron-like dodecamer. In this study, to construct chain-like polymeric nanostructures, we designed de novo extender protein nanobuilding blocks (ePN-Blocks) by tandemly fusing two de novo binary-patterned WA20 proteins with various linkers. The ePN-Blocks with long helical linkers or flexible linkers were expressed in soluble fractions of Escherichia coli, and the purified ePN-Blocks were analyzed by native PAGE, size exclusion chromatography-multiangle light scattering (SEC-MALS), small-angle X-ray scattering (SAXS), and transmission electron microscopy. These results suggest formation of various structural homo-oligomers. Subsequently, we reconstructed hetero-oligomeric complexes from extender and stopper PN-Blocks by denaturation and refolding. The present SEC-MALS and SAXS analyses show that extender and stopper PN-Block (esPN-Block) heterocomplexes formed different types of extended chain-like conformations depending on their linker types. Moreover, atomic force microscopy imaging in liquid suggests that the esPN-Block heterocomplexes with metal ions further self-assembled into supramolecular nanostructures on mica surfaces. Taken together, the present data demonstrate that the design and construction of self-assembling PN-Blocks using de novo proteins is a useful strategy for building polymeric nanoarchitectures of supramolecular protein complexes.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | | | | | - Takaaki Sato
- Center for Energy and Environmental Science, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Nagano, Nagano 380-8553, Japan
| | - Keisuke Miyazawa
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takeshi Fukuma
- Division of Electrical Engineering and Computer Science, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Michael H Hecht
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Chihong Song
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Ryoichi Arai
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Tsurumi, Yokohama 230-0045, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Nagano 390-8621, Japan
- Department of Supramolecular Complexes, Research Center for Fungal and Microbial Dynamism, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
22
|
Wang L, Li Q. Photochromism into nanosystems: towards lighting up the future nanoworld. Chem Soc Rev 2018; 47:1044-1097. [PMID: 29251304 DOI: 10.1039/c7cs00630f] [Citation(s) in RCA: 334] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to manipulate the structure and function of promising nanosystems via energy input and external stimuli is emerging as an attractive paradigm for developing reconfigurable and programmable nanomaterials and multifunctional devices. Light stimulus manifestly represents a preferred external physical and chemical tool for in situ remote command of the functional attributes of nanomaterials and nanosystems due to its unique advantages of high spatial and temporal resolution and digital controllability. Photochromic moieties are known to undergo reversible photochemical transformations between different states with distinct properties, which have been extensively introduced into various functional nanosystems such as nanomachines, nanoparticles, nanoelectronics, supramolecular nanoassemblies, and biological nanosystems. The integration of photochromism into these nanosystems has endowed the resultant nanostructures or advanced materials with intriguing photoresponsive behaviors and more sophisticated functions. In this Review, we provide an account of the recent advancements in reversible photocontrol of the structures and functions of photochromic nanosystems and their applications. The important design concepts of such truly advanced materials are discussed, their fabrication methods are emphasized, and their applications are highlighted. The Review is concluded by briefly outlining the challenges that need to be addressed and the opportunities that can be tapped into. We hope that the review of the flourishing and vibrant topic with myriad possibilities would shine light on exploring the future nanoworld by encouraging and opening the windows to meaningful multidisciplinary cooperation of engineers from different backgrounds and scientists from the fields such as chemistry, physics, engineering, biology, nanotechnology and materials science.
Collapse
Affiliation(s)
- Ling Wang
- Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University, Kent, Ohio 44242, USA.
| | | |
Collapse
|
23
|
Kashiwagi D, Sim S, Niwa T, Taguchi H, Aida T. Protein Nanotube Selectively Cleavable with DNA: Supramolecular Polymerization of “DNA-Appended Molecular Chaperones”. J Am Chem Soc 2017; 140:26-29. [DOI: 10.1021/jacs.7b09892] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Daiki Kashiwagi
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Seunghyun Sim
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuya Niwa
- Cell
Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Hideki Taguchi
- Cell
Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takuzo Aida
- Department
of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
24
|
Fabrication of self-assembling nanofibers with optimal cell uptake and therapeutic delivery efficacy. Bioact Mater 2017; 2:260-268. [PMID: 29744435 PMCID: PMC5935509 DOI: 10.1016/j.bioactmat.2017.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/14/2022] Open
Abstract
Effective strategies to fabricate finite organic nanoparticles and understanding their structure-dependent cell interaction is highly important for the development of long circulating nanocarriers in cancer therapy. In this contribution, we will capitalize on our recent development of finite supramolecular nanofibers based on the self-assembly of modularly designed cationic multidomain peptides (MDPs) and use them as a model system to investigate structure-dependent cell penetrating activity. MDPs self-assembled into nanofibers with high density of cationic charges at the fiber-solvent interface to interact with the cell membrane. However, despite the multivalent charge presentation, not all fibers led to high levels of membrane activity and cellular uptake. The flexibility of the cationic charge domains on self-assembled nanofibers plays a key role in effective membrane perturbation. Nanofibers were found to sacrifice their dimension, thermodynamic and kinetic stability for a more flexible charge domain in order to achieve effective membrane interaction. The increased membrane activity led to improved cell uptake of membrane-impermeable chemotherapeutics through membrane pore formation. In vitro cytotoxicity study showed co-administering of water-soluble doxorubicin with membrane-active peptide nanofibers dramatically reduced the IC50 by eight folds compared to drug alone. Through these detailed structure and activity studies, the acquired knowledge will provide important guidelines for the design of a variety of supramolecular cell penetrating nanomaterials not limited to peptide assembly which can be used to probe various complex biological processes.
Collapse
|
25
|
Sato K, Ji W, Palmer LC, Weber B, Barz M, Stupp SI. Programmable Assembly of Peptide Amphiphile via Noncovalent-to-Covalent Bond Conversion. J Am Chem Soc 2017. [PMID: 28639790 PMCID: PMC5553714 DOI: 10.1021/jacs.7b03878] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Controlling the number
of monomers in a supramolecular polymer
has been a great challenge in programmable self-assembly of organic
molecules. One approach has been to make use of frustrated growth
of the supramolecular assembly by tuning the balance of attractive
and repulsive intermolecular forces. We report here on the use of
covalent bond formation among monomers, compensating for intermolecular
electrostatic repulsion, as a mechanism to control the length of a
supramolecular nanofiber formed by self-assembly of peptide amphiphiles.
Circular dichroism spectroscopy in combination with dynamic light
scattering, size-exclusion chromatography, and transmittance electron
microscope analyses revealed that hydrogen bonds between peptides
were reinforced by covalent bond formation, enabling the fiber elongation.
To examine these materials for their potential biomedical applications,
cytotoxicity of nanofibers against C2C12 premyoblast cells was tested.
We demonstrated that cell viability increased with an increase in
fiber length, presumably because of the suppressed disruption of cell
membranes by the fiber end-caps.
Collapse
Affiliation(s)
| | - Wei Ji
- Prometheus, Division of Skeletal Tissue Engineering, and ∥Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven , Leuven 3000, Belgium
| | | | - Benjamin Weber
- Institut für Organische Chemie, Johannes Gutenberg-Universtität Mainz , Mainz 55099, Germany
| | - Matthias Barz
- Institut für Organische Chemie, Johannes Gutenberg-Universtität Mainz , Mainz 55099, Germany
| | | |
Collapse
|
26
|
Abstract
In this Account, "a step toward clinical nanorobots" is proposed as one of the Holy Grails in chemistry, which could lead to a great leap in the field of biomedicines when accomplished. We review our preliminary contributions to this challenge by engineering chaperonin protein GroEL to generate de novo structures and functions.
Collapse
Affiliation(s)
- Seunghyun Sim
- Department of Chemistry
and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry
and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|