1
|
Sangeeta, Mishra SK, Bhattacherjee A. Role of Shape Deformation of DNA-Binding Sites in Regulating the Efficiency and Specificity in Their Recognition by DNA-Binding Proteins. JACS AU 2024; 4:2640-2655. [PMID: 39055163 PMCID: PMC11267559 DOI: 10.1021/jacsau.4c00393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Accurate transcription of genetic information is crucial, involving precise recognition of the binding motifs by DNA-binding proteins. While some proteins rely on short-range hydrophobic and hydrogen bonding interactions at binding sites, others employ a DNA shape readout mechanism for specific recognition. In this mechanism, variations in DNA shape at the binding motif resulted from either inherent flexibility or binding of proteins at adjacent sites are sensed and capitalized by the searching proteins to locate them specifically. Through extensive computer simulations, we investigate both scenarios to uncover the underlying mechanism and origin of specificity in the DNA shape readout mechanism. Our findings reveal that deformation in shape at the binding motif creates an entropy funnel, allowing information about altered shapes to manifest as fluctuations in minor groove widths. This signal enhances the efficiency of nonspecific search of nearby proteins by directing their movement toward the binding site, primarily driven by a gain in entropy. We propose this as a generic mechanism for DNA shape readout, where specificity arises from the alignment between the molecular frustration of the searching protein and the ruggedness of the entropic funnel governed by molecular features of the protein and arrangement of the DNA bases at the binding site, respectively.
Collapse
Affiliation(s)
- Sangeeta
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sujeet Kumar Mishra
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational & Integrative
Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
2
|
Mishra SK, Sangeeta, Heermann DW, Bhattacherjee A. The role of nucleotide opening dynamics in facilitated target search by DNA-repair proteins. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195026. [PMID: 38641240 DOI: 10.1016/j.bbagrm.2024.195026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/13/2024] [Accepted: 04/06/2024] [Indexed: 04/21/2024]
Abstract
Preserving the genomic integrity stands a fundamental necessity, primarily achieved by the DNA repair proteins through their continuous patrolling on the DNA in search of lesions. However, comprehending how even a single base-pair lesion can be swiftly and specifically recognized amidst millions of base-pair sites remains a formidable challenge. In this study, we employ extensive molecular dynamics simulations using an appropriately tuned model of both protein and DNA to probe the underlying molecular principles. Our findings reveal that the dynamics of a non-canonical base generate an entropic signal that guides the one-dimensional search of a repair protein, thereby facilitating the recognition of the lesion site. The width of the funnel perfectly aligns with the one-dimensional diffusion length of DNA-binding proteins. The generic mechanism provides a physical basis for rapid recognition and specificity of DNA damage sensing and recognition.
Collapse
Affiliation(s)
- Sujeet Kumar Mishra
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sangeeta
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dieter W Heermann
- Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany
| | - Arnab Bhattacherjee
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
3
|
Chakraborty D, Mondal B, Thirumalai D. Brewing COFFEE: A Sequence-Specific Coarse-Grained Energy Function for Simulations of DNA-Protein Complexes. J Chem Theory Comput 2024; 20:1398-1413. [PMID: 38241144 DOI: 10.1021/acs.jctc.3c00833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
DNA-protein interactions are pervasive in a number of biophysical processes ranging from transcription and gene expression to chromosome folding. To describe the structural and dynamic properties underlying these processes accurately, it is important to create transferable computational models. Toward this end, we introduce Coarse-grained Force Field for Energy Estimation, COFFEE, a robust framework for simulating DNA-protein complexes. To brew COFFEE, we integrated the energy function in the self-organized polymer model with side-chains for proteins and the three interaction site model for DNA in a modular fashion, without recalibrating any of the parameters in the original force-fields. A unique feature of COFFEE is that it describes sequence-specific DNA-protein interactions using a statistical potential (SP) derived from a data set of high-resolution crystal structures. The only parameter in COFFEE is the strength (λDNAPRO) of the DNA-protein contact potential. For an optimal choice of λDNAPRO, the crystallographic B-factors for DNA-protein complexes with varying sizes and topologies are quantitatively reproduced. Without any further readjustments to the force-field parameters, COFFEE predicts scattering profiles that are in quantitative agreement with small-angle X-ray scattering experiments, as well as chemical shifts that are consistent with NMR. We also show that COFFEE accurately describes the salt-induced unraveling of nucleosomes. Strikingly, our nucleosome simulations explain the destabilization effect of ARG to LYS mutations, which do not alter the balance of electrostatic interactions but affect chemical interactions in subtle ways. The range of applications attests to the transferability of COFFEE, and we anticipate that it would be a promising framework for simulating DNA-protein complexes at the molecular length-scale.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
| | - Balaka Mondal
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin 78712, Texas, United States
- Department of Physics, The University of Texas at Austin, 2515 Speedway, Austin 78712, Texas, United States
| |
Collapse
|
4
|
Jung Y, Sadeghi A, Ha BY. Modeling the compaction of bacterial chromosomes by biomolecular crowding and the cross-linking protein H-NS. Sci Rep 2024; 14:139. [PMID: 38167921 PMCID: PMC10762067 DOI: 10.1038/s41598-023-50355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
Cells orchestrate the action of various molecules toward organizing their chromosomes. Using a coarse-grained computational model, we study the compaction of bacterial chromosomes by the cross-linking protein H-NS and cellular crowders. In this work, H-NS, modeled as a mobile "binder," can bind to a chromosome-like polymer with a characteristic binding energy. The simulation results reported here clarify the relative role of biomolecular crowding and H-NS in condensing a bacterial chromosome in a quantitative manner. In particular, they shed light on the nature and degree of crowder and H-NS synergetics: while the presence of crowders enhances H-NS binding to a chromosome-like polymer, the presence of H-NS makes crowding effects more efficient, suggesting two-way synergetics in chain compaction. Also, the results show how crowding effects promote clustering of bound H-NS. For a sufficiently large concentration of H-NS, the cluster size increases with the volume fraction of crowders.
Collapse
Affiliation(s)
- Youngkyun Jung
- Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, 34141, South Korea.
| | - Amir Sadeghi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Bae-Yeun Ha
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
5
|
Chakraborty D, Mondal B, Thirumalai D. Brewing COFFEE: A sequence-specific coarse-grained energy function for simulations of DNA-protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544064. [PMID: 37333386 PMCID: PMC10274755 DOI: 10.1101/2023.06.07.544064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
DNA-protein interactions are pervasive in a number of biophysical processes ranging from transcription, gene expression, to chromosome folding. To describe the structural and dynamic properties underlying these processes accurately, it is important to create transferable computational models. Toward this end, we introduce Coarse grained force field for energy estimation, COFFEE, a robust framework for simulating DNA-protein complexes. To brew COFFEE, we integrated the energy function in the Self-Organized Polymer model with Side Chains for proteins and the Three Interaction Site model for DNA in a modular fashion, without re-calibrating any of the parameters in the original force-fields. A unique feature of COFFEE is that it describes sequence-specific DNA-protein interactions using a statistical potential (SP) derived from a dataset of high-resolution crystal structures. The only parameter in COFFEE is the strength (λ D N A P R O ) of the DNA-protein contact potential. For an optimal choice of λ D N A P R O , the crystallographic B-factors for DNA-protein complexes, with varying sizes and topologies, are quantitatively reproduced. Without any further readjustments to the force-field parameters, COFFEE predicts the scattering profiles that are in quantitative agreement with SAXS experiments as well as chemical shifts that are consistent with NMR. We also show that COFFEE accurately describes the salt-induced unraveling of nucleosomes. Strikingly, our nucleosome simulations explain the destabilization effect of ARG to LYS mutations, which does not alter the balance of electrostatic interactions, but affects chemical interactions in subtle ways. The range of applications attests to the transferability of COFFEE, and we anticipate that it would be a promising framework for simulating DNA-protein complexes at the molecular length-scale.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Stop A5300, Austin TX 78712, USA
| | - Balaka Mondal
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Stop A5300, Austin TX 78712, USA
| | - D Thirumalai
- Department of Chemistry, The University of Texas at Austin, 105 E 24th St, Stop A5300, Austin TX 78712, USA
- Department of Physics, The University of Texas at Austin, 2515 Speedway,Austin TX 78712, USA
| |
Collapse
|
6
|
Luo S, Xiong D, Zhao X, Duan L. An Attempt of Seeking Favorable Binding Free Energy Prediction Schemes Considering the Entropic Effect on Fis-DNA Binding. J Phys Chem B 2023; 127:1312-1324. [PMID: 36735878 DOI: 10.1021/acs.jpcb.2c07811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein-DNA binding mechanisms in a complex manner are essential for understanding many biological processes. Over the past decades, numerous experiments and calculations have analyzed the specificity of protein-DNA binding. However, the accuracy of binding free energy prediction for multi-base DNA systems still needs to be improved. Fis is a DNA-binding protein that regulates various transcription and recombination reactions. In the present work, we tested several methods of predict binding free energy based on this system to find a favorable prediction scheme and explore the binding mechanism of Fis protein and DNA. Two solvent models (explicit and implicit solvent models) were chosen for the dynamics process, and the predicted binding free energy was more accurate under the explicit solvent model. When different Poisson-Boltzmann/Generalized Born (PB/GB) models were tested for DNA force fields (BSC1 and OL15), it was found that the binding free energy predicted by the selected OL15 force field performed better and the correlation between predicted and experimental values was improved with the increasing interior dielectric constant (Dk). Finally, using Dk = 8, the GBOBC1 model combined with interaction entropy (IE), which was calculated for entropic contribution (GBOBC1_IE_8), was screened out for the binding free energy prediction and analysis of the Fis-DNA system, and the validity of the method was further verified by testing the Cren7-DNA system. By performing conformational analysis of the minor groove, it was found that mutation of the DNA central sequence A/T to C/G and deletion of the guanine 2-amino group would change the minor groove width and thus affect the formation of the major groove, altering the interaction and atomic contact between the protein and the major groove, thus changing the binding affinity of Fis and DNA. Hopefully, the series of tests in this work can shed some light on the related studies of protein and DNA systems.
Collapse
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
7
|
Interdomain dynamics in human Replication Protein A regulates kinetics and thermodynamics of its binding to ssDNA. PLoS One 2023; 18:e0278396. [PMID: 36656834 PMCID: PMC9851514 DOI: 10.1371/journal.pone.0278396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/15/2022] [Indexed: 01/20/2023] Open
Abstract
Human Replication Protein A (hRPA) is a multidomain protein that interacts with ssDNA intermediates to provide the latter much-needed stability during DNA metabolism and maintain genomic integrity. Although the ssDNA organization with hRPA was studied recently through experimental means, characterizing the underlying mechanism at the atomic level remains challenging because of the dynamic domain architecture of hRPA and poorly understood heterogeneity of ssDNA-protein interactions. Here, we used a computational framework, precisely tailored to capture protein-ssDNA interactions, and investigated the binding of hRPA with a 60 nt ssDNA. Two distinct binding mechanisms are realized based on the hRPA domain flexibility. For a rigid domain architecture of hRPA, ssDNA binds sequentially with hRPA domains, resulting in slow association kinetics. The binding pathway involves the formation of stable and distinct intermediate states. On contrary, for a flexible domain architecture of hRPA, ssDNA binds synergistically to the A and B domains followed by the rest of hRPA. The domain dynamics in hRPA alleviates the free energy cost of domain orientation necessary for specific binding with ssDNA, leading to fast association kinetics along a downhill binding free energy landscape. An ensemble of free energetically degenerate intermediate states is encountered that makes it arduous to characterize them structurally. An excellent match between our results with the available experimental observations provides new insights into the rich dynamics of hRPA binding to ssDNA and in general paves the way to investigate intricate details of ssDNA-protein interactions, crucial for cellular functioning.
Collapse
|
8
|
Chen X, Chen M, Wolynes PG. Exploring the Interplay between Disordered and Ordered Oligomer Channels on the Aggregation Energy Landscapes of α-Synuclein. J Phys Chem B 2022; 126:5250-5261. [PMID: 35815598 DOI: 10.1021/acs.jpcb.2c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The abnormal aggregation of α-synulcein is associated with multiple neurodegenerative diseases such as Parkinson's disease. The hydrophobic non-amyloid component (NAC) region of α-synuclein comprises the core of the fibril in vitro and in vivo. In this work, we study the aggregation landscape of the hydrophobic NAC region of α-synuclein using a transferrable coarse-grained force field, the associative memory water-mediated structure, and energy model (AWSEM). Using structural similarity, we can group metastable states on the free energy landscape of aggregation into three types of oligomers: disordered oligomers, prefibrillar oligomers with disordered tips, and ordered prefibrillar oligomers. The prefibrillar oligomers with disordered tips have more in-register parallel β strands than do the fully disordered oligomers but have fewer in-register parallel β strands than the ordered prefibrillar oligomers. Along with the ordered prefibrillar species, the disordered oligomeric states dominate at small oligomer sizes while the prefibrillar species with disordered tips thermodynamically dominate with the growth of oligomers. The topology of the aggregation landscape and observations in simulations suggest there is backtracking between ordered prefibrillar oligomers and other kinds of oligomers as the aggregation proceeds. The significant structural differences between the ordered prefibrillar oligomers and the disordered oligomers support the idea that the growth of these two kinds of oligomers involves kinetically independent parallel pathways. In contrast, the overall structural similarity between the fully ordered prefibrillar oligomers and the prefibrillar oligomers with disordered tips implies that two channels can interconvert on slower time scales. We also evaluate the effects of phosphorylation on the aggregation free energy landscape using statistical mechanical perturbation theory.
Collapse
Affiliation(s)
- Xun Chen
- Center for Theoretical Biological Physics, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Mingchen Chen
- Department of Research and Development, neoX Biotech, Beijing 102206, China
| | - Peter G Wolynes
- Center for Theoretical Biological Physics, Houston, Texas 77005, United States.,Department of Chemistry, Rice University, Houston, Texas 77005, United States.,Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
9
|
Muskhelishvili G, Sobetzko P, Travers A. Spatiotemporal Coupling of DNA Supercoiling and Genomic Sequence Organization-A Timing Chain for the Bacterial Growth Cycle? Biomolecules 2022; 12:biom12060831. [PMID: 35740956 PMCID: PMC9221221 DOI: 10.3390/biom12060831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
In this article we describe the bacterial growth cycle as a closed, self-reproducing, or autopoietic circuit, reestablishing the physiological state of stationary cells initially inoculated in the growth medium. In batch culture, this process of self-reproduction is associated with the gradual decline in available metabolic energy and corresponding change in the physiological state of the population as a function of "travelled distance" along the autopoietic path. We argue that this directional alteration of cell physiology is both reflected in and supported by sequential gene expression along the chromosomal OriC-Ter axis. We propose that during the E. coli growth cycle, the spatiotemporal order of gene expression is established by coupling the temporal gradient of supercoiling energy to the spatial gradient of DNA thermodynamic stability along the chromosomal OriC-Ter axis.
Collapse
Affiliation(s)
- Georgi Muskhelishvili
- School of Natural Sciences, Biology Program, Agricultural University of Georgia, 0159 Tbilisi, Georgia
- Correspondence:
| | - Patrick Sobetzko
- Synmikro, Loewe Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Andrew Travers
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK;
| |
Collapse
|
10
|
Facilitated Dissociation of Nucleoid Associated Proteins from DNA in the Bacterial Confinement. Biophys J 2022; 121:1119-1133. [PMID: 35257784 PMCID: PMC9034294 DOI: 10.1016/j.bpj.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/04/2021] [Accepted: 03/01/2022] [Indexed: 11/20/2022] Open
Abstract
Transcription machinery depends on the temporal formation of protein-DNA complexes. Recent experiments demonstrated that not only the formation but also the lifetime of such complexes can affect the transcriptional machinery. In parallel, in vitro single-molecule studies showed that nucleoid-associated proteins (NAPs) leave the DNA rapidly as the bulk concentration of the protein increases via facilitated dissociation (FD). Nevertheless, whether such a concentration-dependent mechanism is functional in a bacterial cell, in which NAP levels and the 3d chromosomal structure are often coupled, is not clear a priori. Here, by using extensive coarse-grained molecular simulations, we model the unbinding of specific and nonspecific dimeric NAPs from a high-molecular-weight circular DNA molecule in a cylindrical structure mimicking the cellular confinement of a bacterial chromosome. Our simulations confirm that physiologically relevant peak protein levels (tens of micromolar) lead to highly compact chromosomal structures. This compaction results in rapid off rates (shorter DNA residence times) for specifically DNA-binding NAPs, such as the factor for inversion stimulation, which mostly dissociate via a segmental jump mechanism. Contrarily, for nonspecific NAPs, which are more prone to leave their binding sites via 1d sliding, the off rates decrease as the protein levels increase. The simulations with restrained chromosome models reveal that chromosome compaction is in favor of faster dissociation but only for specific proteins, and nonspecific proteins are not affected by the chromosome compaction. Overall, our results suggest that the cellular concentration level of a structural DNA-binding protein can be highly intermingled with its DNA residence time.
Collapse
|
11
|
Chen X, Tsai MY, Wolynes PG. The Role of Charge Density Coupled DNA Bending in Transcription Factor Sequence Binding Specificity: A Generic Mechanism for Indirect Readout. J Am Chem Soc 2022; 144:1835-1845. [DOI: 10.1021/jacs.1c11911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xun Chen
- Center for Theoretical Biological Physics, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Min-Yeh Tsai
- Department of Chemistry, Tamkang University, New Taipei City, 251301, Taiwan (R.O.C.)
| | - Peter G. Wolynes
- Center for Theoretical Biological Physics, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
- Department of Biosciences, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Exploring the folding energy landscapes of heme proteins using a hybrid AWSEM-heme model. J Biol Phys 2022; 48:37-53. [PMID: 35000062 PMCID: PMC8866609 DOI: 10.1007/s10867-021-09596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/03/2021] [Indexed: 10/29/2022] Open
Abstract
Heme is an active center in many proteins. Here we explore computationally the role of heme in protein folding and protein structure. We model heme proteins using a hybrid model employing the AWSEM Hamiltonian, a coarse-grained forcefield for the protein chain along with AMBER, an all-atom forcefield for the heme. We carefully designed transferable force fields that model the interactions between the protein and the heme. The types of protein-ligand interactions in the hybrid model include thioester covalent bonds, coordinated covalent bonds, hydrogen bonds, and electrostatics. We explore the influence of different types of hemes (heme b and heme c) on folding and structure prediction. Including both types of heme improves the quality of protein structure predictions. The free energy landscape shows that both types of heme can act as nucleation sites for protein folding and stabilize the protein folded state. In binding the heme, coordinated covalent bonds and thioester covalent bonds for heme c drive the heme toward the native pocket. The electrostatics also facilitates the search for the binding site.
Collapse
|
13
|
Appling FD, Berlow RB, Stanfield RL, Dyson HJ, Wright PE. The molecular basis of allostery in a facilitated dissociation process. Structure 2021; 29:1327-1338.e5. [PMID: 34520739 PMCID: PMC8642270 DOI: 10.1016/j.str.2021.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/22/2021] [Accepted: 07/21/2021] [Indexed: 12/29/2022]
Abstract
Facilitated dissociation provides a mechanism by which high-affinity complexes can be rapidly disassembled. The negative feedback regulator CITED2 efficiently downregulates the hypoxic response by displacing the hypoxia-inducible transcription factor HIF-1α from the TAZ1 domain of the transcriptional coactivators CREB-binding protein (CBP) and p300. Displacement occurs by a facilitated dissociation mechanism involving a transient ternary intermediate formed by binding of the intrinsically disordered CITED2 activation domain to the TAZ1:HIF-1α complex. The short lifetime of the intermediate precludes straightforward structural investigations. To obtain insights into the molecular determinants of facilitated dissociation, we model the ternary intermediate by generating a fusion peptide composed of the primary CITED2 and HIF-1α binding motifs. X-ray crystallographic and NMR studies of the fusion peptide complex reveal TAZ1-mediated negative cooperativity that results in nearly mutually exclusive binding of specific CITED2 and HIF-1α interaction motifs, providing molecular-level insights into the allosteric switch that terminates the hypoxic response.
Collapse
Affiliation(s)
- Francis D Appling
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
14
|
Ma YW, Lin TY, Tsai MY. Fibril Surface-Dependent Amyloid Precursors Revealed by Coarse-Grained Molecular Dynamics Simulation. Front Mol Biosci 2021; 8:719320. [PMID: 34422910 PMCID: PMC8378332 DOI: 10.3389/fmolb.2021.719320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 01/05/2023] Open
Abstract
Amyloid peptides are known to self-assemble into larger aggregates that are linked to the pathogenesis of many neurodegenerative disorders. In contrast to primary nucleation, recent experimental and theoretical studies have shown that many toxic oligomeric species are generated through secondary processes on a pre-existing fibrillar surface. Nucleation, for example, can also occur along the surface of a pre-existing fibril—secondary nucleation—as opposed to the primary one. However, explicit pathways are still not clear. In this study, we use molecular dynamics simulation to explore the free energy landscape of a free Abeta monomer binding to an existing fibrillar surface. We specifically look into several potential Abeta structural precursors that might precede some secondary events, including elongation and secondary nucleation. We find that the overall process of surface-dependent events can be described at least by the following three stages: 1. Free diffusion 2. Downhill guiding 3. Dock and lock. And we show that the outcome of adding a new monomer onto a pre-existing fibril is pathway-dependent, which leads to different secondary processes. To understand structural details, we have identified several monomeric amyloid precursors over the fibrillar surfaces and characterize their heterogeneity using a probability contact map analysis. Using the frustration analysis (a bioinformatics tool), we show that surface heterogeneity correlates with the energy frustration of specific local residues that form binding sites on the fibrillar structure. We further investigate the helical twisting of protofilaments of different sizes and observe a length dependence on the filament twisting. This work presents a comprehensive survey over the properties of fibril growth using a combination of several openMM-based platforms, including the GPU-enabled openAWSEM package for coarse-grained modeling, MDTraj for trajectory analysis, and pyEMMA for free energy calculation. This combined approach makes long-timescale simulation for aggregation systems as well as all-in-one analysis feasible. We show that this protocol allows us to explore fibril stability, surface binding affinity/heterogeneity, as well as fibrillar twisting. All these properties are important for understanding the molecular mechanism of surface-catalyzed secondary processes of fibril growth.
Collapse
Affiliation(s)
- Yuan-Wei Ma
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Tong-You Lin
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| | - Min-Yeh Tsai
- Department of Chemistry, Tamkang University, New Taipei City, Taiwan
| |
Collapse
|
15
|
Kozak F, Kurzbach D. How to assess the structural dynamics of transcription factors by integrating sparse NMR and EPR constraints with molecular dynamics simulations. Comput Struct Biotechnol J 2021; 19:2097-2105. [PMID: 33995905 PMCID: PMC8085671 DOI: 10.1016/j.csbj.2021.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022] Open
Abstract
We review recent advances in modeling structural ensembles of transcription factors from nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopic data, integrated with molecular dynamics (MD) simulations. We focus on approaches that confirm computed conformational ensembles by sparse constraints obtained from magnetic resonance. This combination enables the deduction of functional and structural protein models even if nuclear Overhauser effects (NOEs) are too scarce for conventional structure determination. We highlight recent insights into the folding-upon-DNA binding transitions of intrinsically disordered transcription factors that could be assessed using such integrative approaches.
Collapse
Affiliation(s)
- Fanny Kozak
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| | - Dennis Kurzbach
- University Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Waehringer Str. 38, 1090 Vienna, Austria
| |
Collapse
|
16
|
Wu H, Dalal Y, Papoian GA. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle. J Mol Biol 2021; 433:166881. [PMID: 33617899 DOI: 10.1016/j.jmb.2021.166881] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/30/2023]
Abstract
Linker histone H1 is an essential regulatory protein for many critical biological processes, such as eukaryotic chromatin packaging and gene expression. Mis-regulation of H1s is commonly observed in tumor cells, where the balance between different H1 subtypes has been shown to alter the cancer phenotype. Consisting of a rigid globular domain and two highly charged terminal domains, H1 can bind to multiple sites on a nucleosomal particle to alter chromatin hierarchical condensation levels. In particular, the disordered H1 amino- and carboxyl-terminal domains (NTD/CTD) are believed to enhance this binding affinity, but their detailed dynamics and functions remain unclear. In this work, we used a coarse-grained computational model, AWSEM-DNA, to simulate the H1.0b-nucleosome complex, namely chromatosome. Our results demonstrate that H1 disordered domains restrict the dynamics and conformation of both globular H1 and linker DNA arms, resulting in a more compact and rigid chromatosome particle. Furthermore, we identified regions of H1 disordered domains that are tightly tethered to DNA near the entry-exit site. Overall, our study elucidates at near-atomic resolution the way the disordered linker histone H1 modulates nucleosome's structural preferences and conformational dynamics.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States
| | - Yamini Dalal
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, United States.
| | - Garegin A Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742, United States; Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, United States.
| |
Collapse
|
17
|
Mondal A, Bhattacherjee A. Mechanism of Dynamic Binding of Replication Protein A to ssDNA. J Chem Inf Model 2020; 60:5057-5069. [PMID: 32990435 DOI: 10.1021/acs.jcim.0c00564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Replication protein A (RPA) serves as a hub protein inside eukaryotic cells, where it coordinates crucial DNA metabolic processes and activates the DNA-damage response system. A characteristic feature of its action is to associate with single-stranded DNA (ssDNA) intermediates before handing them over to downstream proteins. The length of ssDNA intermediates differs for different pathways. This means that RPA must have mechanisms for selective processing of ssDNA intermediates based on their length, the knowledge of which is fundamental to elucidate when and how DNA repair and replication processes are symphonized. By employing extensive molecular dynamics simulations, we investigated the mechanism of binding of RPA to ssDNA of different lengths. We show that the binding involves dynamic equilibrium with a stable intermediate, the population of which increases with the length of ssDNA. The vital underlying factors are decoded through collective variable principal component analysis. It suggests a differently orchestrated set of interactions that define the action of RPA based on the length of ssDNA intermediates. We further estimated the association kinetics that matches excellently well with previous experimental studies and probed the diffusion mechanism of RPA to ssDNA. RPA diffuses on short ssDNA through progressive "bulge" formation. With long ssDNA, we observed a conformational change in ssDNA coupled with its binding to RPA in a cooperative fashion. This unanticipated binding mechanism successfully explains how the "short-lived", long ssDNA intermediates are processed quickly in vivo. This study thus reveals the molecular basis of several recent experimental observations related to RPA binding to ssDNA and provides novel insights into the RPA functioning in DNA repair and replication.
Collapse
Affiliation(s)
- Anupam Mondal
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
18
|
Pal A, Levy Y. Balance between asymmetry and abundance in multi-domain DNA-binding proteins may regulate the kinetics of their binding to DNA. PLoS Comput Biol 2020; 16:e1007867. [PMID: 32453726 PMCID: PMC7274453 DOI: 10.1371/journal.pcbi.1007867] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/05/2020] [Accepted: 04/11/2020] [Indexed: 11/19/2022] Open
Abstract
DNA sequences are often recognized by multi-domain proteins that may have higher affinity and specificity than single-domain proteins. However, the higher affinity to DNA might be coupled with slower recognition kinetics. In this study, we address this balance between stability and kinetics for multi-domain Cys2His2- (C2H2-) type zinc-finger (ZF) proteins. These proteins are the most prevalent DNA-binding domain in eukaryotes and C2H2 type zinc-finger proteins (C2H2-ZFPs) constitute nearly one-half of all known and predicted transcription factors in human. Extensive contact with DNA via tandem ZF domains confers high stability on the sequence-specific complexes. However, this can limit target search efficiency, especially for low abundance ZFPs. Earlier, we found that asymmetrical distribution of electrostatic charge among the three ZF domains of the low abundance transcription factor Egr-1 facilitates its DNA search process. Here, on a diverse set of 273 human C2H2-ZFP comprised of 3–15 tandem ZF domains, we find that, in many cases, electrostatic charge and binding specificity are asymmetrically distributed among the ZF domains so that neighbouring domains have different DNA-binding properties. For proteins containing 3–6 ZF domains, we show that the low abundance proteins possess a higher degree of non-specific asymmetry and vice versa. Our findings suggest that where the electrostatics of tandem ZF domains are similar (i.e., symmetrical), the ZFPs are more abundant to optimize their DNA search efficiency. This study reveals new insights into the fundamental determinants of recognition by C2H2-ZFPs of their DNA binding sites in the cellular landscape. The importance of electrostatic asymmetry with respect to binding site recognition by C2H2-ZFPs suggests the possibility that it may also be important in other ZFP systems and reveals a new design feature for zinc finger engineering. Optimal recognition of proteins to DNA is governed by various factors among them the thermodynamics, kinetics and specificity of the protein-DNA complex. Multi-domain DNA-binding proteins are expected to have higher affinity and specificity due to the extensive interface they form with DNA. However, larger interface may result with higher friction when these proteins scan the DNA for the target site via the sliding mechanism. A way to overcome this drawback is to have asymmetry in the protein so that the interface with DNA is smaller. Alternatively, higher abundance can also increase the search speed. Here, using computational analysis of large data set of multi-domain zinc finger DNA-binding proteins, we report a trade-off between asymmetry and abundance.
Collapse
Affiliation(s)
- Arumay Pal
- Department of Structural Biology, Weizmann Institute of Science Rehovot, Israel
| | - Yaakov Levy
- Department of Structural Biology, Weizmann Institute of Science Rehovot, Israel
- * E-mail:
| |
Collapse
|
19
|
Dey P, Bhattacherjee A. Structural Basis of Enhanced Facilitated Diffusion of DNA-Binding Protein in Crowded Cellular Milieu. Biophys J 2020; 118:505-517. [PMID: 31862109 PMCID: PMC6976804 DOI: 10.1016/j.bpj.2019.11.3388] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Although the fast association between DNA-binding proteins (DBPs) and DNA is explained by a facilitated diffusion mechanism, in which DBPs adopt a weighted combination of three-dimensional diffusion and one-dimensional (1D) sliding and hopping modes of transportation, the role of cellular environment that contains many nonspecifically interacting proteins and other biomolecules is mostly overlooked. By performing large-scale computational simulations with an appropriately tuned model of protein and DNA in the presence of nonspecifically interacting bulk and DNA-bound crowders (genomic crowders), we demonstrate the structural basis of the enhanced facilitated diffusion of DBPs inside a crowded cellular milieu through, to our knowledge, novel 1D scanning mechanisms. In this one-dimensional scanning mode, the protein can float along the DNA under the influence of nonspecific interactions of bulk crowder molecules. The search mode is distinctly different compared to usual 1D sliding and hopping dynamics in which protein diffusion is regulated by the DNA electrostatics. In contrast, the presence of genomic crowders expedites the target search process by transporting the protein over DNA segments through the formation of a transient protein-crowder bridged complex. By analyzing the ruggedness of the associated potential energy landscape, we underpin the molecular origin of the kinetic advantages of these search modes and show that they successfully explain the experimentally observed acceleration of facilitated diffusion of DBPs by molecular crowding agents and crowder-concentration-dependent enzymatic activity of transcription factors. Our findings provide crucial insights into gene regulation kinetics inside the crowded cellular milieu.
Collapse
Affiliation(s)
- Pinki Dey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
20
|
Erbaş A, Marko JF. How do DNA-bound proteins leave their binding sites? The role of facilitated dissociation. Curr Opin Chem Biol 2019; 53:118-124. [PMID: 31586479 PMCID: PMC6926143 DOI: 10.1016/j.cbpa.2019.08.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/11/2019] [Accepted: 08/24/2019] [Indexed: 10/25/2022]
Abstract
Dissociation of a protein from DNA is often assumed to be described by an off rate that is independent of other molecules in solution. Recent experiments and computational analyses have challenged this view by showing that unbinding rates (residence times) of DNA-bound proteins can depend on concentrations of nearby molecules that are competing for binding. This 'facilitated dissociation' (FD) process can occur at the single-binding site level via formation of a ternary complex, and can dominate over 'spontaneous dissociation' at low (submicromolar) concentrations. In the crowded intracellular environment FD introduces new regulatory possibilities at the level of individual biomolecule interactions.
Collapse
Affiliation(s)
- Aykut Erbaş
- UNAM-National Nanotechnology Research Center and Institute of Materials Science & Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - John F Marko
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; Department of Physics & Astronomy, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Spenkelink LM, Lewis JS, Jergic S, Xu ZQ, Robinson A, Dixon NE, van Oijen AM. Recycling of single-stranded DNA-binding protein by the bacterial replisome. Nucleic Acids Res 2019; 47:4111-4123. [PMID: 30767010 PMCID: PMC6486552 DOI: 10.1093/nar/gkz090] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/30/2019] [Accepted: 02/09/2019] [Indexed: 02/06/2023] Open
Abstract
Single-stranded DNA-binding proteins (SSBs) support DNA replication by protecting single-stranded DNA from nucleolytic attack, preventing intra-strand pairing events and playing many other regulatory roles within the replisome. Recent developments in single-molecule approaches have led to a revised picture of the replisome that is much more complex in how it retains or recycles protein components. Here, we visualize how an in vitro reconstituted Escherichia coli replisome recruits SSB by relying on two different molecular mechanisms. Not only does it recruit new SSB molecules from solution to coat newly formed single-stranded DNA on the lagging strand, but it also internally recycles SSB from one Okazaki fragment to the next. We show that this internal transfer mechanism is balanced against recruitment from solution in a manner that is concentration dependent. By visualizing SSB dynamics in live cells, we show that both internal transfer and external exchange mechanisms are physiologically relevant.
Collapse
Affiliation(s)
- Lisanne M Spenkelink
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.,Zernike Institute for Advanced Materials, University of Groningen, Groningen, 9747 AG, the Netherlands
| | - Jacob S Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Andrew Robinson
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Antoine M van Oijen
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
22
|
Dahlke K, Sing CE. Influence of Nucleoid-Associated Proteins on DNA Supercoiling. J Phys Chem B 2019; 123:10152-10162. [PMID: 31710235 DOI: 10.1021/acs.jpcb.9b07436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
DNA supercoiling, where the DNA strand forms a writhe to relieve torsional stress, plays a vital role in packaging the genetic material in cells. Experiment, simulation, and theory have all demonstrated how supercoiling emerges due to the over- or underwinding of the DNA strand. Nucleoid-associated proteins (NAPs) help structure DNA in prokaryotes, yet the role that they play in the supercoiling process has not been as thoroughly investigated. We develop a coarse-grained simulation to model DNA supercoiling in the presence of proteins, providing a rigorous physical understanding of how NAPs affect supercoiling behavior. Specifically, we demonstrate how the force and torque necessary to form supercoils are affected by the presence of NAPs. NAPs that bend DNA stabilize the supercoil, thus shifting the transition between extended and supercoiled DNAs. We develop a theory to explain how NAP binding affects DNA supercoiling. This provides insight into how NAPs modulate DNA compaction via a combination of supercoiling and local protein-dependent deformations.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 , United States
| |
Collapse
|
23
|
Dey P, Bhattacherjee A. Mechanism of Facilitated Diffusion of DNA Repair Proteins in Crowded Environment: Case Study with Human Uracil DNA Glycosylase. J Phys Chem B 2019; 123:10354-10364. [DOI: 10.1021/acs.jpcb.9b07342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Pinki Dey
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India 110067
| | - Arnab Bhattacherjee
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India 110067
| |
Collapse
|
24
|
Tsai MY, Zheng W, Chen M, Wolynes PG. Multiple Binding Configurations of Fis Protein Pairs on DNA: Facilitated Dissociation versus Cooperative Dissociation. J Am Chem Soc 2019; 141:18113-18126. [DOI: 10.1021/jacs.9b08287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Min-Yeh Tsai
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan (R.O.C.)
| | | | | | | |
Collapse
|
25
|
Dahlke K, Zhao J, Sing CE, Banigan EJ. Force-Dependent Facilitated Dissociation Can Generate Protein-DNA Catch Bonds. Biophys J 2019; 117:1085-1100. [PMID: 31427067 DOI: 10.1016/j.bpj.2019.07.044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 12/31/2022] Open
Abstract
Cellular structures are continually subjected to forces, which may serve as mechanical signals for cells through their effects on biomolecule interaction kinetics. Typically, molecular complexes interact via "slip bonds," so applied forces accelerate off rates by reducing transition energy barriers. However, biomolecules with multiple dissociation pathways may have considerably more complicated force dependencies. This is the case for DNA-binding proteins that undergo "facilitated dissociation," in which competitor biomolecules from solution enhance molecular dissociation in a concentration-dependent manner. Using simulations and theory, we develop a generic model that shows that proteins undergoing facilitated dissociation can form an alternative type of molecular bond, known as a "catch bond," for which applied forces suppress protein dissociation. This occurs because the binding by protein competitors responsible for the facilitated dissociation pathway can be inhibited by applied forces. Within the model, we explore how the force dependence of dissociation is regulated by intrinsic factors, including molecular sensitivity to force and binding geometry and the extrinsic factor of competitor protein concentration. We find that catch bonds generically emerge when the force dependence of the facilitated unbinding pathway is stronger than that of the spontaneous unbinding pathway. The sharpness of the transition between slip- and catch-bond kinetics depends on the degree to which the protein bends its DNA substrate. This force-dependent kinetics is broadly regulated by the concentration of competitor biomolecules in solution. Thus, the observed catch bond is mechanistically distinct from other known physiological catch bonds because it requires an extrinsic factor-competitor proteins-rather than a specific intrinsic molecular structure. We hypothesize that this mechanism for regulating force-dependent protein dissociation may be used by cells to modulate protein exchange, regulate transcription, and facilitate diffusive search processes.
Collapse
Affiliation(s)
- Katelyn Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Jing Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| | - Edward J Banigan
- Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| |
Collapse
|
26
|
Parsons T, Zhang B. Critical role of histone tail entropy in nucleosome unwinding. J Chem Phys 2019; 150:185103. [PMID: 31091895 DOI: 10.1063/1.5085663] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The nucleosome is the fundamental packaging unit for the genome. It must remain tightly wound to ensure genome stability while simultaneously being flexible enough to keep the DNA molecule accessible for genome function. The set of physicochemical interactions responsible for the delicate balance between these naturally opposed processes have not been determined due to challenges in resolving partially unwound nucleosome configurations at atomic resolution. Using a near atomistic protein-DNA model and advanced sampling techniques, we calculate the free energy cost of nucleosome DNA unwinding. Our simulations identify a large energetic barrier that decouples the outer and the inner DNA unwinding into two separate processes, occurring on different time scales. This dynamical decoupling allows the exposure of outer DNA at a modest cost to ensure accessibility while keeping the inner DNA and the histone core intact to maintain stability. We also reveal that this energetic barrier arises from a delayed loss of contacts between disordered histone tails and the DNA and is, surprisingly, largely offset by an entropic contribution from these tails. Implications of this enthalpy entropy compensation for the regulation of nucleosome stability and genome function are discussed.
Collapse
Affiliation(s)
- Thomas Parsons
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
27
|
Structural and Dynamical Order of a Disordered Protein: Molecular Insights into Conformational Switching of PAGE4 at the Systems Level. Biomolecules 2019; 9:biom9020077. [PMID: 30813315 PMCID: PMC6406393 DOI: 10.3390/biom9020077] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 01/10/2023] Open
Abstract
Folded proteins show a high degree of structural order and undergo (fairly constrained) collective motions related to their functions. On the other hand, intrinsically disordered proteins (IDPs), while lacking a well-defined three-dimensional structure, do exhibit some structural and dynamical ordering, but are less constrained in their motions than folded proteins. The larger structural plasticity of IDPs emphasizes the importance of entropically driven motions. Many IDPs undergo function-related disorder-to-order transitions driven by their interaction with specific binding partners. As experimental techniques become more sensitive and become better integrated with computational simulations, we are beginning to see how the modest structural ordering and large amplitude collective motions of IDPs endow them with an ability to mediate multiple interactions with different partners in the cell. To illustrate these points, here, we use Prostate-associated gene 4 (PAGE4), an IDP implicated in prostate cancer (PCa) as an example. We first review our previous efforts using molecular dynamics simulations based on atomistic AWSEM to study the conformational dynamics of PAGE4 and how its motions change in its different physiologically relevant phosphorylated forms. Our simulations quantitatively reproduced experimental observations and revealed how structural and dynamical ordering are encoded in the sequence of PAGE4 and can be modulated by different extents of phosphorylation by the kinases HIPK1 and CLK2. This ordering is reflected in changing populations of certain secondary structural elements as well as in the regularity of its collective motions. These ordered features are directly correlated with the functional interactions of WT-PAGE4, HIPK1-PAGE4 and CLK2-PAGE4 with the AP-1 signaling axis. These interactions give rise to repeated transitions between (high HIPK1-PAGE4, low CLK2-PAGE4) and (low HIPK1-PAGE4, high CLK2-PAGE4) cell phenotypes, which possess differing sensitivities to the standard PCa therapies, such as androgen deprivation therapy (ADT). We argue that, although the structural plasticity of an IDP is important in promoting promiscuous interactions, the modulation of the structural ordering is important for sculpting its interactions so as to rewire with agility biomolecular interaction networks with significant functional consequences.
Collapse
|
28
|
Latham AP, Zhang B. Improving Coarse-Grained Protein Force Fields with Small-Angle X-ray Scattering Data. J Phys Chem B 2019; 123:1026-1034. [PMID: 30620594 DOI: 10.1021/acs.jpcb.8b10336] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small-angle X-ray scattering (SAXS) experiments provide valuable structural data for biomolecules in solution. We develop a highly efficient maximum entropy approach to fit SAXS data by introducing minimal biases to a coarse-grained protein force field, the associative memory, water mediated, structure, and energy model (AWSEM). We demonstrate that the resulting force field, AWSEM-SAXS, succeeds in reproducing scattering profiles and models protein structures with shapes that are in much better agreement with experimental results. Quantitative metrics further reveal a modest, but consistent, improvement in the accuracy of modeled structures when SAXS data are incorporated into the force field. Additionally, when applied to a multiconformational protein, we find that AWSEM-SAXS is able to recover the population of different protein conformations from SAXS data alone. We, therefore, conclude that the maximum entropy approach is effective in fine-tuning the force field to better characterize both protein structure and conformational fluctuation.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| | - Bin Zhang
- Department of Chemistry , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
29
|
Lebar T, Verbič A, Ljubetič A, Jerala R. Polarized displacement by transcription activator-like effectors for regulatory circuits. Nat Chem Biol 2019; 15:80-87. [PMID: 30455466 DOI: 10.1038/s41589-018-0163-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/05/2018] [Indexed: 01/26/2023]
Abstract
The interplay between DNA-binding proteins plays an important role in transcriptional regulation and could increase the precision and complexity of designed regulatory circuits. Here we show that a transcription activator-like effector (TALE) can displace another TALE protein from DNA in a highly polarized manner, displacing only the 3'- but not 5'-bound overlapping or adjacent TALE. We propose that the polarized displacement by TALEs is based on its multipartite nature of binding to DNA. The polarized TALE displacement provides strategies for the specific regulation of gene expression, for construction of all two-input Boolean genetic logic circuits based on the robust propagation of the displacement across multiple neighboring sites, for displacement of zinc finger-based transcription factors and for suppression of Cas9-gRNA-mediated genome cleavage, enriching the synthetic biology toolbox and contributing to the understanding of the underlying principles of the facilitated displacement.
Collapse
Affiliation(s)
- Tina Lebar
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| | - Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
30
|
Wu H, Wolynes PG, Papoian GA. AWSEM-IDP: A Coarse-Grained Force Field for Intrinsically Disordered Proteins. J Phys Chem B 2018; 122:11115-11125. [PMID: 30091924 PMCID: PMC6713210 DOI: 10.1021/acs.jpcb.8b05791] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The associative memory, water-mediated, structure and energy model (AWSEM) has been successfully used to study protein folding, binding, and aggregation problems. In this work, we introduce AWSEM-IDP, a new AWSEM branch for simulating intrinsically disordered proteins (IDPs), where the weights of the potentials determining secondary structure formation have been finely tuned, and a novel potential is introduced that helps to precisely control both the average extent of protein chain collapse and the chain's fluctuations in size. AWSEM-IDP can efficiently sample large conformational spaces, while retaining sufficient molecular accuracy to realistically model proteins. We applied this new model to two IDPs, demonstrating that AWSEM-IDP can reasonably well reproduce higher-resolution reference data, thus providing the foundation for a transferable IDP force field. Finally, we used thermodynamic perturbation theory to show that, in general, the conformational ensembles of IDPs are highly sensitive to fine-tuning of force field parameters.
Collapse
Affiliation(s)
- Hao Wu
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Peter G. Wolynes
- Departments of Chemistry and Physics and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, United States
| | - Garegin A. Papoian
- Biophysics Program, Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
31
|
Xu ZQ, Dixon NE. Bacterial replisomes. Curr Opin Struct Biol 2018; 53:159-168. [PMID: 30292863 DOI: 10.1016/j.sbi.2018.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 01/18/2023]
Abstract
Bacterial replisomes are dynamic multiprotein DNA replication machines that are inherently difficult for structural studies. However, breakthroughs continue to come. The structures of Escherichia coli DNA polymerase III (core)-clamp-DNA subcomplexes solved by single-particle cryo-electron microscopy in both polymerization and proofreading modes and the discovery of the stochastic nature of the bacterial replisomes represent notable progress. The structures reveal an intricate interaction network in the polymerase-clamp subassembly, providing insights on how replisomes may work. Meantime, ensemble and single-molecule functional assays and fluorescence microscopy show that the bacterial replisomes can work in a decoupled and uncoordinated way, with polymerases quickly exchanging and both leading-strand and lagging-strand polymerases and the helicase working independently, contradictory to the elegant textbook view of a highly coordinated machine.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia.
| |
Collapse
|
32
|
Dahlke K, Sing CE. Force-extension behavior of DNA in the presence of DNA-bending nucleoid associated proteins. J Chem Phys 2018; 148:084902. [PMID: 29495783 DOI: 10.1063/1.5016177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Interactions between nucleoid associated proteins (NAPs) and DNA affect DNA polymer conformation, leading to phenomena such as concentration dependent force-extension behavior. These effects, in turn, also impact the local binding behavior of the protein, such as high forces causing proteins to unbind, or proteins binding favorably to locally bent DNA. We develop a coarse-grained NAP-DNA simulation model that incorporates both force- and concentration-dependent behaviors, in order to study the interplay between NAP binding and DNA conformation. This model system includes multi-state protein binding and unbinding, motivated by prior work, but is now dependent on the local structure of the DNA, which is related to external forces acting on the DNA strand. We observe the expected qualitative binding behavior, where more proteins are bound at lower forces than at higher forces. Our model also includes NAP-induced DNA bending, which affects DNA elasticity. We see semi-quantitative matching of our simulated force-extension behavior to the reported experimental data. By using a coarse-grained simulation, we are also able to look at non-equilibrium behaviors, such as dynamic extension of a DNA strand. We stretch a DNA strand at different rates and at different NAP concentrations to observe how the time scales of the system (such as pulling time and unbinding time) work in concert. When these time scales are similar, we observe measurable rate-dependent changes in the system, which include the number of proteins bound and the force required to extend the DNA molecule. This suggests that the relative time scales of different dynamic processes play an important role in the behavior of NAP-DNA systems.
Collapse
Affiliation(s)
- K Dahlke
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| | - C E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
33
|
Chen TY, Cheng YS, Huang PS, Chen P. Facilitated Unbinding via Multivalency-Enabled Ternary Complexes: New Paradigm for Protein-DNA Interactions. Acc Chem Res 2018; 51:860-868. [PMID: 29368512 DOI: 10.1021/acs.accounts.7b00541] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dynamic protein-DNA interactions constitute highly robust cellular machineries to fulfill cellular functions. A vast number of studies have focused on how DNA-binding proteins search for and interact with their target DNA segments and on what cellular cues can regulate protein binding, for which protein concentration is a most obvious one. In contrast, how protein unbinding could be regulated by protein concentration has evaded attention because protein unbinding from DNA is typically a unimolecular reaction and thus concentration independent. Recent single-molecule studies from multiple research groups have uncovered that protein concentration can facilitate the unbinding of DNA-bound proteins, revealing regulation of protein unbinding as another mechanistic paradigm for gene regulation. In this Account, we review these recent in vitro and in vivo single-molecule experiments that uncovered the concentration-facilitated protein unbinding by multiple types of DNA-binding proteins, including sequence-nonspecific DNA-binding proteins (e.g., nucleoid-associated proteins, NAP), sequence-specific DNA-binding proteins (e.g., metal-responsive transcription regulators CueR and ZntR), sequence-neutral single-stranded DNA-binding proteins (e.g., Replication protein A, RPA), and DNA polymerases. For the in vitro experiments, Marko's group investigated the exchange of GFP-tagged DNA-bound NAPs with nontagged NAPs in solution of increasing concentration using single-molecule magnetic-tweezers fluorescence microscopy. The faster fluorescence intensity decrease with higher nontagged NAP concentrations suggests that DNA-bound NAPs undergo faster exchange with higher free NAP concentrations. Chen's group used single-molecule fluorescence resonance energy transfer measurements to study the unbinding of CueR from its cognate oligomeric DNA. The average microscopic dwell times of DNA-bound states become shorter with increasing CueR concentrations in the surroundings, demonstrating that free CueR proteins can facilitate the unbinding of the incumbent one on DNA through either assisted dissociation or direct substitution. Greene's group studied the unbinding of RPAs from single-stranded DNA using total internal reflection fluorescence microscopy and DNA curtain techniques. The fluorescence intensity versus time traces show faster decay with higher wild-type RPA concentrations, indicating that DNA-bound RPAs can undergo a concentration-facilitated exchange when encountering excess free RPA. van Oijen's group investigated the leading/lagging-strand polymerase exchange events in the bacteriophage T7 and E. coli replication systems using a combination of single-molecule fluorescence microscopy and DNA-flow-stretching assay. The processivity was observed to have larger decrease when the concentration of the Y526F polymerase mutant increases, indicating that the unbinding of the polymerase is also concentration-dependent. Using stroboscopic imaging and single-molecule tracking, Chen's group further advanced their study into living bacterial cells. They found CueR, as well as its homologue ZntR, shows concentration-enhanced unbinding from its DNA-binding site in vivo. Mechanistic consensus has emerged from these in vitro and in vivo single-molecule studies that encompass a range of proteins with distinct biological functions. It involves multivalent contacts between protein and DNA. The multivalency enables the formation of ternary complexes as intermediates, which subsequently give rise to concentration-enhanced protein unbinding. As multivalent contacts are ubiquitous among DNA-interacting proteins, this multivalency-enabled facilitated unbinding mechanism thus provides a potentially general mechanistic paradigm in regulating protein-DNA interactions.
Collapse
Affiliation(s)
- Tai-Yen Chen
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Yu-Shan Cheng
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Pei-San Huang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Peng Chen
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
34
|
Berlow RB, Dyson HJ, Wright PE. Expanding the Paradigm: Intrinsically Disordered Proteins and Allosteric Regulation. J Mol Biol 2018; 430:2309-2320. [PMID: 29634920 DOI: 10.1016/j.jmb.2018.04.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 11/30/2022]
Abstract
Allosteric regulatory processes are implicated at all levels of biological function. Recent advances in our understanding of the diverse and functionally significant class of intrinsically disordered proteins have identified a multitude of ways in which disordered proteins function within the confines of the allosteric paradigm. Allostery within or mediated by intrinsically disordered proteins ensures robust and efficient signal integration through mechanisms that would be extremely unfavorable or even impossible for globular protein interaction partners. Here, we highlight recent examples that indicate the breadth of biological outcomes that can be achieved through allosteric regulation by intrinsically disordered proteins. Ongoing and future work in this rapidly evolving area of research will expand our appreciation of the central role of intrinsically disordered proteins in ensuring the fidelity and efficiency of cellular regulation.
Collapse
Affiliation(s)
- Rebecca B Berlow
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Peter E Wright
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
35
|
Chu X, Muñoz V. Roles of conformational disorder and downhill folding in modulating protein-DNA recognition. Phys Chem Chem Phys 2018; 19:28527-28539. [PMID: 29044255 DOI: 10.1039/c7cp04380e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Transcription factors are thought to efficiently search for their target DNA site via a combination of conventional 3D diffusion and 1D diffusion along the DNA molecule mediated by non-specific electrostatic interactions. This process requires the DNA-binding protein to quickly exchange between a search competent and a target recognition mode, but little is known as to how these two binding modes are encoded in the conformational properties of the protein. Here, we investigate this issue on the engrailed homeodomain (EngHD), a DNA-binding domain that folds ultrafast and exhibits a complex conformational behavior consistent with the downhill folding scenario. We explore the interplay between folding and DNA recognition using a coarse-grained computational model that allows us to manipulate the folding properties of the protein and monitor its non-specific and specific binding to DNA. We find that conformational disorder increases the search efficiency of EngHD by promoting a fast gliding search mode in addition to sliding. When gliding, EngHD remains loosely bound to DNA moving linearly along its length. A partially disordered EngHD also binds more dynamically to the target site, reducing the half-life of the specific complex via a spring-loaded mechanism. These findings apply to all conditions leading to partial disorder. However, we also find that at physiologically relevant temperatures EngHD is well folded and can only obtain the conformational flexibility required to accelerate 1D diffusion when it folds/unfolds within the downhill scenario (crossing a marginal free energy barrier). In addition, the conformational flexibility of native downhill EngHD enables its fast reconfiguration to lock into the specific binding site upon arrival, thereby affording finer control of the on- and off-rates of the specific complex. Our results provide key mechanistic insights into how DNA-binding domains optimize specific DNA recognition through the control of their conformational dynamics and folding mechanism.
Collapse
Affiliation(s)
- Xiakun Chu
- IMDEA Nanosciences, Faraday 9, Campus de Cantoblanco, Madrid, 28049, Spain
| | | |
Collapse
|
36
|
Erbaş A, de la Cruz MO, Marko JF. Effects of electrostatic interactions on ligand dissociation kinetics. Phys Rev E 2018; 97:022405. [PMID: 29548245 PMCID: PMC5863579 DOI: 10.1103/physreve.97.022405] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Indexed: 11/07/2022]
Abstract
We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.
Collapse
Affiliation(s)
- Aykut Erbaş
- Department of Materials Science and Engineering, Department of Molecular Biosciences, and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Department of Chemistry, Department of Chemical and Biological Engineering, and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - John F Marko
- Department of Molecular Biosciences and Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
37
|
Role of Macromolecular Crowding on the Intracellular Diffusion of DNA Binding Proteins. Sci Rep 2018; 8:844. [PMID: 29339733 PMCID: PMC5770392 DOI: 10.1038/s41598-017-18933-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 12/20/2017] [Indexed: 11/08/2022] Open
Abstract
Recent experiments suggest that cellular crowding facilitates the target search dynamics of proteins on DNA, the mechanism of which is not yet known. By using large scale computer simulations, we show that two competing factors, namely the width of the depletion layer that separates the crowder cloud from the DNA molecule and the degree of protein-crowder crosstalk, act in harmony to affect the target search dynamics of proteins. The impacts vary from nonspecific to specific target search regime. During a nonspecific search, dynamics of a protein is only minimally affected, whereas, a significantly different behaviour is observed when the protein starts forming a specific protein-DNA complex. We also find that the severity of impacts largely depends upon physiological crowder concentration and deviation from it leads to attenuation in the binding kinetics. Based on extensive kinetic study and binding energy landscape analysis, we further present a comprehensive molecular description of the search process that allows us to interpret the experimental findings.
Collapse
|
38
|
Singh AK, Ekka MK, Kaushik A, Pandya V, Singh RP, Banerjee S, Mittal M, Singh V, Kumaran S. Substrate-Induced Facilitated Dissociation of the Competitive Inhibitor from the Active Site of O-Acetyl Serine Sulfhydrylase Reveals a Competitive-Allostery Mechanism. Biochemistry 2017; 56:5011-5025. [PMID: 28805060 DOI: 10.1021/acs.biochem.7b00500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
By classical competitive antagonism, a substrate and competitive inhibitor must bind mutually exclusively to the active site. The competitive inhibition of O-acetyl serine sulfhydrylase (OASS) by the C-terminus of serine acetyltransferase (SAT) presents a paradox, because the C-terminus of SAT binds to the active site of OASS with an affinity that is 4-6 log-fold (104-106) greater than that of the substrate. Therefore, we employed multiple approaches to understand how the substrate gains access to the OASS active site under physiological conditions. Single-molecule and ensemble approaches showed that the active site-bound high-affinity competitive inhibitor is actively dissociated by the substrate, which is not consistent with classical views of competitive antagonism. We employed fast-flow kinetic approaches to demonstrate that substrate-mediated dissociation of full length SAT-OASS (cysteine regulatory complex) follows a noncanonical "facilitated dissociation" mechanism. To understand the mechanism by which the substrate induces inhibitor dissociation, we resolved the crystal structures of enzyme·inhibitor·substrate ternary complexes. Crystal structures reveal a competitive allosteric binding mechanism in which the substrate intrudes into the inhibitor-bound active site and disengages the inhibitor before occupying the site vacated by the inhibitor. In summary, here we reveal a new type of competitive allosteric binding mechanism by which one of the competitive antagonists facilitates the dissociation of the other. Together, our results indicate that "competitive allostery" is the general feature of noncanonical "facilitated/accelerated dissociation" mechanisms. Further understanding of the mechanistic framework of "competitive allosteric" mechanism may allow us to design a new family of "competitive allosteric drugs/small molecules" that will have improved selectivity and specificity as compared to their competitive and allosteric counterparts.
Collapse
Affiliation(s)
- Appu Kumar Singh
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - Mary Krishna Ekka
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - Abhishek Kaushik
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - Vaibhav Pandya
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - Ravi P Singh
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - Shrijita Banerjee
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - Monica Mittal
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - Vijay Singh
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| | - S Kumaran
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR) , Sector 39-A, Chandigarh, India 160036
| |
Collapse
|
39
|
Facilitated dissociation of transcription factors from single DNA binding sites. Proc Natl Acad Sci U S A 2017; 114:E3251-E3257. [PMID: 28364020 DOI: 10.1073/pnas.1701884114] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The binding of transcription factors (TFs) to DNA controls most aspects of cellular function, making the understanding of their binding kinetics imperative. The standard description of bimolecular interactions posits that TF off rates are independent of TF concentration in solution. However, recent observations have revealed that proteins in solution can accelerate the dissociation of DNA-bound proteins. To study the molecular basis of facilitated dissociation (FD), we have used single-molecule imaging to measure dissociation kinetics of Fis, a key Escherichia coli TF and major bacterial nucleoid protein, from single dsDNA binding sites. We observe a strong FD effect characterized by an exchange rate [Formula: see text], establishing that FD of Fis occurs at the single-binding site level, and we find that the off rate saturates at large Fis concentrations in solution. Although spontaneous (i.e., competitor-free) dissociation shows a strong salt dependence, we find that FD depends only weakly on salt. These results are quantitatively explained by a model in which partially dissociated bound proteins are susceptible to invasion by competitor proteins in solution. We also report FD of NHP6A, a yeast TF with structure that differs significantly from Fis. We further perform molecular dynamics simulations, which indicate that FD can occur for molecules that interact far more weakly than those that we have studied. Taken together, our results indicate that FD is a general mechanism assisting in the local removal of TFs from their binding sites and does not necessarily require cooperativity, clustering, or binding site overlap.
Collapse
|
40
|
Facilitated Dissociation Kinetics of Dimeric Nucleoid-Associated Proteins Follow a Universal Curve. Biophys J 2016; 112:543-551. [PMID: 28012548 DOI: 10.1016/j.bpj.2016.11.3198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/17/2016] [Accepted: 11/22/2016] [Indexed: 12/15/2022] Open
Abstract
Recent experimental work has demonstrated facilitated dissociation of certain nucleoid-associated proteins that exhibit an unbinding rate that depends on the concentration of freely diffusing proteins or DNA in solution. This concentration dependence arises due to binding competition with these other proteins or DNA. The identity of the binding competitor leads to different qualitative trends, motivating an investigation to understand observed differences in facilitated dissociation. We use a coarse-grained simulation that takes into account the dimeric nature of many nucleoid-associated proteins by allowing an intermediate binding state. The addition of this partially bound state allows the protein to be unbound, partially bound, or fully bound to a DNA strand, leaving opportunities for other molecules in solution to participate in the unbinding mechanism. Previous models postulated symmetric binding energies for each state of the coarse-grained protein corresponding to the symmetry of the dimeric protein; this model relaxes this assumption by assigning different energies for the different steps in the unbinding process. Allowing different unbinding energies not only has equilibrium effects on the system, but kinetic effects as well. We were able to reproduce the unbinding trends seen experimentally for both DNA and protein competitors. All trends collapse to a universal curve regardless of the unbinding energies used or the identity of the dissociation facilitator, suggesting that facilitated dissociation can be described with a single set of scaling parameters that are related to the energy landscape and geometric nature of the competitors.
Collapse
|