1
|
Sirianni D, Song X, Wairegi S, Wang EB, Mendoza-Gomez SA, Luxon A, Zimmerley M, Nussdorf A, Filatov M, Hoffmann R, Parish CA. Variations on the Bergman Cyclization Theme: Electrocyclizations of Ionic Penta-, Hepta-, and Octadiynes. J Am Chem Soc 2023; 145:21408-21418. [PMID: 37747784 PMCID: PMC10557144 DOI: 10.1021/jacs.3c06691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 09/26/2023]
Abstract
The Bergman cyclization of (Z)-hexa-3-ene-1,5-diyne to form the aromatic diradical p-benzyne has garnered attention as a potential antitumor agent due to its relatively low cyclization barrier and the stability of the resulting diradical. Here, we present a theoretical investigation of several ionic extensions of the fundamental Bergman cyclization: electrocyclizations of the penta-1,4-diyne anion, hepta-1,6-diyne cation, and octa-1,7-diyne dication, leveraging the spin-flip formulation of the equation-of-motion coupled cluster theory with single and double substitutions (EOM-SF-CCSD). Though the penta-1,4-diyne anion exhibits a large cyclization barrier of +66 kcal mol-1, cyclization of both the hepta-1,6-diyne cation and octa-1,7-diyne dication along a previously unreported triplet pathway requires relatively low energy. We also identified the presence of significant aromaticity in the triplet diradical products of these two cationic cyclizations.
Collapse
Affiliation(s)
- Dominic
A. Sirianni
- Department
of Natural Sciences, Daemen University, Amherst, New York 14226, United States
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Xinli Song
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Salmika Wairegi
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Evan B. Wang
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | | | - Adam Luxon
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Maxwell Zimmerley
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Ariana Nussdorf
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| | - Michael Filatov
- Department
of Chemistry, Southern Methodist University, Dallas, Texas 75275, United States
| | - Roald Hoffmann
- Department
of Chemistry, Cornell University, Ithaca, New York 14853, United States
| | - Carol A. Parish
- Department
of Chemistry, University of Richmond, Richmond, Virginia 23173, United States
| |
Collapse
|
2
|
Chabuka BK, Alabugin IV. Hole Catalysis of Cycloaddition Reactions: How to Activate and Control Oxidant Upconversion in Radical-Cationic Diels-Alder Reactions. J Am Chem Soc 2023; 145:19354-19367. [PMID: 37625247 DOI: 10.1021/jacs.3c06106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
In order to use holes as catalysts, the oxidized product should be able to transfer the hole to a fresh reactant. For that, the hole-catalyzed reaction must increase the oxidation potential along the reaction path, i.e., lead to "hole upconversion." If this thermodynamic requirement is satisfied, a hole injected via one-electron oxidation can persist through multiple propagation cycles and serve as a true catalyst. This work provides guidelines for the rational design of hole-catalyzed Diels-Alder (DA) reactions, the prototypical cycloaddition. After revealing the crucial role of hyperconjugation in the absence of hole upconversion in the parent DA reaction, we show how upconversion can be reactivated by proper substitution. For this purpose, we computationally evaluate the contrasting effects of substituents at the three possible positions in the two reactants. The occurrence and magnitude of hole upconversion depend strongly on the placement and nature of substituents. For example, donors at C1 in 1,3-butadiene shift the reaction to the hole-upconverted regime with an increased oxidation potential of up to 1.0 V. In contrast, hole upconversion in C2-substituted 1,3-butadienes is activated by acceptors with the oxidation potential increase up to 0.54 V. Dienophile substitution results in complex trends because the radical cation can be formed at either the dienophile or the diene. Hole upconversion is always present in the former scenario (up to 0.65 V). Finally, we report interesting stereoelectronic effects that can activate or deactivate upconversion via a conformational change.
Collapse
Affiliation(s)
- Beauty K Chabuka
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Vil’ VA, Barsegyan YA, Kuhn L, Terent’ev AO, Alabugin IV. Creating, Preserving, and Directing Carboxylate Radicals in Ni-Catalyzed C(sp 3)–H Acyloxylation of Ethers, Ketones, and Alkanes with Diacyl Peroxides. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Yana A. Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| |
Collapse
|
4
|
Albrecht F, Fatayer S, Pozo I, Tavernelli I, Repp J, Peña D, Gross L. Selectivity in single-molecule reactions by tip-induced redox chemistry. Science 2022; 377:298-301. [DOI: 10.1126/science.abo6471] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Controlling selectivity of reactions is an ongoing quest in chemistry. In this work, we demonstrate reversible and selective bond formation and dissociation promoted by tip-induced reduction-oxidation reactions on a surface. Molecular rearrangements leading to different constitutional isomers are selected by the polarity and magnitude of applied voltage pulses from the tip of a combined scanning tunneling and atomic force microscope. Characterization of voltage dependence of the reactions and determination of reaction rates demonstrate selectivity in constitutional isomerization reactions and provide insight into the underlying mechanisms. With support of density functional theory calculations, we find that the energy landscape of the isomers in different charge states is important to rationalize the selectivity. Tip-induced selective single-molecule reactions increase our understanding of redox chemistry and could lead to novel molecular machines.
Collapse
Affiliation(s)
| | - Shadi Fatayer
- IBM Research Europe – Zurich, 8803 Rüschlikon, Switzerland
- Applied Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Iago Pozo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | | | - Jascha Repp
- Institute of Experimental and Applied Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Diego Peña
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Leo Gross
- IBM Research Europe – Zurich, 8803 Rüschlikon, Switzerland
| |
Collapse
|
5
|
Alabugin I, Hu C. A Swiss Army knife for surface chemistry. Science 2022; 377:261-262. [DOI: 10.1126/science.abq2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Voltage pulses offer a way to control single-molecule reactions on a surface
Collapse
Affiliation(s)
- Igor Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
6
|
Shrinidhi A, Perrin CL. Nucleophilic Addition of Enolates to 1,4-Dehydrobenzene Diradicals Derived from Enediynes: Synthesis of Functionalized Aromatics. ACS OMEGA 2022; 7:22930-22937. [PMID: 35811883 PMCID: PMC9260944 DOI: 10.1021/acsomega.2c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Alkylation of aromatics and formation of a new C-C bond is usually achieved by the electrophilic attack of an activated carbon species on an electron-rich aromatic ring. Herein, we report an alternative method for alkylation of aromatics via nucleophilic addition of enolates of active methylene compounds to 1,4-dehydrobenzene diradicals derived from enediynes cyclodec-1,5-diyne-3-ene, benzo[3,4]-cyclodec-1,5-diyne-3-ene, and cyclohexeno[3,4]-cyclodec-1,5-diyne-3-ene. The benzo-substituted enediyne produces slightly higher yields of alkylation products than do the other two enediynes, but the differences are not substantial. The reaction produces a new C-C bonded aromatic alkylation product, which allows the construction of complex polyfunctional structures in a few steps. Moreover, this reaction provides solely C-arylated products, and no O-arylation products were observed.
Collapse
|
7
|
Zhou Z, Egger DT, Hu C, Pennachio M, Wei Z, Kawade RK, Üngör Ö, Gershoni-Poranne R, Petrukhina MA, Alabugin IV. Localized Antiaromaticity Hotspot Drives Reductive Dehydrogenative Cyclizations in Bis- and Mono-Helicenes. J Am Chem Soc 2022; 144:12321-12338. [PMID: 35652918 DOI: 10.1021/jacs.2c03681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe reductive dehydrogenative cyclizations that form hepta-, nona-, and decacyclic anionic graphene subunits from mono- and bis-helicenes with an embedded five-membered ring. The reaction of bis-helicenes can either proceed to the full double annulation or be interrupted by addition of molecular oxygen at an intermediate stage. The regioselectivity of the interrupted cyclization cascade for bis-helicenes confirms that relief of antiaromaticity is a dominant force for these facile ring closures. Computational analysis reveals the unique role of the preexisting negatively charged cyclopentadienyl moiety in directing the second negative charge at a specific remote location and, thus, creating a localized antiaromatic region. This region is the hotspot that promotes the initial cyclization. Computational studies, including MO analysis, molecular electrostatic potential maps, and NICS(1.7)ZZ calculations, evaluate the interplay of the various effects including charge delocalization, helicene strain release, and antiaromaticity. The role of antiaromaticity relief is further supported by efficient reductive closure of the less strained monohelicenes where the relief of antiaromaticity promotes the cyclization even when the strain is substantially reduced. The latter finding significantly expands the scope of this reductive alternative to the Scholl ring closure.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States.,School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Dominic T Egger
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8903, Switzerland
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Matthew Pennachio
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Zheng Wei
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Rahul K Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Ökten Üngör
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Renana Gershoni-Poranne
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8903, Switzerland.,Schulich Faculty of Chemistry, Technion ─ Israel Institute of Technology, Technion City 32000, Israel
| | - Marina A Petrukhina
- Department of Chemistry, University at Albany, State University of New York, Albany, New York 12222, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
8
|
Akyeva AY, Kansuzyan AV, Vukich KS, Kuhn L, Saverina EA, Minyaev ME, Pechennikov VM, Egorov MP, Alabugin IV, Vorobyev SV, Syroeshkin MA. Remote Stereoelectronic Effects in Pyrrolidone- and Caprolactam-Substituted Phenols: Discrepancies in Antioxidant Properties Evaluated by Electrochemical Oxidation and H-Atom Transfer Reactivity. J Org Chem 2022; 87:5371-5384. [PMID: 35363496 DOI: 10.1021/acs.joc.2c00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antioxidants are commonly evaluated via two main approaches, i.e., the ability to donate an electron and the ability to intercept free radicals. We compared these approaches by evaluating the properties of 11 compounds containing both antioxidant moieties (mono- and polyphenols) and auxiliary pharmacophores (pyrrolidone and caprolactam). Several common antioxidants, such as butylated hydroxytoluene (BHT), 2,3,5-trimethylphenol (TMP), quercetin, and dihydroquercetin, were added for comparison. The antioxidant properties of these compounds were determined by their rates of reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and their oxidation potentials from cyclic voltammetry. Although these methods test different chemical properties, their results correlate reasonably well. However, several exceptions exist where the two methods give opposite predictions! One of them is the different behavior of mono- and polyphenols: polyphenols can react with DPPH more than an order of magnitude faster than monophenols of a similar oxidation potential. The second exception stems from the size of a "bystander" lactam ring at the benzylic position. Although the phenols with a seven-membered lactam ring are harder to oxidize, the sterically nonhindered compounds react with DPPH about 2× faster than the analogous five-membered lactams. The limitations of computational methods, especially those based on a single parameter, are also evaluated and discussed.
Collapse
Affiliation(s)
- Anna Ya Akyeva
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia
| | | | - Katarina S Vukich
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia.,I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | | | | | | | - Mikhail P Egorov
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Stepan V Vorobyev
- Gubkin Russian State University of Oil and Gas, 65 Leninsky Prospect, 119991 Moscow, Russia
| | | |
Collapse
|
9
|
Dulov D, Levitskiy O, Bogdanov A, Magdesieva T. Redox‐Amphoteric 4,4’‐Dicyclopropyldiphenylnitroxyl Radical: Unexpectedly High Stability. ChemistrySelect 2021. [DOI: 10.1002/slct.202102626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dmitry Dulov
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Oleg Levitskiy
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Alexey Bogdanov
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| | - Tatiana Magdesieva
- Lomonosov Moscow State University Department of Chemistry Leninskie Gory 1/3 119991 Moscow Russian Federation
| |
Collapse
|
10
|
Alabugin IV, Kuhn L, Medvedev MG, Krivoshchapov NV, Vil' VA, Yaremenko IA, Mehaffy P, Yarie M, Terent'ev AO, Zolfigol MA. Stereoelectronic power of oxygen in control of chemical reactivity: the anomeric effect is not alone. Chem Soc Rev 2021; 50:10253-10345. [PMID: 34263287 DOI: 10.1039/d1cs00386k] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although carbon is the central element of organic chemistry, oxygen is the central element of stereoelectronic control in organic chemistry. Generally, a molecule with a C-O bond has both a strong donor (a lone pair) and a strong acceptor (e.g., a σ*C-O orbital), a combination that provides opportunities to influence chemical transformations at both ends of the electron demand spectrum. Oxygen is a stereoelectronic chameleon that adapts to the varying situations in radical, cationic, anionic, and metal-mediated transformations. Arguably, the most historically important stereoelectronic effect is the anomeric effect (AE), i.e., the axial preference of acceptor groups at the anomeric position of sugars. Although AE is generally attributed to hyperconjugative interactions of σ-acceptors with a lone pair at oxygen (negative hyperconjugation), recent literature reports suggested alternative explanations. In this context, it is timely to evaluate the fundamental connections between the AE and a broad variety of O-functional groups. Such connections illustrate the general role of hyperconjugation with oxygen lone pairs in reactivity. Lessons from the AE can be used as the conceptual framework for organizing disjointed observations into a logical body of knowledge. In contrast, neglect of hyperconjugation can be deeply misleading as it removes the stereoelectronic cornerstone on which, as we show in this review, the chemistry of organic oxygen functionalities is largely based. As negative hyperconjugation releases the "underutilized" stereoelectronic power of unshared electrons (the lone pairs) for the stabilization of a developing positive charge, the role of orbital interactions increases when the electronic demand is high and molecules distort from their equilibrium geometries. From this perspective, hyperconjugative anomeric interactions play a unique role in guiding reaction design. In this manuscript, we discuss the reactivity of organic O-functionalities, outline variations in the possible hyperconjugative patterns, and showcase the vast implications of AE for the structure and reactivity. On our journey through a variety of O-containing organic functional groups, from textbook to exotic, we will illustrate how this knowledge can predict chemical reactivity and unlock new useful synthetic transformations.
Collapse
Affiliation(s)
- Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova St., 119991 Moscow, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation.,Lomonosov Moscow State University, Leninskie Gory 1 (3), Moscow, 119991, Russian Federation
| | - Vera A Vil'
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Patricia Mehaffy
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA.
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., 119991 Moscow, Russian Federation
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan 65167, Iran
| |
Collapse
|
11
|
Abstract
Enediynes are widely studied to understand their cycloaromatization and the trapping of the resulting p-dehydrobenzene diradical. However, few model substrates are known, and they are hard to synthesize and difficult to handle. Herein we report cyclohexeno[3,4]cyclodec-1,5-diyne-3-ene as a convenient model for studying the reactivity of enediynes. It can be easily synthesized from 1,2-diethynylcyclohexene and 1,4-diiodobutane. It is a solid that is stable at room temperature. In solution the p-dehydrobenzene diradical derived from its cycloaromatization can be trapped by nucleophiles. The rate-limiting step is the cyclization, which is slightly slower than that of the parent cyclodec-1,5-diyne-3-ene but faster than that of its benzo analogue, consistent with the distances between the reacting carbon atoms.
Collapse
Affiliation(s)
- Annadka Shrinidhi
- Department of Chemistry, University of California-San Diego, La Jolla, California 92093-0358, United States
| | - Charles L Perrin
- Department of Chemistry, University of California-San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
12
|
Marin-Luna M, Alajarin M. Unraveling the computed non-least motion pathway for the homodimerization of superchameleonic isocyanides: the peculiar nonsymmetrical (F-NC) 2 reactant complex. Phys Chem Chem Phys 2021; 23:16973-16980. [PMID: 34338701 DOI: 10.1039/d1cp02674g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Isocyanides are commonly qualified as chameleonic compounds because of their reactions with both nucleophiles and electrophiles. In some instances, their chameleonic behavior changes to superchameleonic when they are involved in homodimerization processes, with the two initially identical isocyanide units adopting different roles along the reaction coordinate. We present here a detailed analysis of the computed non-least motion pathway that two isocyanides, the superchameleonic F-NC and, for the sake of comparison, the standard Me-NC, follow when reacting with themselves by comparing the evolution of a series of representative geometrical and electronic parameters along the respective reaction coordinates. This study shows that the two F-NC units are notoriously distinguishable from each other in all the parameters under scrutiny. Furthermore, we envisage that the superchameleonic character of F-NC seems to be most likely due to a minimal electrostatic interaction between the two entities at the earliest stage of the reaction. We also show that MeO-NC, MeS-NC and Me3P[double bond, length as m-dash]N-NC might be postulated as new examples of superchameleonic isocyanides.
Collapse
Affiliation(s)
- Marta Marin-Luna
- Departamento de Química Orgánica, Facultad de Química, Regional Campus of International Excellence "Campus Mare Nostrum", Universidad de Murcia, E-30100 Murcia, Spain.
| | | |
Collapse
|
13
|
Huang X, Orimoto Y, Aoki Y. Theoretical Analysis of Properties of Ground and Excited States for Photodissociation of the C-O Bond in Polycarbonates. J Phys Chem A 2021; 125:6662-6673. [PMID: 34319114 DOI: 10.1021/acs.jpca.1c03074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantum chemical calculations were carried out to investigate the properties of the ground state (GS) and the excited state (ES) of bisphenol-A polycarbonate (PC) with bisphenol-A hydrogen carbonate (BPAHC) as a model compound. Time-dependent density functional theory (TDDFT) was used to obtain the absorption spectrum and the corresponding transition natures of BPAHC. Furthermore, the ESs related to the transitions of the carbonate group and neighboring phenyl ring were optimized employing the TDDFT method for photodegradation. Our results showed that the carbonate group is broken at an ES with relatively high energy, which has a significant C-O bond cleavage within the carbonate group compared to that of GS geometry. The carbonate group C-O bond cleavage is caused by two reasons. One is the transition from the O lone pair to the carbonate π anti-bonding which is commonly known, and the other one is the transition from the O lone pair to the phenyl group (adjacent to the carbonate group) π anti-bonding that is newly proposed.
Collapse
Affiliation(s)
- Xiao Huang
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Yuuichi Orimoto
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan
| | - Yuriko Aoki
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-Park, Fukuoka 816-8580, Japan.,Japan Science and Technology Agency, CREST, 4-1-8 Hon-chou, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
14
|
Karas LJ, Campbell AT, Alabugin IV, Wu JI. Antiaromaticity Gain Activates Tropone and Nonbenzenoid Aromatics as Normal-Electron-Demand Diels-Alder Dienes. Org Lett 2020; 22:7083-7087. [PMID: 32856925 PMCID: PMC8124018 DOI: 10.1021/acs.orglett.0c02343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We propose a carbonyl umpolung strategy for activating tropone as a normal-electron-demand Diels-Alder diene. Tropone has low reactivity for Diels-Alder reactions because of its [4n+2] π-aromaticity. Conversion of the carbonyl group into a hydrazone ion (═N-NR-) reverses the polarity of the exocyclic double bond, increases the [4n] ring π-antiaromaticity, and raises the HOMO energy. Computed gas-phase activation free energies for a Diels-Alder reaction with maleimide suggest a billion-fold rate increase when the tropone C═O is replaced by ═N-NR- (R = H or SO2CH3). Other nonbenzenoid aromatics can be activated as normal-electron-demand Diels-Alder dienes in the same way.
Collapse
Affiliation(s)
- Lucas J Karas
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Adam T Campbell
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Judy I Wu
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
15
|
Sahharova LT, Gordeev EG, Eremin DB, Ananikov VP. Pd-Catalyzed Synthesis of Densely Functionalized Cyclopropyl Vinyl Sulfides Reveals the Origin of High Selectivity in a Fundamental Alkyne Insertion Step. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02053] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Liliya T. Sahharova
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Evgeniy G. Gordeev
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| | - Dmitry B. Eremin
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
- The Bridge@USC, University of Southern California, 1002 Childs Way, Los Angeles, California 90089-3502, United States
| | - Valentine P. Ananikov
- Zelinsky institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect 47, Moscow 119991, Russia
| |
Collapse
|
16
|
Kawade RK, Hu C, Dos Santos NR, Watson N, Lin X, Hanson K, Alabugin IV. Phenalenannulations: Three-Point Double Annulation Reactions that Convert Benzenes into Pyrenes. Angew Chem Int Ed Engl 2020; 59:14352-14357. [PMID: 32495480 DOI: 10.1002/anie.202006087] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Indexed: 12/13/2022]
Abstract
3-Point annulations, or phenalenannulations, transform a benzene ring directly into a substituted pyrene by "wrapping" two new cycles around the perimeter of the central ring at three consecutive carbon atoms. This efficient, modular, and general method for π-extension opens access to non-symmetric pyrenes and their expanded analogues. Potentially, this approach can convert any aromatic ring bearing a -CH2 Br or a -CHO group into a pyrene moiety. Depending upon the workup choices, the process can be directed towards either tin- or iodo-substituted product formation, giving complementary choices for further various cross-coupling reactions. The two-directional bis-double annulation adds two new polyaromatic extensions with a total of six new aromatic rings at a central core.
Collapse
Affiliation(s)
- Rahul Kisan Kawade
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Nikolas R Dos Santos
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Noelle Watson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306-4390, USA
| |
Collapse
|
17
|
Kawade RK, Hu C, Dos Santos NR, Watson N, Lin X, Hanson K, Alabugin IV. Phenalenannulations: Three‐Point Double Annulation Reactions that Convert Benzenes into Pyrenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rahul Kisan Kawade
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Chaowei Hu
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Nikolas R. Dos Santos
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Noelle Watson
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Xinsong Lin
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Kenneth Hanson
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| |
Collapse
|
18
|
Burykina JV, Shlapakov NS, Gordeev EG, König B, Ananikov VP. Selectivity control in thiol-yne click reactions via visible light induced associative electron upconversion. Chem Sci 2020; 11:10061-10070. [PMID: 34094267 PMCID: PMC8162103 DOI: 10.1039/d0sc01939a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/22/2020] [Indexed: 12/02/2022] Open
Abstract
An associative electron upconversion is proposed as a key step determining the selectivity of thiol-yne coupling. The developed synthetic approach provided an efficient tool to access a comprehensive range of products - four types of vinyl sulfides were prepared in high yields and selectivity. We report practically important transition-metal-free regioselective thiol-yne addition and formation of the demanding Markovnikov-type product by a radical photoredox process. The photochemical process was directly monitored by mass-spectrometry in a specially designed ESI-MS device with green laser excitation in the spray chamber. The proposed reaction mechanism is supported by experiments and DFT calculations.
Collapse
Affiliation(s)
- Julia V Burykina
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Nikita S Shlapakov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
- Institut für Organische Chemie, Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Evgeniy G Gordeev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Burkhard König
- Institut für Organische Chemie, Universität Regensburg Universitätstrasse 31 93053 Regensburg Germany
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
19
|
Mills LR, Monteith JJ, Dos Passos Gomes G, Aspuru-Guzik A, Rousseaux SAL. The Cyclopropane Ring as a Reporter of Radical Leaving-Group Reactivity for Ni-Catalyzed C(sp 3)-O Arylation. J Am Chem Soc 2020; 142:13246-13254. [PMID: 32609494 DOI: 10.1021/jacs.0c06904] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ability to understand and predict reactivity is essential for the development of new reactions. In the context of Ni-catalyzed C(sp3)-O functionalization, we have developed a unique strategy employing activated cyclopropanols to aid the design and optimization of a redox-active leaving group for C(sp3)-O arylation. In this chemistry, the cyclopropane ring acts as a reporter of leaving-group reactivity, since the ring-opened product is obtained under polar (2e) conditions, and the ring-closed product is obtained under radical (1e) conditions. Mechanistic studies demonstrate that the optimal leaving group is redox-active and are consistent with a Ni(I)/Ni(III) catalytic cycle. The optimized reaction conditions are also used to synthesize a number of arylcyclopropanes, which are valuable pharmaceutical motifs.
Collapse
Affiliation(s)
- L Reginald Mills
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - John J Monteith
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Gabriel Dos Passos Gomes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Computer Science, University of Toronto, 214 College St., Toronto, Ontario M5T 3A1, Canada
| | - Alán Aspuru-Guzik
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada.,Department of Computer Science, University of Toronto, 214 College St., Toronto, Ontario M5T 3A1, Canada.,Vector Institute for Artificial Intelligence, 661 University Ave. Suite 710, Toronto, Ontario M5G 1M1, Canada.,Lebovic Fellow, Canadian Institute for Advanced Research (CIFAR), 661 University Ave, Toronto, Ontario M5G 1M1, Canada
| | - Sophie A L Rousseaux
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
20
|
Zhang M, Li B, Chen H, Lu H, Ma H, Cheng X, Wang W, Wang Y, Ding Y, Hu A. Triggering the Antitumor Activity of Acyclic Enediyne through Maleimide-Assisted Rearrangement and Cycloaromatization. J Org Chem 2020; 85:9808-9819. [DOI: 10.1021/acs.joc.0c01124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mengsi Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Baojun Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Huimin Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haotian Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hailong Ma
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaoyu Cheng
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenbo Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiguo Hu
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
21
|
La-ongthong K, Naweephattana P, Khaikate O, Surawatanawong P, Soorukram D, Pohmakotr M, Reutrakul V, Leowanawat P, Kuhakarn C. Alkanethiol-Mediated Cyclization of o-Alkynylisocyanobenzenes: Synthesis of Bis-Thiolated Indole Derivatives. J Org Chem 2020; 85:6338-6351. [DOI: 10.1021/acs.joc.0c00003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kannika La-ongthong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Phiphop Naweephattana
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Onnicha Khaikate
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Panida Surawatanawong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Darunee Soorukram
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Manat Pohmakotr
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Vichai Reutrakul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Pawaret Leowanawat
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| | - Chutima Kuhakarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Rama 6 Road, Bangkok 10400, Thailand
| |
Collapse
|
22
|
Pagano JK, Xie J, Erickson KA, Cope SK, Scott BL, Wu R, Waterman R, Morris DE, Yang P, Gagliardi L, Kiplinger JL. Actinide 2-metallabiphenylenes that satisfy Hückel’s rule. Nature 2020; 578:563-567. [DOI: 10.1038/s41586-020-2004-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/20/2019] [Indexed: 11/09/2022]
|
23
|
Elliott Q, Dos Passos Gomes G, Evoniuk CJ, Alabugin IV. Testing the limits of radical-anionic CH-amination: a 10-million-fold decrease in basicity opens a new path to hydroxyisoindolines via a mixed C-N/C-O-forming cascade. Chem Sci 2020; 11:6539-6555. [PMID: 34094120 PMCID: PMC8159354 DOI: 10.1039/c9sc06511c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/14/2020] [Indexed: 11/21/2022] Open
Abstract
An intramolecular C(sp3)-H amidation proceeds in the presence of t-BuOK, molecular oxygen, and DMF. This transformation is initiated by the deprotonation of an acidic N-H bond and selective radical activation of a benzylic C-H bond towards hydrogen atom transfer (HAT). Cyclization of this radical-anion intermediate en route to a two-centered/three-electron (2c,3e) C-N bond removes electron density from nitrogen. As this electronegative element resists such an "oxidation", making nitrogen more electron rich is key to overcoming this problem. This work dramatically expands the range of N-anions that can participate in this process by using amides instead of anilines. The resulting 107-fold decrease in the N-component basicity (and nucleophilicity) doubles the activation barrier for C-N bond formation and makes this process nearly thermoneutral. Remarkably, this reaction also converts a weak reductant into a much stronger reductant. Such "reductant upconversion" allows mild oxidants like molecular oxygen to complete the first part of the cascade. In contrast, the second stage of NH/CH activation forms a highly stabilized radical-anion intermediate incapable of undergoing electron transfer to oxygen. Because the oxidation is unfavored, an alternative reaction path opens via coupling between the radical anion intermediate and either superoxide or hydroperoxide radical. The hydroperoxide intermediate transforms into the final hydroxyisoindoline products under basic conditions. The use of TEMPO as an additive was found to activate less reactive amides. The combination of experimental and computational data outlines a conceptually new mechanism for conversion of unprotected amides into hydroxyisoindolines proceeding as a sequence of C-H amidation and C-H oxidation.
Collapse
Affiliation(s)
- Quintin Elliott
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Gabriel Dos Passos Gomes
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Christopher J Evoniuk
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University Tallahassee Florida 32306 USA
| |
Collapse
|
24
|
Li Y, Zhao X. Gold-catalyzed domino cyclization enabling construction of diverse fused azaspiro tetracyclic scaffolds: a cascade catalysis mechanism due to a substrate and counterion. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00120a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The detailed mechanism and origins of gold-catalyzed domino cyclization to diverse fused azaspiro tetracyclic scaffolds by cooperative dual catalysis and cascade catalysis are systematically studied.
Collapse
Affiliation(s)
- Yunhe Li
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| | - Xiang Zhao
- Institute for Chemical Physics & Department of Chemistry
- School of Science
- State Key Laboratory of Electrical Insulation and Power Equipment & MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an710049
| |
Collapse
|
25
|
Zhou Z, Kawade RK, Wei Z, Kuriakose F, Üngör Ö, Jo M, Shatruk M, Gershoni‐Poranne R, Petrukhina MA, Alabugin IV. Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911319] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Zheng Zhou
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Rahul Kisan Kawade
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Zheng Wei
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Febin Kuriakose
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Ökten Üngör
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Minyoung Jo
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Michael Shatruk
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | | | - Marina A. Petrukhina
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| |
Collapse
|
26
|
Zhou Z, Kawade RK, Wei Z, Kuriakose F, Üngör Ö, Jo M, Shatruk M, Gershoni‐Poranne R, Petrukhina MA, Alabugin IV. Negative Charge as a Lens for Concentrating Antiaromaticity: Using a Pentagonal “Defect” and Helicene Strain for Cyclizations. Angew Chem Int Ed Engl 2019; 59:1256-1262. [DOI: 10.1002/anie.201911319] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Zheng Zhou
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Rahul Kisan Kawade
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Zheng Wei
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Febin Kuriakose
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Ökten Üngör
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Minyoung Jo
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | - Michael Shatruk
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| | | | - Marina A. Petrukhina
- Department of Chemistry University at Albany State University of New York Albany NY 12222 USA
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL 32306-4390 USA
| |
Collapse
|
27
|
Nguyen HTT, Mague JT, Zhao Q, Kraml CM, Byrne N, Pascal RA. The structure and racemization of 1,2-bis(pentaphenylphenyl)benzene. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.03.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Hochkonversion von Reduktionsmitteln. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mikhail A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry Leninskyprosp. 47 119991 Moskau Russland
| | - Febin Kuriakose
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL USA
| | - Evgeniya A. Saverina
- N. D. Zelinsky Institute of Organic Chemistry Leninskyprosp. 47 119991 Moskau Russland
- UMR CNRS 6226 ISCR University of Rennes 1 Rennes Frankreich
| | | | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry Leninskyprosp. 47 119991 Moskau Russland
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL USA
| |
Collapse
|
29
|
Syroeshkin MA, Kuriakose F, Saverina EA, Timofeeva VA, Egorov MP, Alabugin IV. Upconversion of Reductants. Angew Chem Int Ed Engl 2019; 58:5532-5550. [DOI: 10.1002/anie.201807247] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Mikhail A. Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russia
| | - Febin Kuriakose
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL USA
| | - Evgeniya A. Saverina
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russia
- UMR CNRS 6226 ISCR University of Rennes 1 Rennes France
| | | | - Mikhail P. Egorov
- N. D. Zelinsky Institute of Organic Chemistry Leninsky prosp. 47 119991 Moscow Russia
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry Florida State University Tallahassee FL USA
| |
Collapse
|
30
|
Raju S, Hsiao HC, Thirupathi S, Chen PL, Chuang SC. Palladium-Catalyzed Benzofulvenation of o
-Arylanilines through C−H Bond Activation by Using Two Diarylacetylenes as an Implicit Benzofulvene. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Selvam Raju
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| | - Huan-Chang Hsiao
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| | - Selvakumar Thirupathi
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| | - Pei-Ling Chen
- Department of Chemistry; National Tsing Hua University; Hsinchu Taiwan 30013
| | - Shih-Ching Chuang
- Department of Applied Chemistry; National Chiao Tung University; 1001 Ta-Hsueh Road Hsinchu Taiwan 30010
| |
Collapse
|
31
|
Alabugin IV, Gonzalez-Rodriguez E. Alkyne Origami: Folding Oligoalkynes into Polyaromatics. Acc Chem Res 2018; 51:1206-1219. [PMID: 29676896 DOI: 10.1021/acs.accounts.8b00026] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Do not bend the triple bonds! This familiar undergraduate mantra must be disobeyed if the alkyne group is used as a building block in molecular construction. This Account will describe our exploits in "alkyne origami", that is, folding oligoalkynes into new shapes via cyclization cascades. This research stems from a set of guidelines for the cyclizations of alkynes that we suggested in 2011 ( Gilmore Chem. Rev. 2011 , 111 , 6513 ; Alabugin J. Am. Chem. Soc. 2011 , 133 , 12608 ). The guidelines blended critical analysis of ∼40 years of experimental research with computations into the comprehensive predictions of the relative favorability of dig-cyclizations of anions and radicals. In this Account, we will show how this new understanding has been instrumental in building polyaromatics. In particular, we illustrate the utility of these stereoelectronic models by developing a toolbox of practical, selective, and efficient synthetic transformations. The high energy and high carbon content render alkynes the perfect precursors for the preparation of polyaromatic ribbons and other carbon-rich materials with precisely controlled structure and reactivity. Still, the paradox of alkyne reactivity (alkynes store a lot of energy but are protected kinetically by their relatively strong π-bonds) requires precise use of stereoelectronic factors for lowering the activation barriers for alkyne cyclizations. These factors are drastically different in the "all-exo" and the "all-endo" cyclization cascades of oligoynes. This Account will highlight the interplay between the stereoelectronics of bond formation and topology of acyclic precursor "folding" into a polycyclic ribbon. The topology of folding is simpler for the endo cascades, which are compatible with initiation either at the edge or at the center. In contrast, the exo cascades require precise folding of an oligoalkyne ribbon by starting the cascade exactly at the center of the chain. These differences define the key challenges in the design of these two types of alkyne cyclization cascades. For the endo processes, the folding is simple, but these processes require a strategy ("LUMO Umpolung") for inverting the usual stereoelectronic requirements of alkyne cyclizations. We also show how alkenes can be used as alkyne equivalents in cyclizations coupled with fragmentations and how one can make endo cyclization products without ever going through an endo cyclization. In contrast, each elementary step of the exo cascades benefits from the inherent exo preference for the radical attack, but these cascades require precise initiation by starting exactly at the central alkyne unit of the oligoyne. This strict selectivity requirement led to the development of traceless directing groups capable of supramolecular assistance to the initiation step and self-terminating departure at the end of the cascade. With attention to electronic effects that can stop radical cascades, oligoalkynes can be selectively converted into precisely shaped and functionalized polyaromatic products. The generality of these concepts is further illustrated by the development of radical "peri annulations" at the zigzag edge of acenes.
Collapse
Affiliation(s)
- Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Edgar Gonzalez-Rodriguez
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
32
|
Valenzuela SA, Cortés AJ, Tippins ZJE, Daly MH, Keel TE, Gherman BF, Spence JD. Effect of Extended Benzannelation Orientation on Bergman and Related Cyclizations of Isomeric Quinoxalenediynes. J Org Chem 2017; 82:13297-13312. [PMID: 29121468 DOI: 10.1021/acs.joc.7b02420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A combined computational and experimental study was conducted to examine the effect of extended benzannelation orientation on C1-C5 and C1-C6 cyclization of acyclic quinoxalenediynes. Calculations (mPW1PW91/cc-pVTZ//mPW1PW91/6-31G(d,p)) on terminal and phenylethynyl-substituted 5,6-diethynylquinoxaline and 6,7-diethynylquinoxaline showed C1-C6 Bergman cyclization as the favored thermodynamic reaction pathway, with larger C1-C6 preference for the angular quinoxalenediynes due to gain of a new aromatic sextet. Kinetic studies, as a function of 1,4-cyclohexadiene concentration, revealed retro-Bergman ring opening predominates over hydrogen atom abstraction (k-1 > k2) for 6,7-diethynylquinoxaline while 5,6-diethynylquinoxaline undergoes irreversible Bergman cyclization indicative of a large retro-Bergman ring opening barrier (k2 > k-1). The effect of extended linear versus angular benzannelation on reaction pathway shows in the contrasting photocyclizations of phenylethynyl derivatives. While angular 5,6-diethynylquinoxalines gave exclusive C1-C6 photocyclization, linear 6,7-diethynylquinoxaline afforded C1-C5 fulvene products. Computed singlet-triplet gaps and biradical stabilization energies indicated weak interaction between the nitrogen lone pair and proximal radical center in angular 5,6-diethynylquinoxalines. The overall data indicates extended angular benzannelation effectively renders Bergman cyclization irreversible due to favorable aromatic stabilization energy, while extended linear benzannelation results in increased retro-Bergman ring opening, allowing C1-C5 cyclization to become a competitive reaction channel.
Collapse
Affiliation(s)
- Stephanie A Valenzuela
- Department of Chemistry, California State University, Sacramento , 6000 J Street, Sacramento, California 95819, United States
| | - Alondra J Cortés
- Department of Chemistry, California State University, Sacramento , 6000 J Street, Sacramento, California 95819, United States
| | - Zakery J E Tippins
- Department of Chemistry, California State University, Sacramento , 6000 J Street, Sacramento, California 95819, United States
| | - Morgan H Daly
- Department of Chemistry, California State University, Sacramento , 6000 J Street, Sacramento, California 95819, United States
| | - Terell E Keel
- Department of Chemistry, California State University, Sacramento , 6000 J Street, Sacramento, California 95819, United States
| | - Benjamin F Gherman
- Department of Chemistry, California State University, Sacramento , 6000 J Street, Sacramento, California 95819, United States
| | - John D Spence
- Department of Chemistry, California State University, Sacramento , 6000 J Street, Sacramento, California 95819, United States
| |
Collapse
|
33
|
Lu Z, Quanz H, Burghaus O, Hofmann J, Logemann C, Beeck S, Schreiner PR, Wegner HA. Stable Organic Neutral Diradical via Reversible Coordination. J Am Chem Soc 2017; 139:18488-18491. [PMID: 29227677 DOI: 10.1021/jacs.7b11823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We report the formation of a stable neutral diboron diradical simply by coordination of an aromatic dinitrogen compound to an ortho-phenyldiborane. This process is reversible upon addition of pyridine. The diradical species is stable above 200 °C. Computations are consistent with an open-shell triplet diradical with a very small open-shell singlet-triplet energy gap that is indicative of the electronic disjointness of the two radical sites. This opens a new way of generating stable radicals with fascinating electronic properties useful for a large variety of applications.
Collapse
Affiliation(s)
- Zhenpin Lu
- Institut für Organische Chemie, Justus-Liebig-Universität , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Henrik Quanz
- Institut für Organische Chemie, Justus-Liebig-Universität , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Olaf Burghaus
- Fachbereich Chemie, Philipps-Universität Marburg , Hans-Meerwein-Str. 4, 35032 Marburg, Germany
| | - Jonas Hofmann
- Physikalisch-Chemisches Institut, Justus-Liebig-Universität , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Christian Logemann
- Institut für Anorganische und Analytische Chemie, Justus-Liebig-Universität , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Sebastian Beeck
- Institut für Organische Chemie, Justus-Liebig-Universität , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Peter R Schreiner
- Institut für Organische Chemie, Justus-Liebig-Universität , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Hermann A Wegner
- Institut für Organische Chemie, Justus-Liebig-Universität , Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| |
Collapse
|
34
|
Evoniuk CJ, Gomes GDP, Hill SP, Fujita S, Hanson K, Alabugin IV. Coupling N–H Deprotonation, C–H Activation, and Oxidation: Metal-Free C(sp3)–H Aminations with Unprotected Anilines. J Am Chem Soc 2017; 139:16210-16221. [DOI: 10.1021/jacs.7b07519] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | | | - Sean P. Hill
- Florida State University, Tallahassee, Florida 32306, United States
| | - Satoshi Fujita
- Interdisciplinary
Graduate School of Engineering Sciences, Kyushu University, Fukuoka, Fukuoka Prefecture 819-0395, Japan
| | - Kenneth Hanson
- Florida State University, Tallahassee, Florida 32306, United States
| | - Igor V. Alabugin
- Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
35
|
Li Y, Kirillov AM, Fang R, Yang L. Effect of Substituent on the Mechanism and Chemoselectivity of the Gold(I)-Catalyzed Propargyl Ester Tandem Cyclization. Organometallics 2017. [DOI: 10.1021/acs.organomet.7b00042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yunhe Li
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Alexander M. Kirillov
- Centro
de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Ran Fang
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Lizi Yang
- State
Key Laboratory of Applied Organic Chemistry and Key Laboratory of
Nonferrous Metals Chemistry and Resources Utilization of Gansu Province,
College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
36
|
Chen S, Li Q, Sun S, Ding Y, Hu A. A Novel Approach toward Polyfulvene: Cationic Polymerization of Enediynes. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02321] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Shudan Chen
- Shanghai Key Laboratory of
Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qiaoping Li
- Shanghai Key Laboratory of
Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shiyuan Sun
- Shanghai Key Laboratory of
Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Ding
- Shanghai Key Laboratory of
Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Aiguo Hu
- Shanghai Key Laboratory of
Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|