1
|
Beng TK, Kaur J, Anosike IS, Rentfro B, Newgard S. Revisiting the 1,3-azadiene-succinic anhydride annulation reaction for the stereocontrolled synthesis of allylic 2-oxopyrrolidines bearing up to four contiguous stereocenters. RSC Adv 2024; 14:16678-16684. [PMID: 38784414 PMCID: PMC11110166 DOI: 10.1039/d4ra03156c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Polysubstituted 2-oxopyrrolidines bearing at least two contiguous stereocenters constitute the core of several pharmaceuticals, including clausenamide (antidementia). Here, we describe a flexible annulation strategy, which unites succinic anhydride and 1,3-azadienes to produce allylic 2-oxopyrrolidines bearing contiguous stereocenters. The approach is chemoselective, efficient, modular, scalable, and diastereoselective. The scalable nature of the reactions offers the opportunity for post-diversification, leading to incorporation of motifs with either known pharmaceutical value or that permit subsequent conversion to medicinally relevant entities.
Collapse
Affiliation(s)
- Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jasleen Kaur
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Ifeyinwa S Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Benjamin Rentfro
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Shae Newgard
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
2
|
Wang L, Wang Y, Wu S, Yan CG, Zhang C, Zhang J, Han Y. Enantioselective Synthesis of Isoindolinone by Palladium-Catalyzed Aminoalkynylation of O-Phenyl Hydroxamic Ethers with Alkynes. J Am Chem Soc 2024; 146:4320-4326. [PMID: 38335536 DOI: 10.1021/jacs.3c12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
A highly efficient palladium-catalyzed asymmetric tandem aza-Heck/Sonogashira coupling reaction of O-phenyl hydroxamic ethers with terminal alkynes is described. This protocol enables versatile access to challenging chiral isoindolinone derivatives bearing a quaternary stereogenic center. The palladium-catalyzed aminoalkynylation reaction shows broad functional group tolerance and allows the straightforward preparation of isoindolinones with high efficiency and excellent enantioselectivity under mild conditions. DFT calculations were performed to disclose the reaction mechanism and the origins of the enantioselectivity.
Collapse
Affiliation(s)
- Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yinqiang Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shuaijie Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chaoshen Zhang
- Department of Chemistry. The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| | - Junliang Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
3
|
Liu Q, Zhou Z, Huang Z, Zhao Y. Palladium-Catalyzed E-Selective Oxidative Amination of Aromatic Amine with 3-Butenoic Acid. J Org Chem 2023; 88:15350-15357. [PMID: 37871285 DOI: 10.1021/acs.joc.3c01843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A palladium-catalyzed oxidative amination of inactive olefins with an aromatic amine was developed using a copper acetate oxidant to yield corresponding secondary and tertiary enamines in moderate to good yields. This new procedure outlines an efficient approach for the construction of enamine skeletons.
Collapse
Affiliation(s)
- Qianqian Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Zheng Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science Soochow University, Suzhou 215123, PR China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
4
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
5
|
Do M, Anosike SI, Beng TK. Diastereospecific arylation and cascade deconstructive amidation/thioesterification of readily available lactam-fused bromolactones. RSC Adv 2023; 13:25691-25698. [PMID: 37649665 PMCID: PMC10463012 DOI: 10.1039/d3ra04690g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
An intrinsic goal when designing synthetic methodology is to identify approaches whereby readily accessible precursors are converted into an array of products, which efficiently tap into new 3D-chemical space. In these studies, readily available bicyclic lactam-bromolactones have been interrogated in several fragment growth protocols by utilizing the halogen and lactone motifs as versatile linchpins for strategic construction of C-C, C-N, C-O, and C-S bonds. Diastereospecific C(sp3)-C(sp2) Kumada coupling of sterically imposing [5,5]-bicyclic lactam-bromolactones with several aryl Grignard reagents, under palladium catalysis, furnishes diarylmethane-tethered lactam-lactones in synthetically attractive yields, stereoinvertive fashion, and with a tolerance for many functional groups. When [5,6]-bicyclic lactam-bromolactones, which are prone to β-hydride elimination are employed, efficient arylation is observed only under Co(acac)3-catalyzed conditions. Importantly, these [5,6]-bicyclic lactam-bromolactones undergo retentive arylation, independent of the transition metal catalyst. A base-mediated cascade deconstructive amidation of the [5,6]-bicyclic lactam-bromolactones with primary aliphatic amines proceeds efficiently to afford epoxide-tethered lactam carboxamides, which bear four contiguous stereocenters. Furthermore, an unusual route to homoallylic thioesters has been uncovered through deconstructive contra-thermodynamic thioesterification of the lactam-fused bromolactone precursors.
Collapse
Affiliation(s)
- Minh Do
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Stella I Anosike
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
6
|
An YN, Huang JH, Xu SF, Wang XL, Zhou CH, Xu ZG, Lei J, Chen ZZ. Unexpected Cascade Sequence Forming the C(sp 3)-N/C(sp 2)-C(sp 2) Bond: Direct Access to γ-Lactam-Fused Pyridones with Anticancer Activity. J Org Chem 2023; 88:7998-8009. [PMID: 37279456 DOI: 10.1021/acs.joc.3c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
An unexpected Ugi cascade reaction was developed for the facile construction of γ-lactam-fused pyridone derivatives with high tolerance of substrates. A C(sp3)-N bond and a C(sp2)-C(sp2) bond were formed together, accompanied by a chromone ring-opening in Ugi adducts, under the basic conditions without any metal catalyst for the whole process. Screening data of several difficult-to-inhibit cancer cell lines demonstrated that 7l displayed a high cytotoxicity against HCT116 cells (IC50 = 5.59 ± 0.78 μM). Taken together, our findings revealed new insights into the molecular mechanisms underlying compound 7l and provided potential usage of this scaffold for cancer therapeutics.
Collapse
Affiliation(s)
- Ya-Nan An
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiu-Hong Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Shi-Fang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Xiao-Lin Wang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| | - Zhong-Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, 319 Honghe Ave., Yongchuan, Chongqing 402160, China
| |
Collapse
|
7
|
Han L, Liu T, Wang H, Luan X. Palladium-Catalyzed Alkenyl C-H Activation/Diamination toward Tetrahydrocarbazole and Analogs Using Hydroxylamines as Single-Nitrogen Sources. Org Lett 2023; 25:58-63. [PMID: 36542630 DOI: 10.1021/acs.orglett.2c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A palladium-catalyzed alkenyl C-H activation/diamination reaction of cycloalkenyl bromoarenes with hydroxylamines is described. A wide range of tetrahydrocarbazoles and analogs has been prepared using fine-tuning bifunctional secondary hydroxylamines as the single-nitrogen sources. Mechanistic investigations suggest that the selective alkenyl C-H activation/diamination cascade process should build the N-heterocycles.
Collapse
Affiliation(s)
- Lingbo Han
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Tingjie Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Han Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, China
| |
Collapse
|
8
|
Yang X, Hong K, Zhang S, Zhang Z, Zhou S, Huang J, Xu X, Hu W. Asymmetric Three-Component Reaction of Two Diazo Compounds and Hyrdroxylamine Derivatives for the Access to Chiral α-Alkoxy-β-amino-carboxylates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiangji Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Sujie Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhijing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Su Zhou
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Huang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Jing C, Jones BT, Adams RJ, Bower JF. Cyclopropane-Fused N-Heterocycles via Aza-Heck-Triggered C(sp 3)-H Functionalization Cascades. J Am Chem Soc 2022; 144:16749-16754. [PMID: 36083505 PMCID: PMC9501755 DOI: 10.1021/jacs.2c08304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
![]()
Unique examples of aza-Heck-based C(sp3)–H
functionalization
cascades are described. Under Pd(0)-catalyzed conditions, the aza-Heck-type
cyclization of N-(pentafluorobenzoyloxy)carbamates
generates alkyl–Pd(II) intermediates that effect C(sp3)–H palladation en route to cyclopropanes. Key factors that
control the site selectivity of the cyclopropanation process have
been elucidated such that selective access to a wide range of ring-
or spiro-fused systems can be achieved.
Collapse
Affiliation(s)
- Changcheng Jing
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Benjamin T Jones
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Ross J Adams
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
10
|
Prusinowski AF, Sise HC, Bednar TN, Nagib DA. Radical Aza-Heck Cyclization of Imidates via Energy Transfer, Electron Transfer, and Cobalt Catalysis. ACS Catal 2022; 12:4327-4332. [PMID: 35479099 PMCID: PMC9038135 DOI: 10.1021/acscatal.2c00804] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A radical aza-Heck cyclization has been developed to afford functionally rich products with four contiguous C-heteroatom bonds. This multi-catalytic strategy provides rapid syntheses of dense, medicinally relevant motifs by enabling the conversion of alcohol-derived imidates to heteroatom-rich fragments containing vinyl oxazolines/oxazoles, allyl amines, β-amino alcohols/halides, and combinations thereof. Mechanistic insights of this process show how three distinct photocatalytic cycles cooperate to enable: (1) imidate radical generation by energy transfer, (2) dehydrogenation by Co catalysis, and (3) catalyst turnover by electron transfer.
Collapse
Affiliation(s)
- Allen F. Prusinowski
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Henry C. Sise
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Taylor N. Bednar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - David A. Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
11
|
Ding P, Han L, Bai J, Liu J, Luan X. Fine-tuning hydroxylamines as single-nitrogen sources for Pd(0)-catalyzed diamination of o-bromo(or chloro)-biaryls. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1202-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Hirano K, Miura M. Hydroamination, Aminoboration, and Carboamination with Electrophilic Amination Reagents: Umpolung-Enabled Regio- and Stereoselective Synthesis of N-Containing Molecules from Alkenes and Alkynes. J Am Chem Soc 2022; 144:648-661. [PMID: 34986637 DOI: 10.1021/jacs.1c12663] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitrogen (N) is ubiquitously found in bioactive molecules, pharmaceutical agents, and organic functional materials. Accordingly, development of new C-N bond-forming catalysis has been one of the long-standing research subjects in synthetic organic chemistry. In this Perspective, recent advances in highly selective amination reactions with electrophilic amination reagents are described: by taking advantage of the concept of nitrogen umpolung, otherwise challenging aminofunctionalizations, such as hydroamination, aminoboration, and carboamination, of readily available feedstock-like alkenes and alkynes are possible, giving densely functionalized complex and often chiral alkylamines with high selectivity. The scope, limitations, and reaction mechanism are briefly summarized.
Collapse
Affiliation(s)
- Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Zhang H, Sun MC, Yang D, Li T, Song MP, Niu JL. Cobalt(II)-Catalyzed Activation of C(sp3)–H Bonds: Organic Oxidant Enabled Selective Functionalization. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05250] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- He Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Meng-Chan Sun
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Dandan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Tong Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Mao-Ping Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jun-Long Niu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Abstract
Classical amination methods involve the reaction of a nitrogen nucleophile with an electrophilic carbon center; however, in recent years, umpoled strategies have gained traction where the nitrogen source acts as an electrophile. A wide range of electrophilic aminating agents are now available, and these underpin a range of powerful C-N bond-forming processes. In this Review, we highlight the strategic use of electrophilic aminating agents in total synthesis.
Collapse
Affiliation(s)
- Lauren G. O'Neil
- School of ChemistryUniversity of BristolCantock's CloseBristolBS8 1TSUK
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| | - John F. Bower
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUK
| |
Collapse
|
15
|
Affiliation(s)
- Lauren G. O'Neil
- School of Chemistry University of Bristol Cantock's Close Bristol BS8 1TS UK
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| | - John F. Bower
- Department of Chemistry University of Liverpool Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
16
|
Geffers FJ, Kurth FR, Jones PG, Werz DB. Alkyne Aminopalladation/Heck and Suzuki Cascades: An Approach to Tetrasubstituted Enamines. Chemistry 2021; 27:14846-14850. [PMID: 34611939 PMCID: PMC8596888 DOI: 10.1002/chem.202103567] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Indexed: 12/04/2022]
Abstract
Alkyne aminopalladation reactions starting from tosylamides are reported. The emerging vinylic Pd species are converted either in an intramolecular Heck reaction with olefinic units or in an intermolecular Suzuki reaction by using boronic acids exhibiting broad functional group tolerance. Tetra(hetero)substituted tosylated enamines are obtained in a simple one-pot process.
Collapse
Affiliation(s)
- Finn J. Geffers
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Florens R. Kurth
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
17
|
Jones BT, García-Cárceles J, Caiger L, Hazelden IR, Lewis RJ, Langer T, Bower JF. Complex Polyheterocycles and the Stereochemical Reassignment of Pileamartine A via Aza-Heck Triggered Aryl C-H Functionalization Cascades. J Am Chem Soc 2021; 143:15593-15598. [PMID: 34546043 PMCID: PMC8485351 DOI: 10.1021/jacs.1c08615] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Structurally complex
benzo- and spiro-fused N-polyheterocycles
can be accessed via intramolecular Pd(0)-catalyzed alkene 1,2-aminoarylation
reactions. The method uses N-(pentafluorobenzoyloxy)carbamates
as the initiating motif, and this allows aza-Heck-type alkene amino-palladation
in advance of C–H palladation of the aromatic component. The
chemistry is showcased in the first total synthesis of the complex
alkaloid (+)-pileamartine A, which has resulted in the reassignment
of its absolute stereochemistry.
Collapse
Affiliation(s)
- Benjamin T Jones
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | | | - Lewis Caiger
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Ian R Hazelden
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Richard J Lewis
- Department of Medicinal Chemistry, Research and Early Development, Respiratory and Immunology, BioPharmaceuticals R&D, AstraZeneca, SE 43183 Mölndal, Sweden
| | - Thomas Langer
- Chemical Development, Pharmaceutical Technology & Development, Operations, Astra Zeneca, Charter Way, Macclesfield, SK10 2NA, United Kingdom
| | - John F Bower
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool, L69 7ZD, United Kingdom
| |
Collapse
|
18
|
Abstract
The first total synthesis of the natural product impatien A is described. This concise synthesis features an aza-Heck cyclization to construct the complex spirocyclic ring system and provides a rare example of the use of aza-Heck cyclizations in complex molecule synthesis. To enable this key cyclization of an electrophilic nitrogen atom with a tetrasubstituted alkene, we utilized high-throughput experimentation to identify a new ligand and ultimately deliver impatien A in seven steps from known compounds.
Collapse
Affiliation(s)
- Katerina M Korch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Zhai L, Tang Y, Zhang Y, Huang SH, Zhu L, Hong R. A Bridge to Alkaloid Synthesis. CHEM REC 2021; 22:e202100197. [PMID: 34473401 DOI: 10.1002/tcr.202100197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/23/2021] [Indexed: 11/07/2022]
Abstract
The construction of a structurally rigid architecture with chiral complexity, necessary to enhance the interaction with binding sites of drug targets, has been adapted as an intriguing approach in drug development. In the past few years, we have been interested in the synthesis of biologically significant and bridged alkaloids via novel synthetic methods and strategies based on recognition of the privileged pattern. Therefore, nitroso-ene and aza-Wacker cyclizations were elevated for the first time to construct bridged alkaloids, such as hosieine A, kopsone, melinonine-E and strychnoxanthine. Mechanistic investigations, including computational calculations for nitroso-ene reaction and deuterated experiments for aza-Wacker reaction, enable us to gain more insights into the chemical reactivity and selectivity of specific functional groups in developing viable synthetic methods.
Collapse
Affiliation(s)
- Li Zhai
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ye Tang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Yan Zhang
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Sha-Hua Huang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, PR China
| | - Lili Zhu
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| | - Ran Hong
- Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, PR China
- University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 101419, PR China, CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), 345 Lingling Road, Shanghai, 200032, PR China
| |
Collapse
|
20
|
|
21
|
Gao RD, Shuler SA, Watson DA. Tandem aza-Heck Suzuki and carbonylation reactions of O-phenyl hydroxamic ethers: complex lactams via carboamination. Chem Sci 2021; 12:8859-8864. [PMID: 34257886 PMCID: PMC8246078 DOI: 10.1039/d1sc02075g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/27/2021] [Indexed: 12/19/2022] Open
Abstract
The palladium-catalysed tandem aza-Heck-Suzuki and aza-Heck-carbonylation reactions of O-phenyl hydroxamic ethers are reported. These formal alkene carboamination reactions provide highly versatile access to wide range complex, stereogenic secondary lactams and exhibit outstanding functional group tolerance and high diastereoselectivity.
Collapse
Affiliation(s)
- Run-Duo Gao
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Scott A Shuler
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware Newark DE 19716 USA
| |
Collapse
|
22
|
Huang W, Shrestha M, Wang C, Fang K, Teng Y, Qu J, Chen Y. Asymmetric synthesis of 3-benzyl and allyl isoindolinones by Pd-catalyzed dicarbofunctionalization of 1,1-disubstituted enamides. Org Chem Front 2021. [DOI: 10.1039/d1qo00589h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Pd-catalyzed enantioselective Heck/Suzuki reaction of 1,1-disubstituted enamides with aryl/vinyl boronic acids has been developed to access 3-benzyl/allyl substituted isoindolinones bearing a tetrasubstituted stereogenic carbon center.
Collapse
Affiliation(s)
- Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Mohini Shrestha
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Chenchen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Ke Fang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yaxin Teng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering
- Feringa Nobel Prize Scientist Joint Research Center
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Chemistry and Molecular Engineering
- East China University of Science and Technology
| |
Collapse
|
23
|
Hong SY, Kim D, Chang S. Catalytic access to carbocation intermediates via nitrenoid transfer leading to allylic lactams. Nat Catal 2020. [DOI: 10.1038/s41929-020-00558-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Arai N, Ohkuma T. Photosensitized Intramolecular [2+2] Cycloaddition of 1 H-Pyrrolo[2,3- b]pyridines Enabled by the Assistance of Lewis Acids. J Org Chem 2020; 85:15717-15725. [PMID: 33190476 DOI: 10.1021/acs.joc.0c02231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The [2+2] photocycloaddition of alkenyl-tethered 1H-pyrrolo[2,3-b]pyridine derivatives sensitized with 3',4'-dimethoxyacetophenone under irradiation by a high-pressure mercury lamp through Pyrex glass was dramatically accelerated by the addition of Lewis acids, preferably Mg(OTf)2, to give the products stereoselectively in high yields. The reaction without a Lewis acid gave only small amounts of the [2+2] cycloaddition products. Conformational fixation of the substrates by coordination with a Lewis acid was presumed to facilitate the cycloaddition.
Collapse
Affiliation(s)
- Noriyoshi Arai
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
25
|
Lin YC, Ribaucourt A, Moazami Y, Pierce JG. Concise Synthesis and Antimicrobial Evaluation of the Guanidinium Alkaloid Batzelladine D: Development of a Stereodivergent Strategy. J Am Chem Soc 2020; 142:9850-9857. [PMID: 32396001 PMCID: PMC7685371 DOI: 10.1021/jacs.0c04091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Herein, we describe a stereodivergent route to (±)-batzelladine D (2), (+)-batzelladine D (2), (-)-batzelladine D (2), and a series of stereochemical analogues and explore their antimicrobial activity for the first time. The concise synthetic approach enables access to the natural products in a sequence of 8-12 steps from readily available building blocks. Highlights of the synthetic strategy include gram-scale preparation of a late stage intermediate, pinpoint stereocontrol around the tricyclic skeleton, and a modular strategy that enables analogue generation. A key bicyclic β-lactam intermediate not only serves as the key controlling element for pyrrolidine stereochemistry but also serves as a preactivated coupling partner to install the ester side chain. The stereocontrolled synthesis allowed for the investigation of the antimicrobial activity of batzelladine D, demonstrating promising activity that is more potent for non-natural stereoisomers.
Collapse
Affiliation(s)
- You-Chen Lin
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| | - Aubert Ribaucourt
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Yasamin Moazami
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
| | - Joshua G Pierce
- Department of Chemistry, College of Sciences, NC State University, 2620 Yarbrough Drive, Raleigh, North Carolina 27695, United States
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
26
|
Fan L, Hao J, Yu J, Ma X, Liu J, Luan X. Hydroxylamines As Bifunctional Single-Nitrogen Sources for the Rapid Assembly of Diverse Tricyclic Indole Scaffolds. J Am Chem Soc 2020; 142:6698-6707. [PMID: 32182059 DOI: 10.1021/jacs.0c00403] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Conventional approaches on using hydroxylamine derivatives as single nitrogen sources, for the construction of n-membered (n > 3) N-heterocycles, rely upon two chemical operations by involving sequential nucleophilic and electrophilic C-N bond formations. Here, we report a highly efficient cascade of alkyne insertion/C-H activation/amination for the rapid preparation of a myriad of tricyclic indoles, in a single-step transformation, by using bifunctional secondary hydroxylamines. It is noteworthy that judicious selection of applicable amino agents, for enabling the prior oxidative addition of aryl iodide to initial Pd(0) species and subsequent two C-N bonds formation, was the key to the success of this reaction. Control experiments indicated that a five-membered palladacyclic intermediate played a crucial role in promoting the final aminative ring closure.
Collapse
Affiliation(s)
- Liangxin Fan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jiamao Hao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jingxun Yu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xiaojun Ma
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
27
|
Liu J, Ye W, Wang S, Zheng J, Tang W, Li X. Synthesis of Lactams via Ir-Catalyzed C-H Amidation Involving Ir-Nitrene Intermediates. J Org Chem 2020; 85:4430-4440. [PMID: 32103669 DOI: 10.1021/acs.joc.0c00157] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
x-membered lactams were synthesized via either an amidation of sp3 C-H bonds or an electrophilic substitution of arenes via Ir-nitrene intermediates. With the employment of a readily available iridium catalyst in dichloromethane or hexafluoro-2-propanol, a wide range of lactams were synthesized in good to excellent yields with high selectivity.
Collapse
Affiliation(s)
- Jitian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China.,College of Chemistry and Molecule Engineering, Peking University, 100871 Beijing, P. R. China
| | - Wenjing Ye
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States.,Key Laboratory of Structure Based Drug Design and Discovery, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, P. R. China
| | - Shuojin Wang
- School of Pharmacy, Hainan Medical University, Haikou 571199, P. R. China
| | - Junrong Zheng
- College of Chemistry and Molecule Engineering, Peking University, 100871 Beijing, P. R. China
| | - Weiping Tang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, 250012 Jinan, Shandong, P.R. China
| |
Collapse
|
28
|
Tu JL, Liu JL, Tang W, Su M, Liu F. Radical Aza-Cyclization of α-Imino-oxy Acids for Synthesis of Alkene-Containing N-Heterocycles via Dual Cobaloxime and Photoredox Catalysis. Org Lett 2020; 22:1222-1226. [DOI: 10.1021/acs.orglett.0c00224] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jia-Lin Tu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Jia-Li Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Wan Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Ma Su
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| | - Feng Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, People’s Republic of China
| |
Collapse
|
29
|
Putta VPRK, Vodnala N, Gujjarappa R, Tyagi U, Garg A, Gupta S, Pujar PP, Malakar CC. Reagent-Controlled Divergent Synthesis of 2-Amino-1,3-Benzoxazines and 2-Amino-1,3-Benzothiazines. J Org Chem 2019; 85:380-396. [DOI: 10.1021/acs.joc.9b02384] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- V. P. Rama Kishore Putta
- Department of Medicinal Chemistry, Jubilant Biosys, Bangalore 560022, Karnataka, India
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Nagaraju Vodnala
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| | - Raghuram Gujjarappa
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| | - Ujjawal Tyagi
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| | - Aakriti Garg
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, India
| | - Sreya Gupta
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, Chunilal Bhawan, 168, Maniktala Main Road, Kolkata 700054, India
| | - Prasad Pralhad Pujar
- Department of Chemistry, CHRIST (Deemed to be University), Bangalore 560029, India
| | - Chandi C. Malakar
- Department of Chemistry, National Institute of Technology Manipur, Langol, Imphal 795004, Manipur, India
| |
Collapse
|
30
|
Li H, Wu H, Zhang H, Su Y, Yang S, Hensen EJM. A Facile Direct Route to N-(Un)substituted Lactams by Cycloamination of Oxocarboxylic Acids without External Hydrogen. CHEMSUSCHEM 2019; 12:3778-3784. [PMID: 31278839 PMCID: PMC6772168 DOI: 10.1002/cssc.201901780] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/22/2023]
Abstract
Lactams are privileged in bioactive natural products and pharmaceutical agents and widely featured in functional materials. This study presents a novel versatile approach to the direct synthesis of lactams from oxocarboxylic acids without catalyst or external hydrogen. The method involves the in situ release of formic acid from formamides induced by water to facilitate efficient cycloamination. Water also suppresses the formation of byproducts. This unconventional pathway is elucidated by a combination of model experiments and density functional theory calculations, whereby cyclic imines (5-methyl-3,4-dihydro-2-pyrrolone and its tautomeric structures) are found to be favorable intermediates toward lactam formation, in contrast to the conventional approach encompassing cascade reductive amination and cyclization. This sustainable and simple protocol is broadly applicable for the efficient production of various N-unsubstituted and N-substituted lactams.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural BioengineeringKey Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive, Utilization of BiomassCenter for R&D of Fine ChemicalsGuizhou UniversityGuiyangGuizhou550025P.R. China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural BioengineeringKey Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive, Utilization of BiomassCenter for R&D of Fine ChemicalsGuizhou UniversityGuiyangGuizhou550025P.R. China
| | - Heng Zhang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural BioengineeringKey Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive, Utilization of BiomassCenter for R&D of Fine ChemicalsGuizhou UniversityGuiyangGuizhou550025P.R. China
| | - Yaqiong Su
- Laboratory of Inorganic Materials & Catalysis, Schuit Institute of CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide & Agricultural BioengineeringKey Laboratory of Green Pesticide & Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive, Utilization of BiomassCenter for R&D of Fine ChemicalsGuizhou UniversityGuiyangGuizhou550025P.R. China
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials & Catalysis, Schuit Institute of CatalysisDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyP.O. Box 513, 5600MBEindhovenThe Netherlands
| |
Collapse
|
31
|
Xu F, Korch KM, Watson DA. Synthesis of Indolines and Derivatives by Aza-Heck Cyclization. Angew Chem Int Ed Engl 2019; 58:13448-13451. [PMID: 31310448 DOI: 10.1002/anie.201907758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 11/07/2022]
Abstract
For the first time, an aza-Heck cyclization that allows the preparation of indoline scaffolds is described. Using N-hydroxy anilines as electrophiles, which can be easily accessed from the corresponding nitroarenes, this method provides indolines bearing pendant functionality and complex ring topologies. Synthesis of challenging indolines, such as those bearing fully substituted carbon atoms at C2, is also possible using this method.
Collapse
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Katerina M Korch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
32
|
Sikari R, Sinha S, Chakraborty G, Das S, Leest NP, Paul ND. C−N Cross‐Coupling Reactions Under Mild Conditions Using Singlet Di‐Radical Nickel(II)‐Complexes as Catalyst: N‐Arylation and Quinazoline Synthesis. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900545] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Rina Sikari
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Botanic Garden Howrah 711103 India
| | - Suman Sinha
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Botanic Garden Howrah 711103 India
| | - Gargi Chakraborty
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Botanic Garden Howrah 711103 India
| | - Siuli Das
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Botanic Garden Howrah 711103 India
| | - Nicolaas Petrus Leest
- Homogeneous Catalysis Group, van't Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Nanda D. Paul
- Department of ChemistryIndian Institute of Engineering Science and Technology, Shibpur, Botanic Garden Howrah 711103 India
| |
Collapse
|
33
|
Xu F, Korch KM, Watson DA. Synthesis of Indolines and Derivatives by Aza‐Heck Cyclization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and BiochemistryUniversity of Delaware Newark DE 19716 USA
| | - Katerina M. Korch
- Department of Chemistry and BiochemistryUniversity of Delaware Newark DE 19716 USA
| | - Donald A. Watson
- Department of Chemistry and BiochemistryUniversity of Delaware Newark DE 19716 USA
| |
Collapse
|
34
|
Li J, Wei J, Zhu B, Wang T, Jiao N. Cu-catalyzed oxygenation of alkene-tethered amides with O 2 via unactivated C[double bond, length as m-dash]C bond cleavage: a direct approach to cyclic imides. Chem Sci 2019; 10:9099-9103. [PMID: 31827752 PMCID: PMC6889834 DOI: 10.1039/c9sc03175h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/04/2019] [Indexed: 12/15/2022] Open
Abstract
An efficient aerobic unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage process was achieved, in which the succinimide or glutarimide derivatives could be prepared directly from alkenyl amides.
The transformations of unactivated alkenes through C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond double cleavage are always attractive but very challenging. We report herein a chemoselective approach to valuable cyclic imides by a novel Cu-catalyzed geminal amino-oxygenation of unactivated C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bonds. O2 was successfully employed as the oxidant as well as the O-source and was incorporated into alkenyl amides via C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C bond cleavage for the efficient preparation of succinimide or glutarimide derivatives. Moreover, the present strategy under simple conditions can be used in the late-stage modification of biologically active compounds and the synthesis of pharmaceuticals, which demonstrated the potential application.
Collapse
Affiliation(s)
- Junhua Li
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Bencong Zhu
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China .
| | - Teng Wang
- School of Chemistry , Beihang University , Xue Yuan Road 37 , Beijing , 100191 , China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs , School of Pharmaceutical Sciences , Peking University , Xue Yuan Road 38 , Beijing 100191 , China . .,State Key Laboratory of Organometallic Chemistry , Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
35
|
Prasad KR, Uphade MB. Stereoselective Conjugate Addition of the Lithium Anion of N-Allyl Imine to Unsaturated Esters: Application to the Enantiospecific Total Synthesis of (-)-Epibatidine. J Org Chem 2019; 84:9648-9660. [PMID: 31293165 DOI: 10.1021/acs.joc.9b01340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A regio- and diastereoselective conjugate addition of the lithium anion of N-allyl imine (prepared from allylamine and benzophenone) to α,β-unsaturated esters in good yields is reported. The reaction was general and provided the γ-amino esters resulting from the regioselective C-C bond formation between the α-carbon to the nitrogen in the imine and the β-carbon of the unsaturated ester. Synthetic utility of the formed products was illustrated in the nonracemic total synthesis of the bioactive alkaloid (-)-epibatidine.
Collapse
Affiliation(s)
- Kavirayani R Prasad
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| | - Manoj B Uphade
- Department of Organic Chemistry , Indian Institute of Science , Bangalore 560012 , India
| |
Collapse
|
36
|
Abstract
At the advent of cross-coupling chemistry, carbon electrophiles based on halides or pseudohalides were the only suitable electrophilic coupling partners. Almost two decades passed before the first cross-coupling reaction of heteroatom-based electrophiles was reported. Early work by Murai and Tanaka initiated investigations into silicon electrophiles. Narasaka and Johnson pioneered the way in the use of nitrogen electrophiles, while Suginome began the exploration of boron electrophiles. The chemistry reviewed within provides perspective on the use of heteroatomic electrophiles, specifically silicon-, nitrogen-, boron-, oxygen-, and phosphorus-based electrophiles in transition-metal catalyzed cross-coupling. For the purposes of this review, a loose definition of cross-coupling is utilized; all reactions minimally proceed via an oxidative addition event. Although not cross-coupling in a traditional sense, we have also included catalyzed reactions that join a heteroatomic electrophile with an in situ generated nucleophile. However, for brevity, those involving hydroamination or C-H activation as a key step are largely excluded. This work includes primary references published up to and including October 2018.
Collapse
Affiliation(s)
- Katerina M Korch
- Department of Chemistry and Biochemistry , University of Delaware Newark , Delaware 19716 , United States
| | - Donald A Watson
- Department of Chemistry and Biochemistry , University of Delaware Newark , Delaware 19716 , United States
| |
Collapse
|
37
|
Yi X, Hu X. Formal Aza‐Wacker Cyclization by Tandem Electrochemical Oxidation and Copper Catalysis. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814509] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiangli Yi
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
38
|
Yi X, Hu X. Formal Aza-Wacker Cyclization by Tandem Electrochemical Oxidation and Copper Catalysis. Angew Chem Int Ed Engl 2019; 58:4700-4704. [PMID: 30698900 DOI: 10.1002/anie.201814509] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/29/2019] [Indexed: 12/31/2022]
Abstract
In oxidative electrochemical organic synthesis, radical intermediates are often oxidized to cations on the way to final product formation. Herein, we describe an approach to transform electrochemically generated organic radical intermediates into neutral products by reaction with a metal catalyst. This approach combines electrochemical oxidation with Cu catalysis to effect formal aza-Wacker cyclization of internal alkenes. The Cu catalyst is essential for transforming secondary and primary alkyl radical intermediates into alkenes. A wide range of 5-membered N-heterocycles including oxazolidinone, imidazolidinone, thiazolidinone, pyrrolidinone, and isoindolinone can be prepared under mild conditions.
Collapse
Affiliation(s)
- Xiangli Yi
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
39
|
Ma X, Hazelden IR, Langer T, Munday RH, Bower JF. Enantioselective Aza-Heck Cyclizations of N-(Tosyloxy)carbamates: Synthesis of Pyrrolidines and Piperidines. J Am Chem Soc 2019; 141:3356-3360. [DOI: 10.1021/jacs.8b12689] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaofeng Ma
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Ian R. Hazelden
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| | - Thomas Langer
- Pharmaceutical Technology & Development, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, United Kingdom
| | - Rachel H. Munday
- Pharmaceutical Technology & Development, AstraZeneca, Charter Way, Macclesfield, SK10 2NA, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, United Kingdom
| |
Collapse
|
40
|
Sinha S, Sikari R, Sinha V, Jash U, Das S, Brandão P, Demeshko S, Meyer F, de Bruin B, Paul ND. Iron-Catalyzed/Mediated C–N Bond Formation: Competition between Substrate Amination and Ligand Amination. Inorg Chem 2019; 58:1935-1948. [DOI: 10.1021/acs.inorgchem.8b02877] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Suman Sinha
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Rina Sikari
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Vivek Sinha
- Homogeneous Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Upasona Jash
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| | - Paula Brandão
- Departamento de Química, CICECO-Instituto de Materiais de Aveiro, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Serhiy Demeshko
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- Universität Göttingen, Institut für Anorganische Chemie, Tammannstrasse 4, D-37077 Göttingen, Germany
| | - Bas de Bruin
- Homogeneous Catalysis Group, van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Nanda D. Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur Botanic
Garden, Howrah 711103, India
| |
Collapse
|
41
|
Neff RK, Frantz DE. Cationic Alkynyl Heck Reaction toward Substituted Allenes Using BobCat: A New Hybrid Pd(0)-Catalyst Incorporating a Water-Soluble dba Ligand. J Am Chem Soc 2018; 140:17428-17432. [DOI: 10.1021/jacs.8b11759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Robynne K. Neff
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | - Doug E. Frantz
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States
| |
Collapse
|
42
|
Youn SW, Ko TY, Kim YH, Kim YA. Pd(II)/Cu(II)-Catalyzed Regio- and Stereoselective Synthesis of (E)-3-Arylmethyleneisoindolin-1-ones Using Air as the Terminal Oxidant. Org Lett 2018; 20:7869-7874. [DOI: 10.1021/acs.orglett.8b03409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Tae Yun Ko
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Young Ho Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Yun Ah Kim
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
43
|
Ogiwara Y, Suzuki Y, Sato K, Sakai N. Construction of N-Heterocyclic Systems Containing a Fully Substituted Allylic Carbon by Palladium/Phosphine Catalysis. Org Lett 2018; 20:6965-6969. [PMID: 30351960 DOI: 10.1021/acs.orglett.8b03127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unique cyclization of benzamide derivatives that contain an alkyne by a Pd(0)/dialkyl(biaryl)phosphine catalytic system is reported. The reaction efficiently provides a variety of six-membered N-heterocyclic compounds that contain a fully substituted carbon center without the need for a stoichiometric additive. Mechanistic studies suggest that this unprecedented cyclization starts with the cleavage of a propargylic C-O bond, and a 1,3-diene has been identified as a relevant intermediate.
Collapse
Affiliation(s)
- Yohei Ogiwara
- Department of Pure and Applied Chemistry, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba 278-8510 , Japan
| | - Yui Suzuki
- Department of Pure and Applied Chemistry, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba 278-8510 , Japan
| | - Kazuya Sato
- Department of Pure and Applied Chemistry, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba 278-8510 , Japan
| | - Norio Sakai
- Department of Pure and Applied Chemistry, Faculty of Science and Technology , Tokyo University of Science , Noda , Chiba 278-8510 , Japan
| |
Collapse
|
44
|
Makarov AS, Uchuskin MG, Gevorgyan V. Intramolecular Palladium-Catalyzed Oxidative Amination of Furans: Synthesis of Functionalized Indoles. J Org Chem 2018; 83:14010-14021. [PMID: 30346172 DOI: 10.1021/acs.joc.8b02470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Unconventional modification of palladium-catalyzed oxidative amination where a furan ring serves as a masked olefin is described. The designed chemical process provides 2-(2-acylvinyl)indole derivatives with up to a 93% yield and excellent E-selectivity. A highly reactive α,β-unsaturated carbonyl moiety of the obtained compounds allows for accessing various heteroaromatic scaffolds through simple synthetic procedures.
Collapse
Affiliation(s)
- Anton S Makarov
- Department of Chemistry , Perm State University , Bukireva 15 , Perm 614990 , Russian Federation
| | - Maxim G Uchuskin
- Department of Chemistry , Perm State University , Bukireva 15 , Perm 614990 , Russian Federation
| | - Vladimir Gevorgyan
- Department of Chemistry , University of Illinois at Chicago , 845 West Taylor Street , Chicago , Illinois 60607-7061 , United States
| |
Collapse
|
45
|
Xu F, Shuler SA, Watson DA. Synthesis of N-H Bearing Imidazolidinones and Dihydroimidazolones Using Aza-Heck Cyclizations. Angew Chem Int Ed Engl 2018; 57:12081-12085. [PMID: 30125443 PMCID: PMC6141047 DOI: 10.1002/anie.201806295] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Indexed: 12/12/2022]
Abstract
The synthesis of unsaturated, unprotected imidazolidinones via an aza-Heck reaction is described. This palladium-catalyzed process allows for the cyclization of N-phenoxy ureas onto pendant alkenes. The reaction has broad functional group tolerance, can be applied to complex ring topologies, and can be used to directly prepare mono- and bis-unprotected imidazolidinones. By addition of Bu4 NI, dihydroimidazolones can be accessed from the same starting materials. Improved conditions for preparing unsaturated, unprotected lactams are also reported.
Collapse
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Scott A. Shuler
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| | - Donald A. Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716 (USA)
| |
Collapse
|
46
|
Lardy SW, Schmidt VA. Intermolecular Radical Mediated Anti-Markovnikov Alkene Hydroamination Using N-Hydroxyphthalimide. J Am Chem Soc 2018; 140:12318-12322. [DOI: 10.1021/jacs.8b06881] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Samuel W. Lardy
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Valerie A. Schmidt
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
47
|
Xu F, Shuler SA, Watson DA. Synthesis of N−H Bearing Imidazolidinones and Dihydroimidazolones Using Aza‐Heck Cyclizations. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Scott A. Shuler
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| | - Donald A. Watson
- Department of Chemistry and Biochemistry University of Delaware Newark DE 19716 USA
| |
Collapse
|
48
|
Zhou W, Zhang YX, Nie XD, Si CM, Sun X, Wei BG. Approach to Chiral 1-Substituted Isoquinolone and 3-Substituted Isoindolin-1-one by Addition-Cyclization Process. J Org Chem 2018; 83:9879-9889. [PMID: 29952568 DOI: 10.1021/acs.joc.8b01282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
An approach to access 1-substituted isoquinolones has been developed through the addition-cyclization of imines with Grignard reagents in the presence of 2,2'-dipyridyl. A number of substituted aromatic magnesium reagents were amenable to this process, and the desired products were obtained with excellent yields and outstanding diastereoselectivities ( dr > 99:1). The utility of this convenient approach is demonstrated by the formal synthesis of ( S)-cryptostyline II. Moreover, N-methylmorpholine (NMM) was found to be an effective additive for the formation of 3-substituted isoindolin-1-ones using one-pot addition-cyclization-deprotection of imine with Grignard reagents.
Collapse
Affiliation(s)
- Wen Zhou
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Yan-Xue Zhang
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Xiao-Di Nie
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Chang-Mei Si
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Xun Sun
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| | - Bang-Guo Wei
- Department of Natural Products Chemistry, School of Pharmacy , Fudan University , 826 Zhangheng Road , Shanghai , 201203 , The People's Republic of China
| |
Collapse
|
49
|
Hazelden IR, Carmona RC, Langer T, Pringle PG, Bower JF. Pyrrolidines and Piperidines by Ligand-Enabled Aza-Heck Cyclizations and Cascades of N-(Pentafluorobenzoyloxy)carbamates. Angew Chem Int Ed Engl 2018; 57:5124-5128. [PMID: 29488677 PMCID: PMC5969259 DOI: 10.1002/anie.201801109] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Indexed: 01/13/2023]
Abstract
Ligand-enabled aza-Heck cyclizations and cascades of N-(pentafluorobenzoyloxy)carbamates are described. These studies encompass the first examples of efficient non-biased 6-exo aza-Heck cyclizations. The methodology provides direct and flexible access to carbamate protected pyrrolidines and piperidines.
Collapse
Affiliation(s)
| | | | - Thomas Langer
- Pharmaceutical Technology & DevelopmentAstraZenecaCharter WayMacclesfieldSK10 2NAUK
| | | | - John F. Bower
- School of ChemistryUniversity of BristolBristolBS8 1TSUK
| |
Collapse
|
50
|
Catalytic Aza-Wacker Annulation: Tuning Mechanism by the Activation Mode of Amide and Enantioselective Syntheses of Melinonine-E and Strychnoxanthine. Org Lett 2018; 20:2386-2390. [DOI: 10.1021/acs.orglett.8b00725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|