1
|
Khan S, Baire B. BiX 3-Mediated Hydrohalogenations of HDDA Benzynes: An Approach to Polycyclic Aryl Halides. Org Lett 2024; 26:8165-8170. [PMID: 39292185 DOI: 10.1021/acs.orglett.4c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Here we demonstrate the hydrohalogenation reactions of HDDA benzynes promoted by BiX3 reagents for the generation of complex aryl halides. All three bismuth(III) halides can act as the source for their respective halides, i.e., Cl- or Br- or I-. The regiochemical preference for hydrohalogenation is dependent on the nature of the substituent present at the diyne terminus but neither on the linker nor on the BiX3 reagent. The substrate scope for this transformation is broad in terms of the tethers A-B-C and the substituents R1 and R2.
Collapse
Affiliation(s)
- Siddique Khan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
2
|
Dangar S, Roy T, Noskar S, Bisai A. Total synthesis of bicyclomahanimbine by Cu(ii)-promoted photoredox process. RSC Adv 2024; 14:30110-30115. [PMID: 39315021 PMCID: PMC11417510 DOI: 10.1039/d4ra05863a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024] Open
Abstract
Since the isolation of carbazole alkaloids, the synthetic chemists have witnessed an upsurge in research of them due to their potential pharmacological properties. Our approach shows the total syntheses of five such biorelevant pyrano-[3,2a]-carbazole alkaloids, emphasizing biomimetic and innovative synthetic methodologies such as cascade reactions and strategic bond formations through sustainable electrochemical and photochemical conditions.
Collapse
Affiliation(s)
- Shilpa Dangar
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Tiyasa Roy
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Suman Noskar
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
| | - Alakesh Bisai
- Indian Institute of Science Education and Research Kolkata Mohanpur, Nadia West Bengal 741246 India
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhauri Bhopal 462 066 Madhya Pradesh India
| |
Collapse
|
3
|
Lee S, Hoye TR. Cycloadditions of Benzynes with the Azoxy [RN═N +(O -)R'] 1,3-Dipole Tautomer of 1-Hydroxybenzotriazole (HOBT). Org Lett 2024; 26:5713-5718. [PMID: 38949145 PMCID: PMC11806348 DOI: 10.1021/acs.orglett.4c01819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
1,3-Dipolar cycloadditions of azoxy species are rare. HOBT exists as a pair of tautomers, one of which contains an azoxy subunit. We show that heavily substituted, thermally generated benzynes react with HOBT by engaging the azoxy tautomer to give products having a benzotriazole with a benzyne-derived o-hydroxyaryl group at N2. DFT calculations were used to probe aspects of the mechanism. HOBT analogs of the uronium family (HBTU, HCTU, TATU, and HATU) react in an analogous fashion. The parent 1,2-dehydrobenzene (o-benzyne) generated by the action of (basic) CsF reacts with HOBT in an orthogonal manner to give, exclusively, an N1-arylated product.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Chemistry, 207 Pleasant St. SE, University of Minnesota, Minneapolis, Minnesota 55455 USA
| | - Thomas R. Hoye
- Department of Chemistry, 207 Pleasant St. SE, University of Minnesota, Minneapolis, Minnesota 55455 USA
| |
Collapse
|
4
|
Munawar S, Zahoor AF, Mansha A, Bokhari TH, Irfan A. Update on novel synthetic approaches towards the construction of carbazole nuclei: a review. RSC Adv 2024; 14:2929-2946. [PMID: 38239436 PMCID: PMC10794906 DOI: 10.1039/d3ra07270c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
The carbazole scaffold is a significant entity in organic compounds due to its variety of biological and synthetic applications. Traditionally, carbazole skeletons have been synthesized either via the Grabe-Ullman method, Clemo-Perkin method or Tauber method. With the passage of time, these methods have been modified and explored to accomplish the synthesis of target compounds. These methods include hydroarylations, C-H activations, annulations and cyclization reactions mediated by a variety of catalysts to construct carbazole-based compounds. This brief review article intends to provide recent updates on important methodological developments reported for the synthesis of carbazole nuclei covering 2019-2023.
Collapse
Affiliation(s)
- Saba Munawar
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ameer Fawad Zahoor
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Asim Mansha
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Tanveer Hussain Bokhari
- Department of Chemistry, Government College University Faisalabad, 38000-Faisalabad Pakistan
| | - Ahmad Irfan
- Department of Chemistry, King Khalid University Abha 61413 P.O. Box 9004 Saudi Arabia
| |
Collapse
|
5
|
Lenko I, Alayrac C, Bożek I, Witulski B. 1,3-Butadiynamides the Ethynylogous Ynamides: Synthesis, Properties and Applications in Heterocyclic Chemistry. Molecules 2023; 28:molecules28114564. [PMID: 37299038 DOI: 10.3390/molecules28114564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
1,3-butadiynamides-the ethynylogous variants of ynamides-receive considerable attention as precursors of complex molecular scaffolds for organic and heterocyclic chemistry. The synthetic potential of these C4-building blocks reveals itself in sophisticated transition-metal catalyzed annulation reactions and in metal-free or silver-mediated HDDA (Hexa-dehydro-Diels-Alder) cycloadditions. 1,3-Butadiynamides also gain significance as optoelectronic materials and in less explored views on their unique helical twisted frontier molecular orbitals (Hel-FMOs). The present account summarizes different methodologies for the synthesis of 1,3-butadiynamides followed by the description of their molecular structure and electronic properties. Finally, the surprisingly rich chemistry of 1,3-butadiynamides as versatile C4-building blocks in heterocyclic chemistry is reviewed by compiling their exciting reactivity, specificity and opportunities for organic synthesis. Besides chemical transformations and use in synthesis, a focus is set on the mechanistic understanding of the chemistry of 1,3-butadiynamides-suggesting that 1,3-butadiynamides are not just simple alkynes. These ethynylogous variants of ynamides have their own molecular character and chemical reactivity and reflect a new class of remarkably useful compounds.
Collapse
Affiliation(s)
- Illia Lenko
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie University, 6 Bd Maréchal Juin, 14050 Caen, France
| | - Carole Alayrac
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie University, 6 Bd Maréchal Juin, 14050 Caen, France
| | - Igor Bożek
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie University, 6 Bd Maréchal Juin, 14050 Caen, France
| | - Bernhard Witulski
- Laboratoire de Chimie Moléculaire et Thio-Organique (LCMT), CNRS UMR 6507, ENSICAEN & UNICAEN, Normandie University, 6 Bd Maréchal Juin, 14050 Caen, France
| |
Collapse
|
6
|
Yu H, Xu F. Advances in the synthesis of nitrogen-containing heterocyclic compounds by in situ benzyne cycloaddition. RSC Adv 2023; 13:8238-8253. [PMID: 36922948 PMCID: PMC10010163 DOI: 10.1039/d3ra00400g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Nitrogen-containing heterocyclic compounds are prevalent in various natural products, medicines, agrochemicals, and organic functional materials. Among strategies to prepare nitrogen-containing heterocyclic compounds, pathways involving benzyne intermediates are attractive given that they can readily assemble highly diverse heterocyclic compounds in a step-economical manner under transition-metal-free conditions. The synthesis of nitrogen-containing heterocyclic compounds from benzyne intermediates offers an alternative strategy to the conventional metal-catalyzed activation approaches. In the past years, chemists have witnessed the revival of benzyne chemistry, mainly attributed to the wide application of various novel benzyne precursors. The cycloaddition of benzynes is a powerful tool for the synthesis of nitrogen-containing heterocyclic compounds, which can be constructed by [n + 2] cyclization of benzyne intermediates in situ generated from benzyne precursors under mild reaction conditions. This review focuses on the application of cycloaddition reactions involving in situ benzynes in the construction of various nitrogen-containing heterocyclic compounds.
Collapse
Affiliation(s)
- Hui Yu
- Department of Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine Guiyang Guizhou 550200 China
| | - Feng Xu
- School of Mathematics and Information Science, Guiyang University Guiyang Guizhou 550005 P. R. China
| |
Collapse
|
7
|
Cho EH, Akhtar MS, Aslam M, Thombal RS, Li X, Shim JJ, Lee YR. Transition metal-catalyzed regioselective functionalization of carbazoles and indolines with maleimides. Org Biomol Chem 2022; 20:6776-6783. [PMID: 35959713 DOI: 10.1039/d2ob01077a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The directing group-assisted regioselective C-H activation of carbazoles and indolines is achieved via transition metal-catalyzed reactions. This C-H functionalization protocol provides a rapid approach to install diversely functionalized succinimide groups at the C-1 position of the carbazole moiety. In addition, this protocol demonstrates the intrinsic reactivity of indolines in providing C-2 succinimide-substituted indoles via cascade direct oxidation and C-H functionalization. This protocol also provides C-7 succinimide-substituted indolines under mild reaction conditions. The features of this reaction include a wide substrate scope and excellent regioselectivity for the installation of the succinimide moiety on biologically interesting molecules.
Collapse
Affiliation(s)
- Eun Hee Cho
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Raju S Thombal
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Xin Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, China
| | - Jae-Jin Shim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
8
|
Roy D, Tharra P, Baire B. An approach to functionalized carbazoles from Z-enoate propargylic alcohols. A unified total synthesis of N-Me-carazostatin, N-Me-carbazoquinocin C and N-Me-lipocarbazole A4. Chem Commun (Camb) 2022; 58:10210-10213. [PMID: 36000534 DOI: 10.1039/d2cc03526j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of an acid catalyzed, intramolecular benzannulation of indoles for the synthesis of functionalized carbazoles has been reported. The indole appended Z-enoate propargylic alcohols have been employed. The N-EDG-indoles involve the 5-exo-dig cyclization followed by 1,2-migration to give the carbazole-butenoates, whereas the N-EWG-indoles undergo the Z-enoate assisted Meyer-Schuster rearrangement to give the dihydrocarbazole-4-oxo-butanoates. Utilizing one of the 2-methyl-carbazole-butyraldehyde (obtained from the corresponding carbazole-butanoate) as the key intermediate, we have developed a simple approach for an efficient synthesis of N-Me-carazostatin, N-Me-carbazoquinocin C and N-Me-lipocarbazole A4.
Collapse
Affiliation(s)
- Debayan Roy
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Prabhakararao Tharra
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| | - Beeraiah Baire
- Department of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.
| |
Collapse
|
9
|
Zhan SC, Fang RJ, Sun J, Yan CG. Copper-catalyzed multicomponent reactions for the efficient synthesis of diverse spirotetrahydrocarbazoles. Beilstein J Org Chem 2022; 18:796-808. [PMID: 35875709 PMCID: PMC9273986 DOI: 10.3762/bjoc.18.80] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 01/20/2023] Open
Abstract
In the presence of copper sulfate, three- or four-component reactions of 2-methylindole, aromatic aldehydes and various cyclic dienophiles in refluxing toluene afforded diverse spirotetrahydrocarbazoles. This reaction is an important development of the Levy reaction by using 2-methylindole to replace ethyl indole-2-acetate and successfully provides facile access to important polysubstituted spiro[carbazole-3,3'-indolines], spiro[carbazole-2,3'-indolines], spiro[carbazole-3,5'-pyrimidines] and spiro[carbazole-3,1'-cycloalkanes] in satisfactory yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Shao-Cong Zhan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ren-Jie Fang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
10
|
Spence KA, Chari JV, Di Niro M, Susick RB, Ukwitegetse N, Djurovich PI, Thompson ME, Garg NK. π-Extension of heterocycles via a Pd-catalyzed heterocyclic aryne annulation: π-extended donors for TADF emitters. Chem Sci 2022; 13:5884-5892. [PMID: 35685807 PMCID: PMC9132060 DOI: 10.1039/d2sc01788a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022] Open
Abstract
We report the annulation of heterocyclic building blocks to access π-extended polycyclic aromatic hydrocarbons (PAHs). The method involves the trapping of short-lived hetarynes with catalytically-generated biaryl palladium intermediates and allows for the concise appendage of three or more fused aromatic rings about a central heterocyclic building block. Our studies focus on annulating the indole and carbazole heterocycles through the use of indolyne and carbazolyne chemistry, respectively, the latter of which required the synthesis of a new carbazolyne precursor. Notably, these represent rare examples of transition metal-catalyzed reactions of N-containing hetarynes. We demonstrate the utility of our methodology in the synthesis of heterocyclic π-extended PAHs, which were then applied as ligands in two-coordinate metal complexes. As a result of these studies, we identified a new thermally-activated delayed fluorescence (TADF) emitter that displays up to 81% photoluminescence efficiency, along with insight into structure-property relationships. These studies underscore the utility of heterocyclic strained intermediates in the synthesis and study of organic materials.
Collapse
Affiliation(s)
- Katie A Spence
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Jason V Chari
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Mattia Di Niro
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Robert B Susick
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| | - Narcisse Ukwitegetse
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Peter I Djurovich
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California Los Angeles California 90089 USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California at Los Angeles Los Angeles California 90095 USA
| |
Collapse
|
11
|
Festa A, Raspertov P, Voskressensky L. 2‐(Alkynyl)anilines and derivatives – versatile reagents for heterocyclic synthesis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Alexey Festa
- Peoples' Friendship University of Russia RUSSIAN FEDERATION
| | | | | |
Collapse
|
12
|
Zhang Y, Liu S, Zang Z, Wang Z, Zhu T. Carbene catalyzed C(sp 3)–Cl activation of chlorinated solvents for benzyne chlorination. Org Chem Front 2022. [DOI: 10.1039/d2qo01193j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A new mode of N-heterocyclic carbene (NHC) organocatalysis was discovered, in which the normally inert chlorinated solvents were activated by carbene to realize the chlorination of hexa-dehydro-Diels-Alder derived benzynes.
Collapse
Affiliation(s)
- Ying Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Song Liu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Zhenming Zang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Ziyuan Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
| | - Tingshun Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P.R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
13
|
Fang RJ, Yan C, Sun J, Han Y, Yan CG. Efficient synthesis of polyfunctionalized carbazoles and pyrrolo[3,4 -c]carbazoles via domino Diels-Alder reaction. Beilstein J Org Chem 2021; 17:2425-2432. [PMID: 34621404 PMCID: PMC8450976 DOI: 10.3762/bjoc.17.159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
The p-TsOH-catalyzed Diels–Alder reaction of 3-(indol-3-yl)maleimides with chalcone in toluene at 60 °C afforded two diastereoisomers of tetrahydropyrrolo[3,4-c]carbazoles, which can be dehydrogenated by DDQ oxidation in acetonitrile at room temperature to give the aromatized pyrrolo[3,4-c]carbazoles in high yields. On the other hand, the one-pot reaction of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones with chalcones or benzylideneacetone in acetonitrile in the presence of p-TsOH and DDQ resulted in polyfunctionalized carbazoles in satisfactory yields. The reaction mechanism included the DDQ oxidative dehydrogenation of 3-(indol-3-yl)-1,3-diphenylpropan-1-ones to the corresponding 3-vinylindoles, their acid-catalyzed Diels–Alder reaction and sequential aromatization process.
Collapse
Affiliation(s)
- Ren-Jie Fang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chen Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
14
|
Zhu C, Zhang J, Hoye TR. De novo Assembly of the Benzenoid Ring as a Core Strategy for Synthesis of the Isoindolinone Natural Products Isohericerin, Erinacerin A, and Sterenin A. Org Lett 2021; 23:7550-7554. [PMID: 34543031 DOI: 10.1021/acs.orglett.1c02752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we describe the use of the hexadehydro-Diels-Alder (HDDA) reaction for the de novo construction of the isoindolinone scaffold and its application to the synthesis of the title natural products. The key isoindolinone-forming HDDA reaction involved an unprecedented substrate motif in which an amide carbonyl group was conjugated to the 4π 1,3-diyne component. In addition, a dimethylsilyl (-SiMe2H) substituent was exploited to trigger a Fleming-Tamao-Kumada oxidation for the installation of an essential phenolic hydroxyl group.
Collapse
Affiliation(s)
- Chenlong Zhu
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Juntian Zhang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
15
|
Pan L, Wang Q, Sun J, Yan C. Intramolecular Diels‐Alder Reaction of Styrene with Phenoxy‐Acrylate for Construction of Functionalized Naphthalenes. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Liu‐Na Pan
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Qin Wang
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Chao‐Guo Yan
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| |
Collapse
|
16
|
Yan C, Sun J, Han Y, Yan C. Domino Reaction for Synthesis of Spiro[pyrazole‐4,5′‐pyrrolo[3,4‐
c
]carbazoles] and Spiro[pyrrolo[3,4‐
c
]carbazole‐5,5′‐thiazoles]. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Yan
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Ying Han
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| | - Chao‐Guo Yan
- College of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 P. R. China
| |
Collapse
|
17
|
Ritts CB, Hoye TR. Sulfurane [S(IV)]-Mediated Fusion of Benzynes Leads to Helical Dibenzofurans. J Am Chem Soc 2021; 143:13501-13506. [PMID: 34424692 DOI: 10.1021/jacs.1c07187] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Here we disclose a sulfurane-mediated method for the formation of dimeric dibenzofuran helicenes via the reaction between diaryl sulfoxides and hexadehydro-Diels-Alder (HDDA) derived benzynes. A variety of S-shaped and U-shaped helicenes were formed under thermal conditions. Both experimental and DFT studies support a sulfur(IV)-based coupling (aka ligand coupling) mechanism involving tetracarbo-ligated S(IV) intermediates undergoing reductive elimination to afford the helicene products. This process involves the de novo generation of five new rings in a single operation and constitutes a new method for the construction of topologically interesting, polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Casey B Ritts
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
18
|
Zhan SC, Fang RJ, Sun J, Yan CG. Diastereoselective synthesis of spiro[carbazole-3,5'-pyrimidines] and spiro[carbazole-3,1'-cyclohexanes] via four-component reaction. Org Biomol Chem 2021; 19:6322-6327. [PMID: 34223583 DOI: 10.1039/d1ob01113h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Functionalized spiro[carbazole-3,5'-pyrimidines] and spiro[carbazole-3,1'-cyclohexanes] were efficiently synthesized in satisfactory yields with high diastereoselectivity by CuSO4 catalyzed multicomponent reaction of indole-2-acetate, aromatic aldehyde and 1,3-dimethylbarbituric acid or dimedone. The reaction was finished with sequential Diels-Alder reaction of both in situ generated indole-2,3-quinodimethane and a dienophile. Additionally, the initially formed spiro[carbazole-3,5'-pyrimidines] were converted to dehydrogenated spiro[carbazole-3,5'-pyrimidines] by DDQ oxidation. The initially formed spiro[carbazole-3,1'-cyclohexanes] were converted to δ-valerolactone-substituted carbazoles by a DDQ promoted Baeyer-Villiger oxidation process.
Collapse
Affiliation(s)
- Shao-Cong Zhan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Ren-Jie Fang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
19
|
Yan C, Sun J, Han Y, Yan CG. Water Modulated Diastereoselective Synthesis of cis/ trans-Spiro[indoline-3,6'-naphtho[2,3- c]carbazoles]. J Org Chem 2021; 86:9263-9279. [PMID: 34197117 DOI: 10.1021/acs.joc.1c00044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
p-TsOH catalyzed Diels-Alder reaction of 2-(1-alkylindol-3-yl)naphthalene-1,4-diones and 3-phenacylideneoxindoles showed fascinating diastereoselectivity. The reaction with the hydrated p-TsOH afforded trans-isomers of dihydrospiro[indoline-3,6'-naphtho[2,3-c]carbazoles] as major products. Alternatively, the reaction with anhydrous p-TsOH under a Dean and Stark apparatus predominately gave cis-isomer of dihydrospiro[indoline-3,6'-naphtho[2,3-c]carbazoles]. On the other hand, the similar p-TsOH catalyzed reaction of 2-(indol-3-yl)naphthalene-1,4-diones with 3-arylideneindolin-2-ones afforded cis/trans-isomers of dihydrospiro[indoline-3,6'-naphtho[2,3-c]carbazoles]. Additionally, the p-TsOH catalyzed reaction of 2-(indol-3-yl)naphthalene-1,4-diones with 2-arylidene-1,3-indanediones gave the expected spiro[indene-2,6'-naphtho[2,3-c]carbazoles] in satisfactory yields.
Collapse
Affiliation(s)
- Chen Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
20
|
Zhu XQ, Hong P, Zheng YX, Zhen YY, Hong FL, Lu X, Ye LW. Copper-catalyzed asymmetric cyclization of alkenyl diynes: method development and new mechanistic insights. Chem Sci 2021; 12:9466-9474. [PMID: 34349921 PMCID: PMC8278876 DOI: 10.1039/d1sc02773e] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
Metal carbenes have proven to be one of the most important and useful intermediates in organic synthesis, but catalytic asymmetric reactions involving metal carbenes are still scarce and remain a challenge. Particularly, the mechanistic pathway and chiral induction model in these asymmetric transformations are far from clear. Described herein is a copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization, which constitutes the first asymmetric vinylic C(sp2)–H functionalization through cyclopentannulation. Significantly, based on extensive mechanistic studies including control experiments and theoretical calculations, a revised mechanism involving a novel type of endocyclic copper carbene via remote-stereocontrol is proposed, thus providing new mechanistic insight into the copper-catalyzed asymmetric diyne cyclization and representing a new chiral control pattern in asymmetric catalysis based on remote-stereocontrol and vinyl cations. This method enables the practical and atom-economical construction of an array of valuable chiral polycyclic-pyrroles in high yields and enantioselectivities. A copper-catalyzed asymmetric cyclization of alkenyl diynes involving a vinylic C(sp2)–H functionalization is reported, enabling the construction of various valuable chiral polycyclic-pyrroles in high yields and enantioselectivities.![]()
Collapse
Affiliation(s)
- Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Pan Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yan-Xin Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ying-Ying Zhen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Feng-Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
21
|
Zhan SC, Fang RJ, Sun J, Yan CG. Multicomponent Reaction for Diastereoselective Synthesis of Spiro[carbazole-3,4'-pyrazoles] and Spiro[carbazole-3,4'-thiazoles]. J Org Chem 2021; 86:8726-8741. [PMID: 34111925 DOI: 10.1021/acs.joc.1c00538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the presence of copper sulfate, the three-component reaction of aromatic aldehydes, ethylindole-3-acetate and 4-arylidene-5-methyl-2-phenylpyrazol-3-ones, in refluxing toluene afforded spiro[carbazole-3,4'-pyrazoles] in good yields with high diastereoselectivity. More importantly, the similar CuSO4 promoted the four-component reaction of two molecular aromatic aldehydes with ethylindole-3-acetate and 5-methyl-2-phenyl-pyrazol-3-one resulted in 2,4-diarylspiro[carbazole-3,4'-pyrazoles] in satisfactory yields. Additionally, CuSO4 promoted the four-component reaction of two molecular aromatic aldehydes, ethylindole-3-acetate and 2-phenylthiazol-4-one, in refluxing toluene gave 2,4-diarylspiro[carbazole-3,4'-thiazoles] with diastereomeric ratios in the range of 3:1 to 20:1.
Collapse
Affiliation(s)
- Shao-Cong Zhan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ren-Jie Fang
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
22
|
Polley A, Varalaxmi K, Nandi A, Jana R. Divergent Total Synthesis of (±)‐Mahanine and Other Carbazole Alkaloids. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Arghya Polley
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| | - Kasarla Varalaxmi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Organic and Medicinal Chemistry Division National Institute of Pharmaceutical Education and Research (NIPER) Kolkata 700054 West Bengal India
| | - Arijit Nandi
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division CSIR-Indian Institute of Chemical Biology 4 Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) Kolkata 700032 West Bengal (India
| |
Collapse
|
23
|
Neto JSS, Zeni G. Recent Developments in the Cyclization of Alkynes and Nitrogen Compounds for the Synthesis of Indole Derivatives. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jose S. S. Neto
- Departamento de Química Universidade Federal de Santa Catarina Florianópolis Santa Catarina 88040-900 Brazil
| | - Gilson Zeni
- Department of Biochemistry and Molecular Biology Laboratório de Síntese Reatividade Avaliação Farmacológica e Toxicológica de Organocalcogênios CCNE Universidade Federal de Santa Maria Santa Maria Rio Grande do Sul 97105-900 Brazil
| |
Collapse
|
24
|
Wang D, Sun J, Liu RZ, Wang Y, Yan CG. Diastereoselective Synthesis of Tetrahydrospiro[carbazole-1,3′-indolines] via an InBr3-Catalyzed Domino Diels–Alder Reaction. J Org Chem 2021; 86:5616-5629. [DOI: 10.1021/acs.joc.1c00103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daqian Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jing Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ru-Zhang Liu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
25
|
Wang HF, Guo LN, Fan ZB, Tang TH, Zi W. Gold-Catalyzed Formal Hexadehydro-Diels-Alder/Carboalkoxylation Reaction Cascades. Org Lett 2021; 23:2676-2681. [PMID: 33720734 DOI: 10.1021/acs.orglett.1c00581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A dual gold-catalyzed hexadehydro-Diels-Alder/carboalkoxylation cascade reaction is reported. In this transformation, the gold catalyst participated in the hexadehydro-Diels-Alder step, switching the mechanism from a radical type to a cationic one, and then the catalyst activated the resulting aryne to form an ortho-Au phenyl cation species, which underwent a carboalkoxylation rearrangement rather than the expected aryne-ene reaction.
Collapse
Affiliation(s)
- Hong-Fa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lin-Na Guo
- State Key Laboratory and Institute of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhi-Bo Fan
- State Key Laboratory and Institute of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Tian-Hua Tang
- State Key Laboratory and Institute of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry and College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
26
|
Fluegel LL, Hoye TR. Hexadehydro-Diels-Alder Reaction: Benzyne Generation via Cycloisomerization of Tethered Triynes. Chem Rev 2021; 121:2413-2444. [PMID: 33492939 PMCID: PMC8008985 DOI: 10.1021/acs.chemrev.0c00825] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hexadehydro-Diels-Alder (HDDA) reaction is the thermal cyclization of an alkyne and a 1,3-diyne to generate a benzyne intermediate. This is then rapidly trapped, in situ, by a variety of species to yield highly functionalized benzenoid products. In contrast to nearly all other methods of aryne generation, no other reagents are required to produce an HDDA benzyne. The versatile and customizable nature of the process has attracted much attention due not only to its synthetic potential but also because of the fundamental mechanistic insights the studies often afford. The authors have attempted to provide here a comprehensive compilation of publications appearing by mid-2020 that describe experimental results of HDDA reactions.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Tayu M, Watanabe R, Isogi S, Saito N. A Catalytic Construction of Indoles via Formation of Ruthenium Vinylidene Species from
N
‐Arylynamides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Masanori Tayu
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| | - Ryuta Watanabe
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| | - Satoshi Isogi
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| | - Nozomi Saito
- Meiji Pharmaceutical University 2-522-1 Noshio, Kiyose Tokyo 204-8588 Japan
| |
Collapse
|
28
|
Le A, Lee D. Selectivity between an Alder–ene reaction and a [2 + 2] cycloaddition in the intramolecular reactions of allene-tethered arynes. Org Chem Front 2021. [DOI: 10.1039/d1qo00459j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Substituent-dependent reactivity and selectivity in the intramolecular reactions of arynes tethered with an allene are described.
Collapse
Affiliation(s)
- Anh Le
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| | - Daesung Lee
- Department of Chemistry
- University of Illinois at Chicago
- Chicago
- USA
| |
Collapse
|
29
|
Dinda E, Bhunia SK, Jana R. Palladium-Catalyzed Cascade Reactions for Annulative π -Extension of Indoles to Carbazoles through C–H Bond Activation. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200817170058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The annulative π-extension (APEX) reactions through C-H bond activation has
tremendous potential to access fused aromatic systems from relatively simple aromatic
compounds in a single step. This state-of-the-art technique has the ability to streamline the
synthesis of functionalized materials useful in material science, biomedical research, agroand
pharmaceutical industries. Furthermore, C-H activation strategy does not require prefunctionalization
steps, which allows for the late-stage modification of the functional
molecule with requisite molecular properties. Owing to their unique photophysical properties,
carbazoles are widely used in photovoltaic cells, biomedical imaging, fluorescent
polymer, etc. It is also ubiquitously found in many natural products, agrochemicals and
privileged medicinal scaffolds. Hence, direct conversion of easily accessible indole to carbazole
remains an active research area. In the last decades, significant advancement has
been made to access carbazole moiety directly from indole through cascade C-H activation. The underlying
mechanism behind this cascade π-extension strategy is the facile electrophilic metalation at the C-3 position of
the indole moiety, 1,2- migration and electro cyclization. In this review, we will discuss recent literature reports
for the palladium-catalyzed π-extension of indole to carbazole moiety through C-H bond activation.
Collapse
Affiliation(s)
- Enakshi Dinda
- Department of Chemistry and Environment, Heritage Institute of Technology, Kolkata-700107, India
| | - Samir Kumar Bhunia
- Department of Chemistry, Midnapore College (autonomous), Paschim Medinipur, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIRIndian Institute of Chemical Biology, 4 Raja S C Mullick Road, Jadavpur, Kolkata-700032, India
| |
Collapse
|
30
|
Cao D, Yu J, Zeng H, Li CJ. Dearomatization-Rearomatization Strategy for Synthesizing Carbazoles with 2,2'-Biphenols and Ammonia by Dual C(Ar)-OH Bond Cleavages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13200-13205. [PMID: 32223264 DOI: 10.1021/acs.jafc.0c00644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbazole is an essential building block in various pharmaceuticals, agrochemicals, natural products, and materials. For future sustainability, it is highly desirable to synthesize carbazole derivatives directly from renewable resources or cheap raw materials. Phenolic compounds are a class of degradation products of lignin. On the other hand, ammonia is a very cheap industrial inorganic chemical. Herein, an efficient dearomatization-rearomatization strategy has been developed to directly cross-couple 2,2'-biphenols with ammonia by dual C(Ar)-OH bond cleavages. This strategy provides a greener pathway to synthesize valuable carbazole derivatives from phenols.
Collapse
Affiliation(s)
- Dawei Cao
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Jing Yu
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Huiying Zeng
- The State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P.R. China
| | - Chao-Jun Li
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC H3A 0B8, Canada
| |
Collapse
|
31
|
Zheng L, Hua R. Recent Advances in Construction of Polycyclic Natural Product Scaffolds via One-Pot Reactions Involving Alkyne Annulation. Front Chem 2020; 8:580355. [PMID: 33195069 PMCID: PMC7596902 DOI: 10.3389/fchem.2020.580355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Polycyclic scaffolds are omnipresent in natural products and drugs, and the synthetic strategies and methods toward construction of these scaffolds are of particular importance. Compared to simple cyclic ring systems, polycyclic scaffolds have higher structure complexity and diversity, making them suitable for charting broader chemical space, yet bringing challenges for the syntheses. In this review, we surveyed progress in the past decade on synthetic methods for polycyclic natural product scaffolds, in which the key steps are one-pot reactions involving intermolecular or intramolecular alkyne annulation. Synthetic strategies of selected polycyclic carbocycles and heterocycles with at least three fused, bridged, or spiro rings are discussed with emphasis on the synthetic efficiency and product diversity. Recent examples containing newly developed synthetic concepts or toolkits such as collective and divergent total synthesis, gold catalysis, C–H functionalization, and dearomative cyclization are highlighted. Finally, several “privileged synthetic strategies” for “privileged polycyclic scaffolds” are summarized, with discussion of remained challenges and future perspectives.
Collapse
Affiliation(s)
- Liyao Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Ruimao Hua
- Department of Chemistry, Tsinghua University, Beijing, China
| |
Collapse
|
32
|
Sun W, Chen X, Hu Y, Geng H, Jiang Y, Zhou Y, Zhu W, Hu M, Hu H, Wang X, Wang X, Zhang S, Hu Y. A NaH-promoted N-detosylation reaction of diverse p-toluenesulfonamides. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Tian X, Song L, Hashmi ASK. Synthesis of Carbazoles and Related Heterocycles from Sulfilimines by Intramolecular C-H Aminations. Angew Chem Int Ed Engl 2020; 59:12342-12346. [PMID: 32045085 PMCID: PMC7384176 DOI: 10.1002/anie.202000146] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 01/28/2023]
Abstract
While direct nitrene insertions into C-H bonds have become an important tool for building C-N bonds in modern organic chemistry, the generation of nitrene intermediates always requires transition metals, high temperatures, ultraviolet or laser light. We report a mild synthesis of carbazoles and related building blocks through a visible light-induced intramolecular C-H amination reaction. A striking advantage of this new method is the use of more reactive aryl sulfilimines instead of the corresponding hazardous azides. Different catalysts and divergent light sources were tested. The reaction scope is broad and the product yield is generally high. An efficient gram-scale synthesis of Clausine C demonstrates the applicability and scalability of this new method.
Collapse
Affiliation(s)
- Xianhai Tian
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Lina Song
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Institut für Organische ChemieHeidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| |
Collapse
|
34
|
Tian X, Song L, Hashmi ASK. Synthese von Carbazolen und Verwandten Heterocyclen aus Sulfiliminen durch Intramolekulare C‐H‐Aminierungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - Lina Song
- Institut für Organische Chemie Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Deutschland
- Chemistry Department Faculty of Science King Abdulaziz University Jeddah 21589 Saudi Arabia
| |
Collapse
|
35
|
Abstract
The relative stability and predictable reactivity of alkynyl sulfides make them ideal synthons for the development of new transformations. Classic methods for forming alkynyl sulfides relied on dehydrohalogenation approaches. However more recent methods have focused on employing umpolung strategies, as well as nucleophilic and electrophilic thiol alkynylation. In addition, the recent syntheses of Csp-S bonds have trended towards exploiting catalysis and expanding the reaction scope of the methods. A survey of existing methods to form alkynyl sulfides is presented as well as an evaluation with regards to the scope of each method, to provide the reader with an overview of advantages and limitations of current technology.
Collapse
Affiliation(s)
- Jeffrey Santandrea
- Department of Chemistry and Centre in Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, CanadaH3C 3J7.
| | - Eric Godin
- Department of Chemistry and Centre in Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, CanadaH3C 3J7.
| | - Shawn K Collins
- Department of Chemistry and Centre in Green Chemistry and Catalysis, Université de Montréal, CP 6128 Station Downtown, Montréal, Québec, CanadaH3C 3J7.
| |
Collapse
|
36
|
Hong FL, Chen YB, Ye SH, Zhu GY, Zhu XQ, Lu X, Liu RS, Ye LW. Copper-Catalyzed Asymmetric Reaction of Alkenyl Diynes with Styrenes by Formal [3 + 2] Cycloaddition via Cu-Containing All-Carbon 1,3-Dipoles: Access to Chiral Pyrrole-Fused Bridged [2.2.1] Skeletons. J Am Chem Soc 2020; 142:7618-7626. [PMID: 32237743 DOI: 10.1021/jacs.0c01918] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The generation of metal-containing 1,3-dipoles from metal carbenes represents a significant advance in 1,3-dipolar cycloaddition reactions. However, these transformations have so far been limited to reactions based on diazo compounds or triazoles as precursors. Herein, we disclose a copper-catalyzed enantioselective reaction of alkenyl N-propargyl ynamides with styrene derivatives by formal [3 + 2] cycloaddition via Cu-containing all-carbon 1,3-dipoles, which constitutes a novel way for the generation of metal-containing 1,3-dipoles via metal carbenes. This protocol allows the practical and atom-economical synthesis of valuable chiral pyrrole-fused bridged [2.2.1] skeletons in moderate to good yields (up to 90% yield) with excellent diastereoselectivities (dr > 50/1) and generally excellent enantioselectivities (up to >99% ee).
Collapse
Affiliation(s)
- Feng-Lin Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Yang-Bo Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Si-Han Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Guang-Yu Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Xin Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, Republic of China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| |
Collapse
|
37
|
Yao L, Hu Q, Lei Y, Bao L, Hu Y. C–O/C–S difunctionalized benzene derivatives via multicomponent coupling of tetraynes. Org Chem Front 2020. [DOI: 10.1039/d0qo00967a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C–O/C–S difunctionalization of fused highly substituted benzene derivatives was conducted via the multicomponent coupling reaction of tetraynes, sulfoxides, and cyclopropenones.
Collapse
Affiliation(s)
- Liangliang Yao
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecular-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Qiong Hu
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecular-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Yu Lei
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecular-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Li Bao
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecular-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| | - Yimin Hu
- Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Key Laboratory of Molecular-Based Materials
- School of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
38
|
Zhan SC, Sun J, Liu RZ, Yan CG. Diastereoselective construction of carbazole-based spirooxindoles via the Levy three-component reaction. Org Biomol Chem 2020; 18:163-168. [DOI: 10.1039/c9ob02013f] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The CuSO4 catalyzed three-component reaction of indole-2-acetate, aromatic aldehydes and 3-methyleneoxindoles in toluene at 130 °C afforded polysubstituted spiro[carbazole-3,3′-indolines] in good yields and with high diastereoselectivity.
Collapse
Affiliation(s)
- Shao-Cong Zhan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Jing Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Ru-Zhang Liu
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| | - Chao-Guo Yan
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
| |
Collapse
|
39
|
Wang D, Sun J, Yan C. Efficient Synthesis of Fused and Bridged Cyclic Pyrrolo[3,4‐a]carbazoles via NH
4
I Promoted Three‐component Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201902407] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Da‐Qian Wang
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Jing Sun
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Chao‐Guo Yan
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| |
Collapse
|
40
|
Sun J, Yang R, Zhan S, Yan C. Construction of Tetrahydrospiro[carbazole‐1,2′‐indenes] and Dihydrospiro[carbazole‐1,3′‐indolines] via NH
4
I Promoted Three‐Component Reaction. ChemistrySelect 2019. [DOI: 10.1002/slct.201902619] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Sun
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Ren‐Yin Yang
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Shao‐Cong Zhan
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| | - Chao‐Guo Yan
- School of Chemistry & Chemical EngineeringYangzhou University Yangzhou 225002 China
| |
Collapse
|
41
|
Mitake A, Nagai R, Sekine A, Takano H, Sugimura N, Kanyiva KS, Shibata T. Consecutive HDDA and TDDA reactions of silicon-tethered tetraynes for the synthesis of dibenzosilole-fused polycyclic compounds and their unique reactivity. Chem Sci 2019; 10:6715-6720. [PMID: 31367326 PMCID: PMC6625486 DOI: 10.1039/c9sc00960d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/25/2019] [Indexed: 12/28/2022] Open
Abstract
Silicon-tethered tetraynes possessing a 1,3-diyne moiety underwent consecutive hexadehydro- and tetradehydro-Diels-Alder reactions to give a series of fused polycyclic aromatic compounds containing a dibenzosilole skeleton. The benzene ring in the product acted as a 1,3-diene and reacted with the active alkyne as well as oxygen to provide [4 + 2] cycloadducts.
Collapse
Affiliation(s)
- Akihito Mitake
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Rikako Nagai
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Ayato Sekine
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Hideaki Takano
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| | - Natsuhiko Sugimura
- Materials Characterization Central Laboratory , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan
| | - Kyalo Stephen Kanyiva
- Global Center for Science and Engineering , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan
| | - Takanori Shibata
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan .
| |
Collapse
|
42
|
Song Y, Wu W, Fu C, Huang X, Ma S. Palladium‐Catalyzed Triple Cyclization of 2,7‐Alkadiynylic Carbonates with 2‐Butyne‐1,4‐diol or 2‐Butyne‐1,4‐disulfonamides. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yulong Song
- Laboratory of Molecular Recognition and Synthesis, Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Wangteng Wu
- Laboratory of Molecular Recognition and Synthesis, Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of ChemistryZhejiang University Hangzhou 310027, Zhejiang People's Republic of China
| |
Collapse
|
43
|
Liu B, Hu Q, Wen Y, Fang B, Xu X, Hu Y. Versatile Dibenzothio[seleno]phenes via Hexadehydro-Diels-Alder Domino Cyclization. Front Chem 2019; 7:374. [PMID: 31179274 PMCID: PMC6543197 DOI: 10.3389/fchem.2019.00374] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/07/2019] [Indexed: 01/03/2023] Open
Abstract
A facile strategy to synthesize highly substituted dibenzoselenophenes and dibenzothiophenes by a domino hexadehydro-Diels–Alder reaction is reported in this article. The formation of three new C–C bonds, one new Caryl–Se/Caryl–S bond, and C–H σ-bond migration via one-pot multiterminal cycloaddition reactions were involved in over three transformations. The target tetracyclic compounds were prepared from tetraynes with a triphenylphosphine selenide or triphenylphosphine sulfide. This reaction played a pivotal role in constructing natural thio[seleno]phene cores, which were highly substituted, and is a robust method for producing fused heterocycles.
Collapse
Affiliation(s)
- Baohua Liu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Qiong Hu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Yinshan Wen
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Bo Fang
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Xiaoliang Xu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| | - Yimin Hu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, China
| |
Collapse
|
44
|
Affiliation(s)
- Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong-De Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-Qi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingzhou Shang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
45
|
Zhang Y, Fu C, Huang X, Ma S. Construction of Benzopolycycles via Pd-Catalyzed Intermolecular Cyclization of 2,7-Alkadiynylic Carbonates with Terminal Propargyl Tertiary Alcohols. Org Lett 2019; 21:3523-3527. [PMID: 30916977 DOI: 10.1021/acs.orglett.9b00746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed highly regioselective and chemoselective intermolecular cyclization of 2,7-alkadiynylic carbonates with terminal propargyl tertiary alcohols to construct benzopolycycles containing furan and pyrrole moieties has been developed with a very broad scope. Polycycles containing spirane structures or dispirane structures could be also smoothly synthesized in moderate to good yields. The reaction enjoys excellent regioselectivity.
Collapse
Affiliation(s)
- Yuchen Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang People's Republic of China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang People's Republic of China
| | - Xin Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang People's Republic of China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry , Zhejiang University , Hangzhou 310027 , Zhejiang People's Republic of China
| |
Collapse
|
46
|
Zhang L, Liu T, Wang YM, Chen J, Zhao YL. Rhodium-Catalyzed Coupling–Cyclization of Alkenyldiazoacetates with o-Alkenyl Arylisocyanides: A General Route to Carbazoles. Org Lett 2019; 21:2973-2977. [DOI: 10.1021/acs.orglett.9b00307] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lu Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tao Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yi-Ming Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Jing Chen
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
47
|
Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne‐Ynamides. Angew Chem Int Ed Engl 2019; 58:2289-2294. [DOI: 10.1002/anie.201811947] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/12/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Shubham Dutta
- School of ChemistryUniversity of Hyderabad Hyderabad India
| | | | - Rangu Prasad
- School of ChemistryUniversity of Hyderabad Hyderabad India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182Université Paris-Sud, Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168Ecole PolytechniqueUniversité Paris-Saclay route de Saclay 91128 Palaiseau cedex France
| | | |
Collapse
|
48
|
Uchida K, Yoshida S, Hosoya T. Synthetic Aryne Chemistry toward Multicomponent Coupling. J SYN ORG CHEM JPN 2019. [DOI: 10.5059/yukigoseikyokaishi.77.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Suguru Yoshida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| | - Takamitsu Hosoya
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University
| |
Collapse
|
49
|
Dutta S, Mallick RK, Prasad R, Gandon V, Sahoo AK. Alkyne Versus Ynamide Reactivity: Regioselective Radical Cyclization of Yne-Ynamides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Shubham Dutta
- School of Chemistry; University of Hyderabad; Hyderabad India
| | | | - Rangu Prasad
- School of Chemistry; University of Hyderabad; Hyderabad India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182; Université Paris-Sud, Université Paris-Saclay; Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168; Ecole Polytechnique; Université Paris-Saclay; route de Saclay 91128 Palaiseau cedex France
| | - Akhila K. Sahoo
- School of Chemistry; University of Hyderabad; Hyderabad India
| |
Collapse
|
50
|
|