1
|
Wang Z, Liu T, Peng H, Fang Y. Advances in Molecular Design and Photophysical Engineering of Perylene Bisimide-Containing Polyads and Multichromophores for Film-Based Fluorescent Sensors. J Phys Chem B 2023; 127:828-837. [PMID: 36692385 DOI: 10.1021/acs.jpcb.2c07815] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Film-based fluorescent sensors (FFSs) represent an important chemistry technology for meeting the urgent needs of on-site and real-time analysis, thereby enabling significant applications in environmental and health monitoring. As the core of FFSs, innovative design of sensing fluorophores and their intrinsic excited-state-related response nature endow FFSs with superior sensing performances in an endless expansion. In this Perspective, we specifically focus on perylene bisimide (PBI)-containing polyads and multichromophores with rigid configuration and notable photochemical stability for developing high-performance FFSs. These nonplanar structures mitigate aggregation and create abundant gaps for the sake of mass transfer and availability of the sensing units in the adlayer of the sensing films. We also comprehensively discuss how to adjust electronic coupling governing the excited-state events by appropriate functionalization strategies, thus providing a plethora of valuable insights for the exploration of the structure-property relationships in these orchestrated molecular systems. Throughout this Perspective, we also identify opportunities for FFSs in the future developments.
Collapse
Affiliation(s)
- Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
2
|
Dnyaneshwar Veer S, Chandrakant Wakchaure V, Asokan K, Dixit R, Goswami T, Saha R, Gonnade R, Ghosh HN, Santhosh Babu S. Oligothiophene-Ring-Strapped Perylene Bisimides: Functionalizable Coaxial Donor-Acceptor Macrocycles. Angew Chem Int Ed Engl 2023; 62:e202212934. [PMID: 36266975 DOI: 10.1002/anie.202212934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 12/14/2022]
Abstract
Aesthetic designs from nature enable new knowledge to be gained and, at the same time, inspire scientific models. In this context, multicomponent macrocycles embody the advantage of precisely positioning the structural units to achieve efficient communication between them. However, the construction of a functionalizable macrocycle for ultrafast charge separation and stabilization has not been attempted. Herein, we report the synthesis, crystal structure, and transient absorption of a new functionalizable macrocycle consisting of an oligothiophene-ring-strapped perylene bisimide. Transient absorption results point to a sequential improvement in charge separation and stabilization from the macrocycle to the corresponding linear dimer and 2D polymer due to the unique design. Our macrocycle design with a supportive spatial arrangement of the donor and acceptor units will inspire the development of more complex synthetic systems with exciting electron-transfer and charge-separation features.
Collapse
Affiliation(s)
- Sairam Dnyaneshwar Veer
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Vivek Chandrakant Wakchaure
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Kiran Asokan
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Ruchi Dixit
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.,Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Tanmay Goswami
- Institute of Nanoscience and Nanotechnology (INST), Sector 81, Mohali, 411008, Punjab, India
| | - Ramchandra Saha
- Institute of Nanoscience and Nanotechnology (INST), Sector 81, Mohali, 411008, Punjab, India
| | - Rajesh Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.,Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Hirendra N Ghosh
- Institute of Nanoscience and Nanotechnology (INST), Sector 81, Mohali, 411008, Punjab, India.,Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| |
Collapse
|
3
|
Penty S, Zwijnenburg MA, Orton GRF, Stachelek P, Pal R, Xie Y, Griffin SL, Barendt TA. The Pink Box: Exclusive Homochiral Aromatic Stacking in a Bis-perylene Diimide Macrocycle. J Am Chem Soc 2022; 144:12290-12298. [PMID: 35763425 PMCID: PMC9348826 DOI: 10.1021/jacs.2c03531] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work showcases chiral complementarity in aromatic stacking interactions as an effective tool to optimize the chiroptical and electrochemical properties of perylene diimides (PDIs). PDIs are a notable class of robust dye molecules and their rich photo- and electrochemistry and potential chirality make them ideal organic building blocks for chiral optoelectronic materials. By exploiting the new bay connectivity of twisted PDIs, a dynamic bis-PDI macrocycle (the "Pink Box") is realized in which homochiral PDI-PDI π-π stacking interactions are switched on exclusively. Using a range of experimental and computational techniques, we uncover three important implications of the macrocycle's chiral complementarity for PDI optoelectronics. First, the homochiral intramolecular π-π interactions anchor the twisted PDI units, yielding enantiomers with half-lives extended over 400-fold, from minutes to days (in solution) or years (in the solid state). Second, homochiral H-type aggregation affords the macrocycle red-shifted circularly polarized luminescence and one of the highest dissymmetry factors of any small organic molecule in solution (glum = 10-2 at 675 nm). Finally, excellent through-space PDI-PDI π-orbital overlap stabilizes PDI reduced states, akin to covalent functionalization with electron-withdrawing groups.
Collapse
Affiliation(s)
- Samuel
E. Penty
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Martijn A. Zwijnenburg
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom
| | - Georgia R. F. Orton
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Patrycja Stachelek
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Robert Pal
- Department
of Chemistry, University of Durham, South Road, Durham DH1 3LE, United
Kingdom
| | - Yujie Xie
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Sarah L. Griffin
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Timothy A. Barendt
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
4
|
Wang K, Shao G, Peng S, You X, Chen X, Xu J, Huang H, Wang H, Wu D, Xia J. Achieving Symmetry-Breaking Charge Separation in Perylenediimide Trimers: The Effect of Bridge Resonance. J Phys Chem B 2022; 126:3758-3767. [PMID: 35559687 DOI: 10.1021/acs.jpcb.2c02387] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symmetry-breaking charge separation (SB-CS) provides a very promising option to engineer a novel light conversion scheme, while it is still a challenge to realize SB-CS in a nonpolar environment. The strength of electronic coupling plays a crucial role in determining the exciton dynamics of organic semiconductors. Herein, we describe how to mediate interchromophore coupling to achieve SB-CS in a nonpolar solvent by the use of two perylenediimide (PDI)-based trimers, 1,7-tri-PDI and 1,6-tri-PDI. Although functionalization at the N-atom decreases electronic coupling between PDI units, our strategy takes advantage of "bridge resonance", in which the frontier orbital energies are nearly degenerate with those of the covalently linked PDI units, leading to enhanced interchromophore electronic coupling. Tunable electronic coupling was realized by the judicious combination of "bridge resonance" with N-functionalization. The enhanced mixing between the S1 state and CT/CS states results in direct observation of the CT band in the steady-state UV-vis absorption and negative free energy of charge separation (ΔGCS) in both chloroform and toluene for the two trimers. Using transient absorption spectroscopy, we demonstrated that photoinduced SB-CS in a nonpolar solvent is feasible. This work highlights that the use of "bridge resonance" is an effective way to control exciton dynamics of organic semiconductors.
Collapse
Affiliation(s)
- Kangwei Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Guangwei Shao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Shaoqian Peng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaoxiao You
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Xingyu Chen
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jingwen Xu
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Huaxi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Huan Wang
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Di Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianlong Xia
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China.,School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
5
|
Selective recognition of methyl viologen by an endo-functionalized naphthobox. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Zeng F, Cheng L, Ou GC, Tang LL, Ding MH. Pyromellitic Diimide-Extended Pillar[6]arene: Synthesis, Structure, and Its Complexation with Polycyclic Aromatic Hydrocarbons. J Org Chem 2022; 87:3863-3867. [PMID: 35171603 DOI: 10.1021/acs.joc.1c03096] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel pyromellitic diimide-extended pillar[6]arene was synthesized in two steps with moderate yield for the first time. It showed a symmetrical stretched hexagon structure and could form 1:2 complexes with polycyclic aromatic hydrocarbons in solution. Interestingly, a linear supramolecular array between complex 1@G42 and pyrene through π···π stacking interactions was also observed in the solid state.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Lu Cheng
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Guang-Chuan Ou
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Lin-Li Tang
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Man-Hua Ding
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
7
|
Hauschildt SJ, Wu Z, Uersfeld D, Schmid P, Götz C, Engel V, Engels B, Müllen K, Basché T. Excitation localization in a trimeric perylenediimide macrocycle: Synthesis, theory, and single molecule spectroscopy. J Chem Phys 2022; 156:044304. [DOI: 10.1063/5.0077676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Simon J. Hauschildt
- Department of Chemistry, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Zehua Wu
- Department of Chemistry, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Daniel Uersfeld
- Department of Chemistry, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Paul Schmid
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Christian Götz
- Department of Chemistry, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Volker Engel
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, 97074 Würzburg, Germany
| | - Klaus Müllen
- Department of Chemistry, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Thomas Basché
- Department of Chemistry, Johannes Gutenberg-Universität, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
8
|
Zeng F, Xiao XS, Gong SF, Yuan L, Tang LL. An electron-deficient supramolecular macrocyclic host for the selective separation of aromatics and cyclic aliphatics. Org Chem Front 2022. [DOI: 10.1039/d2qo01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Host 1 with an electron-deficient nanometer-sized cavity were synthesized in two steps. Moreover, 1 has been successfully used as a gas chromatographic stationary phase to prepare a packed column for the separation of PhH/Cy and Tol/MCy.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Xin-Sheng Xiao
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Shao-Feng Gong
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Lin Yuan
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| | - Lin-Li Tang
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou 425199, China
| |
Collapse
|
9
|
Solymosi I, Krishna S, Nuin E, Maid H, Scholz B, Guldi DM, Pérez-Ojeda ME, Hirsch A. Diastereoselective formation of homochiral flexible perylene bisimide cyclophanes and their hybrids with fullerenes. Chem Sci 2021; 12:15491-15502. [PMID: 35003577 PMCID: PMC8653996 DOI: 10.1039/d1sc04242d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclophanes of different ring sizes featuring perylene-3,4:9,10-tetracarboxylic acid bisimide (PBI) linked by flexible malonates were designed, synthesized, and investigated with respect to their structural, chemical and photo-physical properties. It is predominantly the number of PBIs and their geometric arrangement, which influence dramatically their properties. For example, two-PBI containing cyclophanes reveal physico-chemical characteristics that are governed by strong co-facial π–π interactions. This is in stark contrast to cyclophanes with either three or four PBIs. Key to co-facial π–π stackings are the flexible malonate linkers, which, in turn, set up the ways and means for diastereoselectivity of the homochiral PBIs at low temperatures, on one hand. In terms of selectivity, diastereomeric (M,M)/(P,P) : (M,P)/(P,M) pairs with a ratio of approximately 10 : 1 are discernible in the 1H NMR spectra in C2D2Cl4 and a complete diastereomeric excess is found in CD2Cl2. On the other hand, symmetry-breaking charge transfer as well as charge separation at room temperature are corroborated in steady-state and time-resolved photo-physical investigations. Less favourable are co-facial π–π stackings in the three-PBI containing cyclophanes. For statistical reasons, the diastereoisomers (M,M,M)/(P,P,P) and (M,M,P)/(P,P,M) occur here in a ratio of 1 : 3. In this case, symmetry-breaking charge transfer as well as charge separation are both slowed down. The work was rounded-off by integrating next to the PBIs, for the first time, hydrophobic or hydrophilic fullerenes into the resulting cyclophanes. Our novel fullerene–PBI cyclophanes reveal unprecedented diastereoselective formation of homochiral (M,M)/(P,P) pairs exceeding the traditional host–guest approach. Hybridization with fullerenes allows us to modulate the resulting solubility, stacking, cavity and chirality, which is of tremendous interest in the field. Perylene bisimide (PBI) cyclophanes linked by flexible malonates were functionalized with fullerenes. Modulation of the chemical environment enhances the chiral self-sorting, leading exclusively to the homochiral diastereomeric pair (M,M)/(P,P).![]()
Collapse
Affiliation(s)
- Iris Solymosi
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Swathi Krishna
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg Egerlandstraße 3 91058 Erlangen Germany
| | - Edurne Nuin
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Harald Maid
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Barbara Scholz
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg Egerlandstraße 3 91058 Erlangen Germany
| | - M Eugenia Pérez-Ojeda
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg Nikolaus-Fiebiger-Straße 10 91058 Erlangen Germany
| |
Collapse
|
10
|
Hua C, Liu K, Wu Y, Xu W, Zhang J, Wang Z, Liu K, Fang Y. An O-Carborane Derivative of Perylene Bisimide-Based Thin Film Displaying both Electrochromic and Electrofluorochromic Properties. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49500-49508. [PMID: 34612639 DOI: 10.1021/acsami.1c15223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The widespread application in displays, information encryption, and sensors has boosted studies of electrochromic (EC) systems combining large contrast, fast response, high robustness, and low-cost properties. Herein, we report a film-type new EC system with a non-planar perylene bisimide-carborane derivative (PBI-CB) as the electroactive materials. It was revealed that the film demonstrated outstanding EC properties with response times of 1.18 and 0.94 s for the coloration and bleaching processes, respectively, large transmittance variation around 630 nm (45.7%), and superior stability for more than 200 coloration-bleaching cycles. Moreover, the film also showed precious electrofluorochromic (EFC) properties. The emission around 650 nm at the "on" state could be more than 24.5 times than that at the "off" state, and the response times of the off and on processes could reach 2.2 s and 4.3 s, respectively. Considering the facts that the film was fabricated via simple drop-coating, the EC/EFC operation was performed via a routine three-electrode system and the voltage applied is only -1.3 V, we believe that the EC/EFC system as developed would find applications in smart windows, information encryption, optoelectrical sensing, etc. In addition, the work could also pave the way for developing combined EC/EFC systems via employing known organic fluorophores as the electrochemical active materials, which are not only abundant in numbers but also solution-processable.
Collapse
Affiliation(s)
- Chunxia Hua
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Ying Wu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Wenjun Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jing Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
11
|
Pang XY, Zhou H, Yao H, Jiang W. Naphthobox: a selective molecular box for planar aromatic cations. Org Chem Front 2021. [DOI: 10.1039/d1qo00819f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A molecular box with an electron-rich cavity, namely naphthobox, was contructed and showed selective binding to planar aromatic cations.
Collapse
Affiliation(s)
- Xin-Yu Pang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Hang Zhou
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Huan Yao
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| | - Wei Jiang
- Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, and Department of Chemistry, Southern University of Science and Technology, Xueyuan Blvd 1088, Shenzhen, 518055, China
| |
Collapse
|
12
|
Huang J, Su Z, Huang M, Zhang R, Wang J, Feng X, Zhang R, Zhang R, Shan W, Yan XY, Guo QY, Liu T, Liu Y, Cui Y, Li X, Shi AC, Cheng SZD. Spherical Supramolecular Structures Constructed via Chemically Symmetric Perylene Bisimides: Beyond Columnar Assembly. Angew Chem Int Ed Engl 2020; 59:18563-18571. [PMID: 32656991 DOI: 10.1002/anie.201914889] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/28/2020] [Indexed: 01/20/2023]
Abstract
Like other discotic molecules, self-assembled supramolecular structures of perylene bisimides (PBIs) are commonly limited to columnar or lamellar structures due to their distinct π-conjugated scaffolds and unique rectangular shape of perylene cores. The discovery of PBIs with supramolecular structures beyond layers and columns may expand the scope of PBI-based materials. A series of unconventional spherical packing phases in PBIs, including A15 phase, σ phase, dodecagonal quasicrystalline (DQC) phase, and body-centered cubic (BCC) phase, is reported. A strategy involving functionalization of perylene core with several polyhedral oligomeric silsesquioxane (POSS) cages achieved spherical assemblies of PBIs, instead of columnar assemblies, due to the significantly increased steric hindrance at the periphery. This strategy may also be employed for the discovery of unconventional spherical assemblies in other related discotic molecules by the introduction of similar bulky functional groups at their periphery. An unusual inverse phase transition sequence from a BCC phase to a σ phase was observed by increasing annealing temperature.
Collapse
Affiliation(s)
- Jiahao Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Zebin Su
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jian Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xueyan Feng
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ruimeng Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Wenpeng Shan
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Xiao-Yun Yan
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Qing-Yun Guo
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Tong Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Yuchu Liu
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| | - Yunpeng Cui
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - An-Chang Shi
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, L8S 4M1, Canada
| | - Stephen Z D Cheng
- South China Advanced Institute for Soft Matter Science and Technology, School of Molecular Science and Engineering, South China University of Technology, Guangzhou, 510640, China.,Department of Polymer Science, College of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH, 44325-3909, USA
| |
Collapse
|
13
|
Young RM, Wasielewski MR. Mixed Electronic States in Molecular Dimers: Connecting Singlet Fission, Excimer Formation, and Symmetry-Breaking Charge Transfer. Acc Chem Res 2020; 53:1957-1968. [PMID: 32786248 DOI: 10.1021/acs.accounts.0c00397] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ConspectusChromophore aggregates are capable of a wide variety of excited-state dynamics that are potentially of great use in optoelectronic devices based on organic molecules. For example, singlet fission, the process by which a singlet exciton is down converted into two triplet excitons, holds promise for extending the efficiency of solar cells, while other processes, such as excimer formation, are commonly regarded as parasitic pathways or traps. Other processes, such as symmetry-breaking charge transfer, where the excited dimer charge separates into a radical ion pair, can be both a trap and potentially useful in devices, depending on the context. Thus, an understanding of the precise mechanisms of each of these processes is vital to designing tailor-made organic chromophores for molecular optoelectronics.These excited-state phenomena have each been well-studied in recent years and show tantalizing connections as the molecular systems and environments are subtly changed. These seemingly disparate phenomena can be described within the same unifying framework, where each case can be represented as one point in continuum of mixed states. The coherent mixed state is observed experimentally, and it collapses to each of the limiting cases under well-defined conditions. This framework is especially useful in demonstrating the connections between these different states so that we can determine the factors that control their evolution and may ultimately guide the state mixtures to the product state of choice. The emerging picture shows that tuning the electronic coupling through proper arrangement of the chromophores must accompany environmental tuning of the chromophore energies to produce a fully mixed state. Changes in either of these quantities leads to evolution of the admixture and ultimately collapsing the superposition onto a given state, producing one of the photophysical pathways discussed above.In our laboratory, we are utilizing covalent dimers to precisely arrange the chromophores in rigid, well-defined geometries to systematically study the factors that determine the degree of state mixing and its fate. We interrogate these dynamics with transient absorption spectroscopy from the UV continuously into the mid-infrared, along with time-resolved Raman and emission and magnetic resonance spectroscopies to build a complete and detailed molecular level picture of the dynamics of these dimers. The knowledge gained from dimer studies can also be applied to the understanding the dynamics in extended molecular solids. The insight afforded by these studies will help guide the creation of new designer chromophores with control over the fate of the excited state.
Collapse
Affiliation(s)
- Ryan M. Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| | - Michael R. Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern, Northwestern University, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
14
|
Huang J, Su Z, Huang M, Zhang R, Wang J, Feng X, Zhang R, Zhang R, Shan W, Yan X, Guo Q, Liu T, Liu Y, Cui Y, Li X, Shi A, Cheng SZD. Spherical Supramolecular Structures Constructed via Chemically Symmetric Perylene Bisimides: Beyond Columnar Assembly. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914889] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiahao Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Zebin Su
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Mingjun Huang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Jian Wang
- School of Life Science and Technology ShanghaiTech University Shanghai 201210 China
| | - Xueyan Feng
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Rui Zhang
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
| | - Ruimeng Zhang
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Wenpeng Shan
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Xiao‐Yun Yan
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Qing‐Yun Guo
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Tong Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yuchu Liu
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| | - Yunpeng Cui
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Xiaopeng Li
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - An‐Chang Shi
- Department of Physics and Astronomy McMaster University Hamilton Ontario L8S 4M1 Canada
| | - Stephen Z. D. Cheng
- South China Advanced Institute for Soft Matter Science and Technology School of Molecular Science and Engineering South China University of Technology Guangzhou 510640 China
- Department of Polymer Science College of Polymer Science and Polymer Engineering The University of Akron Akron OH 44325-3909 USA
| |
Collapse
|
15
|
Satake A. The Solvent Effect on Weak Interactions in Supramolecular Polymers: Differences between Small Molecular Probes and Supramolecular Polymers. Chempluschem 2020; 85:1542-1548. [PMID: 32697033 DOI: 10.1002/cplu.202000400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/04/2020] [Indexed: 12/27/2022]
Abstract
In this minireview, weak interactions that occur in supramolecular polymers are discussed. Combination of weak and strong interactions plays an important role in the construction of supramolecular polymers. It is beneficial to separate the contributions of the weak interactions, as well as each solvent effect on the weak interactions. However, it is generally difficult to observe each solvent effect separately at work in each interaction. Small molecular probes are useful to estimate the contributions of the weak interaction. But, the results should be treated with caution when applied to supramolecular polymer systems. To overcome the problems, a new solvent parameter, solvation ability (SA), is introduced, which was determined on the balance point of extended and stacked forms of porphyrin-based interconvertible supramolecular polymers.
Collapse
Affiliation(s)
- Akiharu Satake
- Department of Chemistry, Faculty of Science Division II, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
16
|
Türel T, Bhargava S, Valiyaveettil S. Tubular Perylene Bisimide Macrocycles for the Recognition of Geometrical Isomers of Azobenzenes. J Org Chem 2020; 85:3092-3100. [PMID: 31951125 DOI: 10.1021/acs.joc.9b02972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Perylene bisimide-based materials are good candidates for photosensitive applications. Herein, we report synthesis, characterization, and complexation studies of perylene bisimide macrocycles obtained through bayside coupling. The isomeric macrocycles incorporated with interesting optical properties and tubular-shaped cavities are able to recognize geometric isomers of azobenzenes and aromatic amines. Such selective recognition is useful toward developing potential sensors for interesting isomeric pairs in the future.
Collapse
Affiliation(s)
- Tankut Türel
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Samarth Bhargava
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Suresh Valiyaveettil
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
17
|
Li H, Shao P, Chen S, Li G, Feng X, Chen X, Zhang HJ, Lin J, Jiang YB. Supramolecular Alternating Donor–Acceptor Assembly toward Intercalated Covalent Organic Frameworks. J Am Chem Soc 2020; 142:3712-3717. [DOI: 10.1021/jacs.9b13559] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Huiqing Li
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Pengpeng Shao
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Shuqi Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guosheng Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Xiao Feng
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Hui-Jun Zhang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jianbin Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China
| | - Yun-Bao Jiang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
18
|
Huang Y, Yu F, Cao X, Nie L, Zhang P, Xu F, Gong Q, Zhan X, Zhao K, Huang Y, Mai Y, Zhang Q. Tunable low-dimensional self-assembly of H-shaped bichromophoric perylenediimide Gemini in solution. NANOSCALE 2020; 12:3058-3067. [PMID: 31971199 DOI: 10.1039/c9nr10607c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A material with diverse self-assembled morphologies is extremely important and highly desirable because such samples can provide tunable optical and electronic properties, which are critical in applications such as organic photovoltaics, microelectronics and bio-imaging. Moreover, the synthesis and controllable self-assembly of H-shaped bichromophoric perylenediimides (PDIs) are needed to advance these materials in organic photovoltaics, microelectronics and bio-imaging; however, this has remained a great challenge thus far. Here, we successfully synthesize a novel H-shaped bichromophoric PDI Gemini through the palladium-catalyzed coupling reaction. The as-prepared PDI Gemini exhibited unprecedented tunable self-assembly behavior in solution, yielding diverse low-dimensional superstructures, such as one-dimensional (1D) helices, two-dimensional (2D) rectangular nanocrystals, pyramid-shaped parallelograms, ultralarge micro-sheets, and uniform nanospheres, under different self-assembly conditions. Of particular interest, the 2D hierarchical superstructures along with their formation mechanisms represent the first finding in the self-assembly of PDI-based molecules. This study opens a new avenue for tunable self-assembly of conjugated molecules and affords opportunities for the fabrication of novel self-assembled optical and electronic materials based on PDI molecules.
Collapse
Affiliation(s)
- Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Fei Yu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Lina Nie
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Qiuyu Gong
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Xuejun Zhan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Kexiang Zhao
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Yizhong Huang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| | - Qichun Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
19
|
Paul R, Paul S. Computational Study of Encapsulation of Polyaromatic Hydrocarbons by Endo-Functionalized Receptors in Nonpolar Medium. J Chem Inf Model 2020; 60:212-225. [PMID: 31880935 DOI: 10.1021/acs.jcim.9b00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) constitute a large group of organic pollutants produced from either natural or artificial sources during the incomplete combustion of fossil fuels or derived from various industrial processes (such as refinery processes of crude petroleum). They are seriously hazardous to human health, and removing them is of major importance. The complexation likeliness with and selective recognition of PAH guests by endo-functionalized molecular tube hosts (host-abu and host-abtu) in a nonpolar medium are investigated using classical molecular dynamics simulation and quantum calculation to probe the factors and the molecular mechanism involved in complexation processes. We examine the role of different guest molecules in the structural changes of hosts, a prelude to van der Waals interactions and binding free energy in the complexation process. These types of host-guest interactions depend on various factors. We find that (i) both the host molecules (host-abtu and host-abu) interact with the guest π-electron cloud almost equally and (ii) these interactions also depend on the molecular size of PAHs. The larger the nonpolar surface area of PAHs, the greater the interactions with the host, and the more extensive the π-electron cloud of the guest, the stronger the interactions. The linear PAHs interact more strongly than isomeric branched/curved PAHs, and the presence of heteroatoms on PAHs decreases the interactions with the host by creating repulsion between the lone pairs of heteroatoms and the π-electron cloud of the host. Noncovalent van der Waals interactions and N-H···π interactions dominate the high affinities of PAHs toward host-abu and host-abtu. The potential of mean force and molecular mechanics Poisson-Boltzmann surface area calculations reveal that all host-guest complexes are energetically stable.
Collapse
Affiliation(s)
- Rabindranath Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Sandip Paul
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
20
|
Schultz JD, Coleman AF, Mandal A, Shin JY, Ratner MA, Young RM, Wasielewski MR. Steric Interactions Impact Vibronic and Vibrational Coherences in Perylenediimide Cyclophanes. J Phys Chem Lett 2019; 10:7498-7504. [PMID: 31730346 DOI: 10.1021/acs.jpclett.9b02923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Designing molecular systems that exploit vibronic coherence to improve light harvesting efficiencies relies on understanding how interchromophoric interactions, such as van der Waals forces and dipolar coupling, influence these coherences in multichromophoric arrays. However, disentangling these interactions requires studies of molecular systems with tunable structural relationships. Here, we use a combination of two-dimensional electronic spectroscopy and femtosecond stimulated Raman spectroscopy to investigate the role of steric hindrance between chromophores in driving changes to vibronic and vibrational coherences in a series of substituted perylenediimide (PDI) cyclophane dimers. We report significant differences in the frequency power spectra from the cyclophane dimers versus the corresponding monomer reference. We attribute these differences to distortion of the PDI cores from steric interactions between the substituents. These results highlight the importance of considering structural changes when rationalizing vibronic coupling in multichromophoric systems.
Collapse
Affiliation(s)
- Jonathan D Schultz
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Adam F Coleman
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Aritra Mandal
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Jae Yoon Shin
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Mark A Ratner
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Ryan M Young
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| | - Michael R Wasielewski
- Department of Chemistry and Institute for Sustainability and Energy at Northwestern , Northwestern University , Evanston , Illinois 60208-3113 , United States
| |
Collapse
|
21
|
Su F, Chen G, Korevaar PA, Pan F, Liu H, Guo Z, Schenning APHJ, Zhang H, Lin J, Jiang Y. Discrete π‐Stacks from Self‐Assembled Perylenediimide Analogues. Angew Chem Int Ed Engl 2019; 58:15273-15277. [DOI: 10.1002/anie.201907838] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/16/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Feng Su
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Guangmei Chen
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Peter A. Korevaar
- Institute for Molecules and MaterialsRadboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Fangfang Pan
- College of ChemistryCentral China Normal University Wuhan 430079 P. R. China
| | - Huijiao Liu
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Zongxia Guo
- College of Chemistry and Molecular EngineeringQingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Albertus P. H. J. Schenning
- Department of Chemical Engineering and Chemistry, Stimuli-responsive Functional Materials and DevicesEindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Hui‐Jun Zhang
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
| | - Jianbin Lin
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationXiamen University Xiamen 361005 P. R. China
| | - Yun‐Bao Jiang
- Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen University Xiamen 361005 P. R. China
- MOE Key Laboratory of Spectrochemical Analysis and InstrumentationXiamen University Xiamen 361005 P. R. China
| |
Collapse
|
22
|
Su F, Chen G, Korevaar PA, Pan F, Liu H, Guo Z, Schenning APHJ, Zhang H, Lin J, Jiang Y. Discrete π‐Stacks from Self‐Assembled Perylenediimide Analogues. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907838] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Feng Su
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Guangmei Chen
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Peter A. Korevaar
- Institute for Molecules and Materials Radboud University Heyendaalseweg 135 6525 AJ Nijmegen The Netherlands
| | - Fangfang Pan
- College of Chemistry Central China Normal University Wuhan 430079 P. R. China
| | - Huijiao Liu
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Zongxia Guo
- College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Albertus P. H. J. Schenning
- Department of Chemical Engineering and Chemistry, Stimuli-responsive Functional Materials and Devices Eindhoven University of Technology Den Dolech 2 5612 AZ Eindhoven The Netherlands
| | - Hui‐Jun Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
| | - Jianbin Lin
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 P. R. China
| | - Yun‐Bao Jiang
- Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 P. R. China
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation Xiamen University Xiamen 361005 P. R. China
| |
Collapse
|
23
|
Markiewicz G, Smulders MMJ, Stefankiewicz AR. Steering the Self-Assembly Outcome of a Single NDI Monomer into Three Morphologically Distinct Supramolecular Assemblies, with Concomitant Change in Supramolecular Polymerization Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900577. [PMID: 31453068 PMCID: PMC6702645 DOI: 10.1002/advs.201900577] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Indexed: 06/02/2023]
Abstract
Noncovalent self-assembly creates an effective route to highly sophisticated supramolecular polymers with tunable properties. However, the outcome of this assembly process is highly dependent on external conditions. In this work, a monomeric naphthalene diimide (NDI), designed to allow solubility in a wide range of solvents, can assemble into three distinct noncovalent supramolecular species depending on solvent composition and temperature. Namely, while the self-assembly in chlorinated solvents yields relatively short, hydrogen-bonded nanotubes, the reduction of solvent polarity changes the assembly outcome, yielding π-π stacking polymers, which can further bundle into a more complex aggregate. The obtained polymers differ not only in their global morphology but-more strikingly-also in the thermodynamics and kinetics of their supramolecular self-assembly, involving isodesmic or two-stage cooperative assembly with kinetic hysteresis, respectively. Ultimately, three distinct assembly states can be accessed in a single experiment.
Collapse
Affiliation(s)
- Grzegorz Markiewicz
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznan´skiego 861‐614Poznan´Poland
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznan´skiego 1061‐614Poznan´Poland
| | - Maarten M. J. Smulders
- Laboratory of Organic ChemistryWageningen UniversityStippeneng 46708WEWageningenThe Netherlands
| | - Artur R. Stefankiewicz
- Faculty of ChemistryAdam Mickiewicz UniversityUniwersytetu Poznan´skiego 861‐614Poznan´Poland
- Center for Advanced TechnologiesAdam Mickiewicz UniversityUniwersytetu Poznan´skiego 1061‐614Poznan´Poland
| |
Collapse
|
24
|
Guo Y, Ma Z, Niu X, Zhang W, Tao M, Guo Q, Wang Z, Xia A. Bridge-Mediated Charge Separation in Isomeric N-Annulated Perylene Diimide Dimers. J Am Chem Soc 2019; 141:12789-12796. [PMID: 31334641 DOI: 10.1021/jacs.9b05723] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The possibility and rate of charge separation (CS) in donor-bridge-acceptor molecules mainly depend on two factors: electronic coupling and solvent effects. The question of how CS occurred in two identical chromophores is fundamental, as it is particularly interesting for potential molecular electronics applications and the photosynthetic reaction centers (RCs). Conjugated bridge definitely plays a crucial role in electronic coupling. To determine the bridge-mediated charge separation dynamics between the two identical chromophores, the isomeric N-annulated perylene diimide dimers (para-BDNP and meta-BDNP) with different conjugated bridge structures have been comparatively investigated in different solvents using femtosecond transient absorption spectra (fs-TA). It is found that the charge separation is disfavored in weak polar solvent, whereas direct spectroscopic signatures of radicals are observed in polar solvents, and the rate of charge separation increases as the solvent polarity increasing. To our surprise, the rate of charge separation in m-BDNP is more than an order of magnitude slower than that in p-BDNP, although there is a larger negative ΔGCS in m-BDNP. The slow CS rate that occurred in m-BDNP mainly results from the intrinsic destructive interference of the wave function through the meta-substituted bridge. The roles of solvent effects in free energy and electronic coupling for charge separation are further identified with quantum calculations.
Collapse
Affiliation(s)
- Yuanyuan Guo
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zetong Ma
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinmiao Niu
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Wei Zhang
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Min Tao
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qianjin Guo
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Andong Xia
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
25
|
Feng X, Liao P, Jiang J, Shi J, Ke Z, Zhang J. Perylene Diimide Based Imine Cages for Inclusion of Aromatic Guest Molecules and Visible‐Light Photocatalysis. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201900058] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiying Feng
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Peisen Liao
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Jingxing Jiang
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Jianying Shi
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Zhuofeng Ke
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| | - Jianyong Zhang
- Sun Yat-Sen University MOE Laboratory of Polymeric Composite and Functional MaterialsSchool of Materials Science and Engineering Guangzhou 510275 China
| |
Collapse
|
26
|
Wang YM, Yao H, Quan M, Chai H, Yang LP, Pan YM, Jiang W. Unexpected solvent effect on the binding of positively-charged macrocycles to neutral aromatic hydrocarbons. Chem Commun (Camb) 2019; 55:10924-10927. [DOI: 10.1039/c9cc06154a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A pair of positively charged naphthotubes was synthesized by using imidazolium as the linkers. Surprisingly, these naphthotubes show stronger binding affinities to neutral aromatic hydrocarbons in CD3CN than in CD2Cl2.
Collapse
Affiliation(s)
- Yu-Mei Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- China
| | - Huan Yao
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Mao Quan
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Hongxin Chai
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Liu-Pan Yang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources
- School of Chemistry and Pharmaceutical Sciences
- Guangxi Normal University
- Guilin 541004
- China
| | - Wei Jiang
- Shenzhen Grubbs Institute and Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
27
|
Bhargava S, Chu JJH, Valiyaveettil S. Controlled Dye Aggregation in Sodium Dodecylsulfate-Stabilized Poly(methylmethacrylate) Nanoparticles as Fluorescent Imaging Probes. ACS OMEGA 2018; 3:7663-7672. [PMID: 30221237 PMCID: PMC6130898 DOI: 10.1021/acsomega.8b00785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/26/2018] [Indexed: 06/01/2023]
Abstract
Polymer nanoparticles are used extensively in biomedical applications. Poly(methylmethacrylate) (PMMA) nanoparticles obtained via nanoprecipitation were unstable and flocculate or precipitate from solution within a few hours. A simple method to improve the stability of the particles using surfactants at low concentrations was carried out to produce PMMA nanoparticles with long-term stability in water (>6 months). The increased stability was attributed to the incorporation of surfactants inside the polymer particles during nanoprecipitation. The same methodology was also adopted to encapsulate a highly fluorescent hydrophobic perylene tetraester inside the polymer nanoparticles with good stability in water. Because of the presence of the anionic sodium dodecyl sulfate, the particles showed a negative zeta potential of -34.7 mV and an average size of 150 nm. Similarly, the dye-encapsulated polymer nanoparticles showed a zeta potential of -35.1 mV and an average particle size of 180 nm. By varying the concentration of encapsulated dyes inside the polymer nanoparticles, dye aggregation could be controlled, and the fluorescence profiles of the nanoparticles were altered. To understand the uptake and toxicity of the polymer nanoparticles, baby hamster kidney cells were chosen as a model system. The polymer nanoparticles were taken up by the cells within 3 h and were nontoxic at concentrations as high as 100 ppm. The confocal micrographs of the cells revealed localized fluorescence from the polymer nanoparticles around the nucleus in the cytoplasm without the penetration of the nuclear envelope.
Collapse
Affiliation(s)
- Samarth Bhargava
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Justin Jang Hann Chu
- Department
of Microbiology and Immunology, National
University of Singapore, 5 Science Drive 2, 117545, Singapore
| | - Suresh Valiyaveettil
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| |
Collapse
|
28
|
Kaufmann C, Bialas D, Stolte M, Würthner F. Discrete π-Stacks of Perylene Bisimide Dyes within Folda-Dimers: Insight into Long- and Short-Range Exciton Coupling. J Am Chem Soc 2018; 140:9986-9995. [PMID: 29992819 DOI: 10.1021/jacs.8b05490] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Four well-defined π-stacks of perylene bisimide (PBI) dyes were obtained in solution by covalent linkage of two chromophores with spacer units of different length and sterical demand. Structural elucidation of the folda-dimers by in-depth nuclear magnetic resonance studies and geometry optimization at the level of density functional theory suggest different, but highly defined molecular arrangements of the two chromophores in the folded state enforced by the various spacer moieties. Remarkably, the dye stacks exhibit considerably different optical properties as investigated by UV/vis absorption and fluorescence spectroscopy, despite only slightly different chromophore arrangements. The distinct absorption properties can be rationalized by an interplay of long- and short-range exciton coupling resulting in optical signatures ranging from conventional H-type to monomer like absorption features with low and appreciably high fluorescence quantum yields, respectively. To the best of our knowledge, we present the first experimental proof of a PBI-based "null-aggregate", in which long- and short-range exciton coupling fully compensate each other, giving rise to monomer-like absorption features for a stack of two PBI chromophores. Hence, our insights pinpoint the importance of charge-transfer mediated short-range coupling that can significantly influence the optical properties of PBI π-stacks.
Collapse
Affiliation(s)
- Christina Kaufmann
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - David Bialas
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Matthias Stolte
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Frank Würthner
- Institut für Organische Chemie , Universität Würzburg , Am Hubland , 97074 Würzburg , Germany.,Center for Nanosystems Chemistry , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
29
|
Ahmed S, Amba Sankar KN, Pramanik B, Mohanta K, Das D. Solvent Directed Morphogenesis and Electrical Properties of a Peptide-Perylenediimide Conjugate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8355-8364. [PMID: 29921124 DOI: 10.1021/acs.langmuir.8b01750] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular organization of electron-deficient aromatic systems like perylenediimides (PDI) is extremely appealing, as they are potential candidates for organic electronics. The performance of these molecules in such applications primarily depends on the self-organization of the molecules. However, any correlation between the morphology of these self-assembled semiconducting molecules and their electrical performances has not yet been formulated. Herein, for the first time, we have made an effort to find such a correlation by studying the self-assembly, morphology, and their conducting properties for a peptide-PDI conjugate. The PDI conjugate formed fiber-like morphology in relatively nonpolar solvents (THF and CHCl3) while in more polar solvents (HFIP, MeOH, ACN, and acetone), spherical morphology could be found. Interestingly, the self-assembly and the morphologies showed a clear dependence on the solvent polarity. In polar solvents, the conjugate aggregates more efficiently than in the nonpolar solvents, and with decrease in solvent polarity, the dimension of the nanostructures increased. However, in all the tested solvents, irrespective of their polarity, the PDI-peptide conjugate adopts a right-handed helicity. To find a correlation between the morphologies with the conducting property, detailed electrical characterization of these nanostructures was carried out. While no significant change could be observed for the dc conductivities of these nanostructures, the ac conductivities show prominent difference at the low-frequency region. A dispersion of conductivity was observed for the nanospheres due to the polarization effect. A critical correlation between the nanostructures and the activation energy was observed as with decrease in radii of curvature of the aggregates the activation energy increases with an exception in the case of MeOH. The observed results suggest that the long-range transport of charge carriers is less favorable when the aggregates are small and closely packed.
Collapse
Affiliation(s)
- Sahnawaz Ahmed
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Kandan Natarajan Amba Sankar
- Department of Physics, PSG College of Technology and Nanotech Research Innovation and Incubation Centre (NRIIC) , PSG Institute of Advanced Studies , Avinashi Road , Coimbatore 641004 , TN , India
| | - Bapan Pramanik
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| | - Kallol Mohanta
- Department of Physics, PSG College of Technology and Nanotech Research Innovation and Incubation Centre (NRIIC) , PSG Institute of Advanced Studies , Avinashi Road , Coimbatore 641004 , TN , India
| | - Debapratim Das
- Department of Chemistry , Indian Institute of Technology , Guwahati , Assam 781039 , India
| |
Collapse
|
30
|
Liu K, Shang C, Wang Z, Qi Y, Miao R, Liu K, Liu T, Fang Y. Non-contact identification and differentiation of illicit drugs using fluorescent films. Nat Commun 2018; 9:1695. [PMID: 29703929 PMCID: PMC5923207 DOI: 10.1038/s41467-018-04119-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 04/03/2018] [Indexed: 11/24/2022] Open
Abstract
Sensitive and rapid identification of illicit drugs in a non-contact mode remains a challenge for years. Here we report three film-based fluorescent sensors showing unprecedented sensitivity, selectivity, and response speed to the existence of six widely abused illicit drugs, including methamphetamine (MAPA), ecstasy, magu, caffeine, phenobarbital (PB), and ketamine in vapor phase. Importantly, for these drugs, the sensing can be successfully performed after 5.0 × 105, 4.0 × 105, 2.0 × 105, 1.0 × 105, 4.0 × 104, and 2.0 × 102 times dilution of their saturated vapor with air at room temperature, respectively. Also, presence of odorous substances (toiletries, fruits, dirty clothes, etc.), water, and amido-bond-containing organic compounds (typical organic amines, legal drugs, and different amino acids) shows little effect upon the sensing. More importantly, discrimination and identification of them can be realized by using the sensors in an array way. Based upon the discoveries, a conceptual, two-sensor based detector is developed, and non-contact detection of the drugs is realized. Sensitive and rapid identification of illicit drugs in a non-contact mode remains a challenge. Here, the authors report three film-based fluorescent sensors showing remarkable sensitivity, selectivity and response speed to six widely abused illicit drugs in vapor phase.
Collapse
Affiliation(s)
- Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Zhaolong Wang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yanyu Qi
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| |
Collapse
|
31
|
Selective recognition of aromatic hydrocarbons by endo-functionalized molecular tubes via C/N-H⋅⋅⋅ π interactions. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Zhang J, Liu K, Wang G, Shang C, Peng H, Liu T, Fang Y. Detection of gaseous amines with a fluorescent film based on a perylene bisimide-functionalized copolymer. NEW J CHEM 2018. [DOI: 10.1039/c8nj02540a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fluorescent copolymer containing PBI units and hydroxyl-ethyl structures was developed for the fast and sensitive detection of gaseous amines
Collapse
Affiliation(s)
- Jinling Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- Shaanxi Normal University
- Xi’an 710119
- People's Republic of China
- School of Materials Science and Engineering
| | - Ke Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- Shaanxi Normal University
- Xi’an 710119
- People's Republic of China
- School of Chemistry and Chemical Engineering
| | - Gang Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- Shaanxi Normal University
- Xi’an 710119
- People's Republic of China
- School of Chemistry and Chemical Engineering
| | - Congdi Shang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- Shaanxi Normal University
- Xi’an 710119
- People's Republic of China
- School of Chemistry and Chemical Engineering
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- Shaanxi Normal University
- Xi’an 710119
- People's Republic of China
- School of Chemistry and Chemical Engineering
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- Shaanxi Normal University
- Xi’an 710119
- People's Republic of China
- School of Chemistry and Chemical Engineering
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education)
- Shaanxi Normal University
- Xi’an 710119
- People's Republic of China
- School of Chemistry and Chemical Engineering
| |
Collapse
|
33
|
Barendt TA, Ferreira L, Marques I, Félix V, Beer PD. Anion- and Solvent-Induced Rotary Dynamics and Sensing in a Perylene Diimide [3]Catenane. J Am Chem Soc 2017; 139:9026-9037. [DOI: 10.1021/jacs.7b04295] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Timothy A. Barendt
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | | | | | | | - Paul D. Beer
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
34
|
Photo- and redoxfunctional cyclophanes, macrocycles, and catenanes based on aromatic bisimides. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2017. [DOI: 10.1016/j.jphotochemrev.2017.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Sun Y, Li Z. In situ polymerization of supramolecular nanorods assembled from polymerizable perylene bisimide. Polym Chem 2017. [DOI: 10.1039/c7py00895c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dimethacryl amide functionalized perylene bisimide monomer was synthesized, in-situ free radical polymerization was then performed in the organized state to maintain the assembly structures.
Collapse
Affiliation(s)
- Yan Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- School of Polymer Science and Engineering
| | - Zhibo Li
- School of Polymer Science and Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
- China
| |
Collapse
|
36
|
Montenegro J, Phipps RJ. Highlights from the 52nd EUCHEM conference on stereochemistry, Bürgenstock, Switzerland, May 2017. Chem Commun (Camb) 2017; 53:9960-9966. [DOI: 10.1039/c7cc90258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The strong wind that was blowing in Brunnen on the 4th of May 2017 was prophetic of the storm of ideas and creativity that would later fall over the participants of the 52nd edition of the Bürgenstock conference.
Collapse
Affiliation(s)
- Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Universidade de Santiago de Compostela
- 15782 Santiago de Compostela
- Spain
| | | |
Collapse
|