1
|
Okon A, Yang J, Giancola JB, Molina OJ, Sayers J, Cheah KM, Li Y, Strieter ER, Raines RT. Facile Access to Branched Multispecific Proteins. Bioconjug Chem 2024; 35:954-962. [PMID: 38879814 PMCID: PMC11254548 DOI: 10.1021/acs.bioconjchem.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Approaches that leverage orthogonal chemical reactions to generate protein-protein conjugates have expanded access to bespoke chimeras. Although the literature is replete with examples of the semisynthesis of bispecific proteins, few methods exist for the semisynthesis of protein conjugates of higher complexity (i.e., greater than two-protein fusions). The recent emergence of trispecific cell engagers for immune cell redirection therapies necessitates the development of chemical methods for the construction of trispecific proteins that would otherwise be inaccessible via natural protein synthesis. Here, we demonstrate that 3-bromo-5-methylene pyrrolone (3Br-5MP) can be used to effect the facile chemical synthesis of trispecific peptides and proteins with exquisite control over the addition of each monomer. The multimeric complexes maintain epitope functionality both in human cells and upon immobilization. We anticipate that facile access to trispecific proteins using this 3Br-5MP will have broad utility in basic science research and will quicken the pace of research to establish novel, multimeric immune cell redirection therapies.
Collapse
Affiliation(s)
- Aniekan Okon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jinyi Yang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - JoLynn B. Giancola
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Oscar J. Molina
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jessica Sayers
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Keith M. Cheah
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yanfeng Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Eric R. Strieter
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Hua Y, Liu S, Xie SS, Shi L, Li J, Luo Q. Heterobifunctional Cross-Linker with Dinitroimidazole and N-Hydroxysuccinimide Ester Motifs for Protein Functionalization and Cysteine-Lysine Peptide Stapling. Org Lett 2023; 25:8792-8796. [PMID: 38059767 DOI: 10.1021/acs.orglett.3c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A heterobifunctional cross-linker with one sulfhydryl-reactive dinitroimidazole end and another amine-reactive N-hydroxysuccinimide (NHS) ester end was designed and synthesized. The two motifs of this cross-linker, dinitroimidazole and NHS ester, proved to react with thiol and amine, respectively, in an orthogonal way. The cross-linker was further applied to construct stapled peptides of different sizes and mono- and dual functionalization (including biotinylation, PEGylation, and fluorescence labeling) of protein.
Collapse
Affiliation(s)
- Yaoguang Hua
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Shuli Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Sai-Sai Xie
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, People's Republic of China
| | - Linjing Shi
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Juncheng Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Qunfeng Luo
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
3
|
Zheng Z, Wu X, Wang Y, Yang X, Chen H, Shen Y, Yang Y, Xia Q. Attenuating RNA Viruses with Expanded Genetic Codes to Evoke Adjustable Immune Response in PylRS-tRNACUAPyl Transgenic Mice. Vaccines (Basel) 2023; 11:1606. [PMID: 37897007 PMCID: PMC10610612 DOI: 10.3390/vaccines11101606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/03/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
Ribonucleic acid (RNA) viruses pose heavy burdens on public-health systems. Synthetic biology holds great potential for artificially controlling their replication, a strategy that could be used to attenuate infectious viruses but is still in the exploratory stage. Herein, we used the genetic-code expansion technique to convert Enterovirus 71 (EV71), a prototypical RNA virus, into a controllable EV71 strain carrying the unnatural amino acid (UAA) Nε-2-azidoethyloxycarbonyl-L-lysine (NAEK), which we termed an EV71-NAEK virus. After NAEK supplementation, EV71-NAEK could recapitulate an authentic NAEK time- and dose-dependent infection in vitro, which could serve as a novel method to manipulate virulent viruses in conventional laboratories. We further validated the prophylactic effect of EV71-NAEK in two mouse models. In susceptible parent mice, vaccination with EV71-NAEK elicited a strong immune response and protected their neonatal offspring from lethal challenges similar to that of commercial vaccines. Meanwhile, in transgenic mice harboring a PylRS-tRNACUAPyl pair, substantial elements of genetic-code expansion technology, EV71-NAEK evoked an adjustable neutralizing-antibody response in a strictly external NAEK dose-dependent manner. These findings suggested that EV71-NAEK could be the basis of a feasible immunization program for populations with different levels of immunity. Moreover, we expanded the strategy to generate controllable coxsackieviruses for conceptual verification. In combination, these results could underlie a competent strategy for attenuating viruses and priming the immune system via artificial control, which might be a promising direction for the development of amenable vaccine candidates and be broadly applied to other RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qing Xia
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Chemical Biology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Z.Z.); (X.W.); (Y.W.); (X.Y.); (H.C.); (Y.S.); (Y.Y.)
| |
Collapse
|
4
|
Ji X, Zhu N, Ma Y, Liu J, Hu Y. Protein C-Terminal Tyrosine Conjugation via Recyclable Immobilized BmTYR. ACS OMEGA 2022; 7:40532-40539. [PMID: 36385814 PMCID: PMC9647846 DOI: 10.1021/acsomega.2c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Protein modification plays an essential role in biological and pharmaceutical research. Due to the ordinary selectivity and inevitable damage to proteins of chemical synthetic methods, increased efforts were focused on biocatalysts which exhibited high regioselectivity and mild reaction conditions. However, separation of the biocatalysts and modified proteins remained a problem, especially when scaling up. Here, we developed a simple method for site-specific protein modification with a recyclable biocatalyst. The immobilizing tyrosinase (BmTYR) on magnetic beads can oxidize C-terminal tyrosine residues of the target protein to o-quinone, followed by the spontaneous addition of different nucleophiles (e.g., aniline derivatives), resulting in a C-terminal modified protein. Compared to the homogeneous biocatalytic system reported before, this heterogeneous system leads to an easier separation. Furthermore, the solid-phase biocatalyst can be regenerated during separation, providing reusability and lower costs.
Collapse
Affiliation(s)
- Xingyu Ji
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Nanlin Zhu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Yanjie Ma
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jia Liu
- Shanghai
Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
| | - Youhong Hu
- State
Key Laboratory of Drug Research, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School
of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, Hangzhou 310024, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Taylor RJ, Geeson MB, Journeaux T, Bernardes GJL. Chemical and Enzymatic Methods for Post-Translational Protein-Protein Conjugation. J Am Chem Soc 2022; 144:14404-14419. [PMID: 35912579 PMCID: PMC9389620 DOI: 10.1021/jacs.2c00129] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Fusion proteins play an essential role in the biosciences but suffer from several key limitations, including the requirement for N-to-C terminal ligation, incompatibility of constituent domains, incorrect folding, and loss of biological activity. This perspective focuses on chemical and enzymatic approaches for the post-translational generation of well-defined protein-protein conjugates, which overcome some of the limitations faced by traditional fusion techniques. Methods discussed range from chemical modification of nucleophilic canonical amino acid residues to incorporation of unnatural amino acid residues and a range of enzymatic methods, including sortase-mediated ligation. Through summarizing the progress in this rapidly growing field, the key successes and challenges associated with using chemical and enzymatic approaches are highlighted and areas requiring further development are discussed.
Collapse
Affiliation(s)
- Ross J. Taylor
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Michael B. Geeson
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Toby Journeaux
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
6
|
Zhang L, Xiao Y, Mao W, Huang J, Huang H, Yang R, Zhang Y, He X, Wang K. A pyrene-pyridyl nanooligomer as a methoxy-triggered reactive probe for highly specific fluorescence assaying of hypochlorite. Chem Commun (Camb) 2022; 58:2520-2523. [PMID: 35098291 DOI: 10.1039/d1cc06606d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel pyrene-pyridyl conjugated oligomer (OPP-OMe) was conveniently prepared by one-pot Sonogashira coupling. Intriguingly, it was found that introducing only one methoxy moiety at the 4-pyridyl position can be sufficient for creating an oligomer-based ultrafine reactive fluorescent nanoprobe, i.e., OPP-OMe NPs (ca. 2.5 nm in diameter). Spectral analyses and elucidation of the intermediate structure revealed that the methoxy triggered-oxidation, together with nanoaggregation of OPP-OMe NPs, results in rapid, specific and supersensitive sensing of hypochlorite (LOD, 0.3 nM, S/N = 3).
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Yi Xiao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Wensheng Mao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Jiyan Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Hongmei Huang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Ronghua Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Youyu Zhang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P. R. China.
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, P. R. China.
| |
Collapse
|
7
|
Ramsey AV, Bischoff AJ, Francis MB. Enzyme Activated Gold Nanoparticles for Versatile Site-Selective Bioconjugation. J Am Chem Soc 2021; 143:7342-7350. [PMID: 33939917 DOI: 10.1021/jacs.0c11678] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A new enzymatic method is reported for constructing protein- and DNA-AuNP conjugates. The strategy relies on the initial functionalization of AuNPs with phenols, followed by activation with the enzyme tyrosinase. Using an oxidative coupling reaction, the activated phenols are coupled to proteins bearing proline, thiol, or aniline functional groups. Activated phenol-AuNPs are also conjugated to a small molecule biotin and commercially available thiol-DNA. Advantages of this approach for AuNP bioconjugation include: (1) initial formation of highly stable AuNPs that can be selectively activated with an enzyme, (2) the ability to conjugate either proteins or DNA through a diverse set of functional handles, (3) site-specific immobilization, and (4) facile conjugation that is complete within 2 h at room temperature under aqueous conditions. The enzymatic oxidative coupling on AuNPs is applied to the construction of tobacco mosaic virus (TMV)-AuNP conjugates, and energy transfer between the AuNPs and fluorophores on TMV is demonstrated.
Collapse
Affiliation(s)
- Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Tian Y, Li X, Wang F, Gu C, Zhao Z, Si H, Jiang T. SERS-based immunoassay and degradation of CA19-9 mediated by gold nanowires anchored magnetic-semiconductor nanocomposites. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124009. [PMID: 33265038 DOI: 10.1016/j.jhazmat.2020.124009] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 05/22/2023]
Abstract
Here, straight upward Au nanowires (NWs) were successfully grown onto Fe3O4@TiO2 matrix through a seed-mediated strategy to intensively improve its photocatalysis and SERS performances, facilitating a peculiar recyclable surface-enhanced Raman spectroscopy (SERS)-based immunoassay of CA19-9 in liquid form based on visible light irradiation. Such immunoassay was also supported by a smart heterobifunctional cross-linking agent-mediated probe of anti-CA19-9/4-MBA without metal nanoparticles. A low limit of detection of 5.65 × 10-4 IUmL-1 and a wide linear range from 1000 to 0.001 IUmL-1 were demonstrated through repeated constructing the sandwich immunostructure with only one batch of nanocomposites. Moreover, the actual levels of CA19-9 for colorectal cancer patients were readily measured by the recyclable immunoassay, the results of which are principally consistent with the conventional CLIA detection. Thus, such a green strategy of visible light-induced recyclable immunoassay could be expected to have a potential practicability in the clinical diagnoses of cancer.
Collapse
Affiliation(s)
- Yiran Tian
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Xiuting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Fuyan Wang
- School of Medicine, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Chenjie Gu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Ziqi Zhao
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China
| | - Hongjie Si
- Urology Departments, Zhuji Chinese Medicine Hospital, Zhuji 311800, Zhejiang, PR China
| | - Tao Jiang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, Zhejiang, PR China.
| |
Collapse
|
9
|
Jayaraj P, Narasimhulu CA, Rajagopalan S, Parthasarathy S, Desikan R. Sesamol: a powerful functional food ingredient from sesame oil for cardioprotection. Food Funct 2020; 11:1198-1210. [PMID: 32037412 DOI: 10.1039/c9fo01873e] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Phytophenols are important bioactive food based chemical entities, largely present in several natural sources. Among them, sesamol is one of the key natural phenols found in sesame seeds, Piper cubeba etc. Several studies have reported that sesame oil is a potent cardioprotective functional food. Papers on the utility of sesamol in sesame oil (the chemical name of sesamol is methylenedioxyphenol, MDP) have appeared in the literature, though there is no single concise review on the usefulness of sesamol in sesame oil in CVD in the literature. Cardiovascular disease (CVD) is the most challenging health problem encountered by the global population. There has been increasing interest in the growth of effective cardiovascular therapeutics, specifically of natural origin. Among various natural sources of chemicals, phytochemicals are micronutrients and bio-compatible scaffolds having an extraordinary efficacy at multiple disease targets with minimal or no adverse effect. This review offers a perspective on the existing literature on functional ingredients in sesame oil with particular focus on sesamol and its derivatives having nutritional and cardioprotective properties. This is demonstrated to have shown a specifically modulating oxidative enzyme myeloperoxidase (MPO) and other proteins which are detrimental to human well-being. The molecular mechanism of cardioprotection by this food ingredient is primarily attributed to the methylenedioxy group present in the sesamol component.
Collapse
Affiliation(s)
- Premkumar Jayaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India.
| | | | | | | | | |
Collapse
|
10
|
Lobba M, Fellmann C, Marmelstein AM, Maza JC, Kissman EN, Robinson SA, Staahl BT, Urnes C, Lew RJ, Mogilevsky CS, Doudna JA, Francis MB. Site-Specific Bioconjugation through Enzyme-Catalyzed Tyrosine-Cysteine Bond Formation. ACS CENTRAL SCIENCE 2020; 6:1564-1571. [PMID: 32999931 PMCID: PMC7517114 DOI: 10.1021/acscentsci.0c00940] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Indexed: 05/20/2023]
Abstract
The synthesis of protein-protein and protein-peptide conjugates is an important capability for producing vaccines, immunotherapeutics, and targeted delivery agents. Herein we show that the enzyme tyrosinase is capable of oxidizing exposed tyrosine residues into o-quinones that react rapidly with cysteine residues on target proteins. This coupling reaction occurs under mild aerobic conditions and has the rare ability to join full-size proteins in under 2 h. The utility of the approach is demonstrated for the attachment of cationic peptides to enhance the cellular delivery of CRISPR-Cas9 20-fold and for the coupling of reporter proteins to a cancer-targeting antibody fragment without loss of its cell-specific binding ability. The broad applicability of this technique provides a new building block approach for the synthesis of protein chimeras.
Collapse
Affiliation(s)
- Marco
J. Lobba
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christof Fellmann
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Gladstone
Institutes, San Francisco, California 94158, United States
- Department
of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, California 94158, United States
| | - Alan M. Marmelstein
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Johnathan C. Maza
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Elijah N. Kissman
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephanie A. Robinson
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Brett T. Staahl
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Cole Urnes
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
| | - Rachel J. Lew
- Gladstone
Institutes, San Francisco, California 94158, United States
| | - Casey S. Mogilevsky
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jennifer A. Doudna
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, California 94720, United States
- Gladstone
Institutes, San Francisco, California 94158, United States
- Howard
Hughes Medical Institute, University of
California, Berkeley, California 94720, United States
- Innovative
Genomics Institute, University of California, Berkeley, California 94720, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Onoda A, Inoue N, Sumiyoshi E, Hayashi T. Triazolecarbaldehyde Reagents for One-Step N-Terminal Protein Modification. Chembiochem 2020; 21:1274-1278. [PMID: 31794069 DOI: 10.1002/cbic.201900692] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Site-specific modification of peptides and proteins is a key aspect of protein engineering. We developed a method for modification of the N terminus of proteins using 1H-1,2,3-triazole-4-carbaldehyde (TA4C) derivatives, which can be prepared in one step. The N-terminal specific labeling of bioactive peptides and proteins with the TA4C derivatives proceeds under mild reaction conditions in excellent conversion (angiotensin I: 92 %, ribonuclease A: 90 %). This method enables site-specific conjugation of various functional molecules such as fluorophores, biotin, and polyethylene glycol attached to the triazole ring to the N terminus. Furthermore, a functional molecule modified with a primary amine moiety can be directly converted into a TA4C derivative through a Dimroth rearrangement reaction with 1-(4-nitrophenyl)-1H-1,2,3-triazole-4-carbaldehyde. This method can be used to obtain N-terminal-modified proteins via only two steps: 1) convenient preparation of a TA4C derivative with a functional group and 2) modification of the N terminus of the protein with the TA4C derivative.
Collapse
Affiliation(s)
- Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Nozomu Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eigo Sumiyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
12
|
Marmelstein AM, Lobba MJ, Mogilevsky CS, Maza JC, Brauer DD, Francis MB. Tyrosinase-Mediated Oxidative Coupling of Tyrosine Tags on Peptides and Proteins. J Am Chem Soc 2020; 142:5078-5086. [PMID: 32093466 DOI: 10.1021/jacs.9b12002] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative coupling (OC) through o-quinone intermediates has been established as an efficient and site-selective way to modify protein N-termini and the unnatural amino acid p-aminophenylalanine (paF). Recently, we reported that the tyrosinase-mediated oxidation of phenol-tagged cargo molecules is a particularly convenient method of generating o-quinones in situ. The coupling partners can be easily prepared and stored, the reaction takes place under mild conditions (phosphate buffer, pH 6.5, 4 to 23 °C), and dissolved oxygen is the only oxidant required. Here, we show an important extension of this chemistry for the activation of tyrosine residues that project into solution from the N or C-termini of peptide and protein substrates. Generating the o-quinone electrophiles from tyrosine allows greater flexibility in choosing the nucleophilic coupling partner and expands the scope of the reaction to include C-terminal positions. We also introduce a new bacterial tyrosinase enzyme that shows improved activation for some tyrosine substrates. The efficacy of several secondary amines and aniline derivatives was evaluated in the coupling reactions, providing important information for coupling partner design. This strategy was used to modify the C-termini of an antibody scFv construct and of Protein L, a human IgG kappa light chain binding protein. The use of the modified proteins as immunolabeling agents was also demonstrated.
Collapse
Affiliation(s)
- Alan M Marmelstein
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Marco J Lobba
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Casey S Mogilevsky
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Johnathan C Maza
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Daniel D Brauer
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
| | - Matthew B Francis
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Maza JC, Ramsey AV, Mehare M, Krska SW, Parish CA, Francis MB. Secondary modification of oxidatively-modified proline N-termini for the construction of complex bioconjugates. Org Biomol Chem 2020; 18:1881-1885. [PMID: 32100807 DOI: 10.1039/d0ob00211a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A convenient two-step method is reported for the ligation of alkoxyamine- or hydrazine-bearing cargo to proline N-termini. Using this approach, bifunctional proline N-terminal bioconjugates are constructed and proline N-terminal proteins are immobilized.
Collapse
Affiliation(s)
- Johnathan C Maza
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Alexandra V Ramsey
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Meire Mehare
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
| | - Shane W Krska
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA
| | - Craig A Parish
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, California 94720, USA. and Materials Science Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, USA
| |
Collapse
|
14
|
Abstract
ssRNA phages belonging to the family Leviviridae are among the tiniest viruses, infecting various Gram-negative bacteria by adsorption to their pilus structures. Due to their simplicity, they have been intensively studied as models for understanding various problems in molecular biology and virology. Several of the studied ssRNA characteristics, such as coat protein–RNA interactions and the ability to readily form virus-like particles in recombinant expression systems, have fueled many practical applications such as RNA labeling and tracking systems and vaccine development. In this chapter, we review the life cycle, structure and applications of these small yet fascinating viruses.
Collapse
|
15
|
Jones AX, Cao Y, Tang YL, Wang JH, Ding YH, Tan H, Chen ZL, Fang RQ, Yin J, Chen RC, Zhu X, She Y, Huang N, Shao F, Ye K, Sun RX, He SM, Lei X, Dong MQ. Improving mass spectrometry analysis of protein structures with arginine-selective chemical cross-linkers. Nat Commun 2019; 10:3911. [PMID: 31477730 PMCID: PMC6718413 DOI: 10.1038/s41467-019-11917-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/05/2019] [Indexed: 02/07/2023] Open
Abstract
Chemical cross-linking of proteins coupled with mass spectrometry analysis (CXMS) is widely used to study protein-protein interactions (PPI), protein structures, and even protein dynamics. However, structural information provided by CXMS is still limited, partly because most CXMS experiments use lysine-lysine (K-K) cross-linkers. Although superb in selectivity and reactivity, they are ineffective for lysine deficient regions. Herein, we develop aromatic glyoxal cross-linkers (ArGOs) for arginine-arginine (R-R) cross-linking and the lysine-arginine (K-R) cross-linker KArGO. The R-R or K-R cross-links generated by ArGO or KArGO fit well with protein crystal structures and provide information not attainable by K-K cross-links. KArGO, in particular, is highly valuable for CXMS, with robust performance on a variety of samples including a kinase and two multi-protein complexes. In the case of the CNGP complex, KArGO cross-links covered as much of the PPI interface as R-R and K-K cross-links combined and improved the accuracy of Rosetta docking substantially. Cross-linking mass spectrometry can provide insights into protein structures and interactions but its scope depends on the reactivity of the cross-linker. Here, the authors develop Arg-Arg and Lys-Arg cross-linkers, which provide structural information elusive to the widely used Lys-Lys cross-linkers.
Collapse
Affiliation(s)
- Alexander X Jones
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yong Cao
- School of Life Sciences, Peking University, 100871, Beijing, China.,National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yu-Liang Tang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Jian-Hua Wang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Yue-He Ding
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Hui Tan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Zhen-Lin Chen
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Run-Qian Fang
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jili Yin
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Rong-Chang Chen
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xing Zhu
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang She
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Niu Huang
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Feng Shao
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Keqiong Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China.,Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China
| | - Rui-Xiang Sun
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China
| | - Si-Min He
- Key Lab of Intelligent Information Processing, Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, 100049, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, and Peking-Tsinghua Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Meng-Qiu Dong
- National Institute of Biological Sciences (NIBS), 102206, Beijing, China. .,Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 102206, Beijing, China.
| |
Collapse
|
16
|
Inoue N, Onoda A, Hayashi T. Site-Specific Modification of Proteins through N-Terminal Azide Labeling and a Chelation-Assisted CuAAC Reaction. Bioconjug Chem 2019; 30:2427-2434. [DOI: 10.1021/acs.bioconjchem.9b00515] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Nozomu Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Akira Onoda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takashi Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
17
|
Mortensen MR, Skovsgaard MB, Gothelf KV. Considerations on Probe Design for Affinity‐Guided Protein Conjugation. Chembiochem 2019; 20:2711-2728. [DOI: 10.1002/cbic.201900157] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Michael R. Mortensen
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Mikkel B. Skovsgaard
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| | - Kurt V. Gothelf
- Center for Multifunctional Biomolecular Drug DesignInterdisciplinary Nanoscience CenterAarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
- Department of ChemistryAarhus University Langelandsgade 140 8000 Aarhus C Denmark
| |
Collapse
|
18
|
Conibear AC, Muttenthaler M. Advancing the Frontiers of Chemical Protein Synthesis-The 7 th CPS Meeting, Haifa, Israel. Cell Chem Biol 2019; 25:247-254. [PMID: 29547714 DOI: 10.1016/j.chembiol.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The 7th Chemical Protein Synthesis Meeting took place in September 2017 in Haifa, Israel, bringing together 100 scientists from 11 countries. The cutting-edge scientific program included new synthetic strategies and ligation auxiliaries, novel insights into protein signaling and post-translational modifications, and a range of promising therapeutic applications.
Collapse
Affiliation(s)
- Anne C Conibear
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Markus Muttenthaler
- Institute of Biological Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria; Institute for Molecular Bioscience, The University of Queensland, 4072 Brisbane, Australia.
| |
Collapse
|
19
|
Brauer DD, Hartman EC, Bader DLV, Merz ZN, Tullman-Ercek D, Francis MB. Systematic Engineering of a Protein Nanocage for High-Yield, Site-Specific Modification. J Am Chem Soc 2019; 141:3875-3884. [DOI: 10.1021/jacs.8b10734] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Emily C. Hartman
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Daniel L. V. Bader
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Zoe N. Merz
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Technological Institute E136, Evanston, Illinois 60208-3120, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|
20
|
Maza JC, Bader DLV, Xiao L, Marmelstein AM, Brauer DD, ElSohly AM, Smith MJ, Krska SW, Parish CA, Francis MB. Enzymatic Modification of N-Terminal Proline Residues Using Phenol Derivatives. J Am Chem Soc 2019; 141:3885-3892. [DOI: 10.1021/jacs.8b10845] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Johnathan C. Maza
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel L. V. Bader
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Lifeng Xiao
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alan M. Marmelstein
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Daniel D. Brauer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Adel M. ElSohly
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Matthew J. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Craig A. Parish
- Discovery Chemistry, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Matthew B. Francis
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Kelemen RE, Erickson SB, Chatterjee A. Synthesis at the interface of virology and genetic code expansion. Curr Opin Chem Biol 2018; 46:164-171. [PMID: 30086446 DOI: 10.1016/j.cbpa.2018.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 05/18/2018] [Accepted: 07/13/2018] [Indexed: 01/24/2023]
Abstract
How a virus efficiently invades its host cell and masterfully engineers its properties provides valuable lessons and resources for the emerging discipline of synthetic biology, which seeks to create engineered biological systems with novel functions. Recently, the toolbox of synthetic biology has also been enriched by the genetic code expansion technology, which has provided access to a large assortment of unnatural amino acids with novel chemical functionalities that can be site-specifically incorporated into proteins in living cells. The synergistic interplay of these two disciplines holds much promise to advance their individual progress, while creating new paradigms for synthetic biology. In this review we seek to provide an account of the recent advances at the interface of these two research areas.
Collapse
Affiliation(s)
- Rachel E Kelemen
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA 02467, United States
| | - Sarah B Erickson
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA 02467, United States
| | - Abhishek Chatterjee
- Department of Chemistry, Boston College, 2609 Beacon Street, 246B Merkert Chemistry Center, Chestnut Hill, MA 02467, United States.
| |
Collapse
|
22
|
White CJ, Bode JW. PEGylation and Dimerization of Expressed Proteins under Near Equimolar Conditions with Potassium 2-Pyridyl Acyltrifluoroborates. ACS CENTRAL SCIENCE 2018; 4:197-206. [PMID: 29532019 PMCID: PMC5833003 DOI: 10.1021/acscentsci.7b00432] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Indexed: 05/27/2023]
Abstract
The covalent conjugation of large, functionalized molecules remains a frontier in synthetic chemistry, as it requires rapid, chemoselective reactions. The potassium acyltrifluoroborate (KAT)-hydroxylamine amide-forming ligation shows promise for conjugations of biomolecules under aqueous, acidic conditions, but the variants reported to date are not suited to ligations at micromolar concentrations. We now report that 2-pyridyl KATs display significantly enhanced ligation kinetics over their aryl counterparts. Following their facile, one-step incorporation onto the termini of polyethylene glycol (PEG) chains, we show that 2-pyridyl KATs can be applied to the construction of protein-polymer conjugates in excellent (>95%) yield. Four distinct expressed, folded proteins equipped with a hydroxylamine could be PEGylated with 2-20 kDa 2-pyridyl mPEG KATs in high yield and with near-equimolar amounts of coupling partners. Furthermore, the use of a bis 2-pyridyl PEG KAT enables the covalent homodimerization of proteins with good conversion. The 2-pyridyl KAT ligation offers an effective alternative to conventional protein-polymer conjugation by operating under aqueous acidic conditions well suited for the handling of folded proteins.
Collapse
Affiliation(s)
- Christopher J. White
- Laboratorium für Organische Chemie,
Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie,
Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| |
Collapse
|
23
|
N
-Phenyl-N
-aceto-vinylsulfonamides as Efficient and Chemoselective Handles for N-Terminal Modification of Peptides and Proteins. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Lang K. Building Peptide Bonds in Haifa: The Seventh Chemical Protein Synthesis (CPS) Meeting. Chembiochem 2018; 19:115-120. [PMID: 29251813 DOI: 10.1002/cbic.201700606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Indexed: 01/24/2023]
Abstract
The power of CPS, live! More than 90 attendees from around the world came together in Haifa to present and hear about cutting-edge science in protein chemistry, from advances in synthetic methods to applications in biology and medicine. The meeting was a powerful demonstration that chemical protein synthesis can provide otherwise unattainable insights into protein structure and function.
Collapse
Affiliation(s)
- Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstrasse 4, 85748, Garching, Germany
| |
Collapse
|
25
|
Furst AL, Smith MJ, Francis MB. Direct Electrochemical Bioconjugation on Metal Surfaces. J Am Chem Soc 2017; 139:12610-12616. [DOI: 10.1021/jacs.7b06385] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ariel L. Furst
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew J. Smith
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Matthew B. Francis
- Department
of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratories, Berkeley, California 94720-1460, United States
| |
Collapse
|