1
|
Hardy MA, Hayward Cooke J, Feng Z, Noda K, Kerschgens I, Massey LA, Tantillo DJ, Sarpong R. Unified Synthesis of 2-Isocyanoallopupukeanane and 9-Isocyanopupukeanane through a "Contra-biosynthetic" Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202317348. [PMID: 38032339 DOI: 10.1002/anie.202317348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Herein, we describe our synthetic efforts toward the pupukeanane natural products, in which we have completed the first enantiospecific route to 2-isocyanoallopupukeanane in 10 steps (formal synthesis), enabled by a key Pd-mediated cyclization cascade. This subsequently facilitated an unprecedented bio-inspired "contra-biosynthetic" rearrangement, providing divergent access to 9-isocyanopupukeanane in 15 steps (formal synthesis). Computational studies provide insight into the nature of this rearrangement.
Collapse
Affiliation(s)
- Melissa A Hardy
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Zhitao Feng
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Kenta Noda
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Isabel Kerschgens
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Lynée A Massey
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Liu Y, Deng L, Guo H, Wan JP. Annulative Nonaromatic Newman-Kwart-Type Rearrangement for the Synthesis of Sulfur Heteroaryls. Org Lett 2024; 26:46-50. [PMID: 38149825 DOI: 10.1021/acs.orglett.3c03581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
By employing enaminones and thiuram disulfides as starting materials, the frontiers of Newman-Kwart rearrangement have been expanded to the alkenyl system for the first time. In addition, instead of leading to the formation of simple carbamothioates, the rearrangement has led to the unprecedented construction of S-heteroaryls. Depending on the differences in the enaminone structure, the efficient synthesis of functionalized isothiazoles and thiophenes has been achieved.
Collapse
Affiliation(s)
- Yunyun Liu
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Leiling Deng
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Haijin Guo
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Jie-Ping Wan
- National Engineering Research Center for Carbohydrate Synthesis, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| |
Collapse
|
3
|
Fan YM, George J, Wang JYJ, Gardiner MG, Coote ML, Sherburn MS. A Rapid Aza-Bicycle Synthesis from Dendralenes and Imines. Org Lett 2023; 25:7545-7550. [PMID: 37801309 DOI: 10.1021/acs.orglett.3c02890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The diene-transmissive 2-fold Diels-Alder sequence between carbon-based dienophiles and [3]dendralenes is becoming an established method for polycarbocycle synthesis. Here, we demonstrate for the first time that imines are competent participants in intermolecular formal [4 + 2] cycloadditions with dendralenes. After a second Diels-Alder process with a carbadienophile, hexahydro- and octahydro-isoquinoline structures are formed. The formal aza-Diels-Alder reaction, which requires Lewis acid promotion, proceeds in high regio- and stereoselectivity under optimized conditions. ωB97XD/Def2-TZVP//M06-2X/6-31+G(d,p) calculations reveal a stepwise ionic mechanism for the formal aza-dienophile cycloadditions and also explain an unexpected Z → E olefin isomerization of a non-reacting C═C bond in the first formal cycloaddition.
Collapse
Affiliation(s)
- Yi-Min Fan
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Jiao Yu J Wang
- Institute for Nanoscale Science & Technology, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science & Technology, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Michael S Sherburn
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
4
|
Dwulet N, Chahine Z, Le Roch KG, Vanderwal CD. An Enantiospecific Synthesis of Isoneoamphilectane Confirms Its Strained Tricyclic Structure. J Am Chem Soc 2023; 145:3716-3726. [PMID: 36730688 PMCID: PMC9936588 DOI: 10.1021/jacs.2c13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We describe a total synthesis of the rare isocyanoterpene natural product isoneoamphilectane and two of its unnatural diastereomers. The significantly strained ring system of the reported natural product─along with a hypothesis about a biosynthetic relationship to related family members─inspired us to consider a potential misassignment in the structure's relative configuration. As a result, we initially targeted two less strained, more accessible, stereoisomers of the reported natural product. When these compounds failed to exhibit spectroscopic data that matched those of isoneoamphilectane, we embarked on a synthesis of the originally proposed strained structure via an approach that hinged on a challenging cis-to-trans decalone epimerization. Ultimately, we implemented a novel cyclic sulfite pinacol-type rearrangement to generate the strained ring system. Additional features of this work include the application of a stereocontrolled Mukaiyama-Michael addition of an acyclic silylketene acetal, an unusual intramolecular alkoxide-mediated regioselective elimination, and an HAT-mediated alkene hydroazidation to forge the C-N bond of the tertiary isonitrile. Throughout this work, our synthetic planning was heavily guided by computational analyses to inform on key issues of stereochemical control.
Collapse
Affiliation(s)
- Natalie
C. Dwulet
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United
States
| | - Zeinab Chahine
- Institute
for Integrative Genome Biology, Center for Infectious Disease and
Vector Research, 900 University Avenue, Department of Molecular, Cell,
and Systems Biology, University of California, Riverside, California 92521, United States
| | - Karine G. Le Roch
- Institute
for Integrative Genome Biology, Center for Infectious Disease and
Vector Research, 900 University Avenue, Department of Molecular, Cell,
and Systems Biology, University of California, Riverside, California 92521, United States
| | - Christopher D. Vanderwal
- Department
of Chemistry, University of California, Irvine, California 92697-2025, United
States,Department
of Pharmaceutical Sciences, 101 Theory, University of California, Irvine, California 92697, United States,
| |
Collapse
|
5
|
Si YX, Feng CC, Zhang SL. Three-Component Coupling of Anilines, Amines, and Difluorocarbene to Access Formamidines. J Org Chem 2022; 87:13564-13572. [PMID: 36260868 DOI: 10.1021/acs.joc.2c01069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-pot three-component reaction of two anilines (or one aniline and one alkylamine) and in situ-generated difluorocarbene is developed herein to enable efficient construction of formamidines. Crucial formimidoyl fluoride intermediate RN═CHF is proposed from the reaction of a primary aniline and difluorocarbene. Ensuing nucleophilic iminyl substitution of this intermediate with a second amine allows cross-condensation of the two amines to produce formamidines. When only one type of primary aniline is used as the substrate, the difluoromethylated homo-condensation products can also be produced under a 1:1 molar ratio of aniline/difluorocarbene. Intramolecular variant of this method allows concise synthesis of benzimidazoquinazolines and nitrogen-fused/spirocyclic compounds, showing the potential of this method in organic synthesis. More interesting reactions are anticipated by exploiting the reactivity of difluorocarbene and primary amines to isocyanides or the formimidoyl fluoride intermediates.
Collapse
Affiliation(s)
- Yi-Xin Si
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Cong-Cong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| |
Collapse
|
6
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
7
|
Jiang B, Zhang S. Synthesis of Quinolines and 2‐Functionalized Quinolines by Difluorocarbene Incorporation. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ben‐Jie Jiang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 People's Republic of China
| | - Song‐Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University Wuxi 214122 People's Republic of China
| |
Collapse
|
8
|
Aher RD, Ishikawa A, Yamanaka M, Tanaka F. Catalytic Enantioselective Construction of Decalin Derivatives by Dynamic Kinetic Desymmetrization of C2-Symmetric Derivatives through Aldol-Aldol Annulation. J Org Chem 2022; 87:8151-8157. [PMID: 35666096 DOI: 10.1021/acs.joc.2c00889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed and investigated a catalytic desymmetrization reaction strategy that affords functionalized decalin derivatives with high enantioselectivities from C2-symmetric derivatives through aldol-aldol annulation. We identified the structural moieties of the catalyst necessary for the formation of the decalin derivative with high enantioselectivity. We elucidated the mechanisms of the catalyzed reactions: the first aldol reaction step was reversible, and the second aldol step was rate-limiting and stereochemistry-determining and was enantioselective. Using theoretical calculations guided by the experimental results, we identified the interactions between the catalyst and the transition state that led to the major enantiomer. The information obtained in this study will be useful for the development of catalysts and chemical transformations.
Collapse
Affiliation(s)
- Ravindra D Aher
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| | - Atsuhiro Ishikawa
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masahiro Yamanaka
- Department of Chemistry, Rikkyo University, 3-34-1 Nish-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Fujie Tanaka
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
| |
Collapse
|
9
|
Fu L, Xu W, Pu M, Wu YD, Liu Y, Wan JP. Rh-Catalyzed [4 + 2] Annulation with a Removable Monodentate Structure toward Iminopyranes and Pyranones by C-H Annulation. Org Lett 2022; 24:3003-3008. [PMID: 35442046 DOI: 10.1021/acs.orglett.2c00912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rh-catalyzed reactions of N-pyridinyl enaminones with internal alkynes leading to the synthesis of iminopyranes via a key C-H bond activation and subsequent tautomeric O-H bond cleavage are reported. Moreover, the pyridine ring in the amino group acts as an auxiliary monodentate site for this annulation and can be easily removed by a simple hydrolysis to afford pyranones.
Collapse
Affiliation(s)
- Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Wenqiang Xu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China
| | - Maoping Pu
- Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong 518055, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| |
Collapse
|
10
|
Suresh S, Bhimrao Patil P, Yu P, Fang C, Weng Y, Kavala V, Yao C. A Study of the Reactions of 3‐Bromopropenals with Anilines for the Synthesis of α‐Bromo Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100779] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Sundaram Suresh
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Prakash Bhimrao Patil
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Pao‐Hsing Yu
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Chia‐Chi Fang
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Yin‐Zhi Weng
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Veerababurao Kavala
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| | - Ching‐Fa Yao
- Department of Chemistry National Taiwan Normal University 88, Sec. 4, Ting-Zhou Road Taipei Taiwan 116, R.O.C
| |
Collapse
|
11
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
12
|
Xu Z, Fu L, Fang X, Huang B, Zhou L, Wan JP. Tunable Trifunctionalization of Tertiary Enaminones for the Regioselective and Metal-Free Synthesis of Discrete and Proximal Phosphoryl Nitriles. Org Lett 2021; 23:5049-5053. [PMID: 34137270 DOI: 10.1021/acs.orglett.1c01581] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This paper reports an unprecedented trifunctionalization of tertiary enaminones for the synthesis phosphoryl nitriles by the reactions of enaminones with diarylphosphine oxides and trimethylsilyl cyanide (TMSCN) without the use of any metal reagent. Employing tetrabutyl ammonium hydroxide (TBAH) as the catalyst (0.2 equiv) enables discrete cyanophosphonation. On the other hand, selective proximal cyanophosphonation has been realized in the presence of acetic acid only (AcOH).
Collapse
Affiliation(s)
- Zhongrong Xu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Leiqing Fu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Xia Fang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Bin Huang
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Liyun Zhou
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China
| |
Collapse
|
13
|
Nobile E, Castanheiro T, Besset T. Radical-Promoted Distal C-H Functionalization of C(sp 3 ) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021; 60:12170-12191. [PMID: 32897632 DOI: 10.1002/anie.202009995] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Indexed: 12/12/2022]
Abstract
Due to their unique properties, fluorinated scaffolds are pivotal compounds in pharmaceuticals, agrochemicals, and materials science. Over the last years, the development of versatile strategies for the selective synthesis of fluorinated molecules by direct C-H bond functionalization has attracted a lot of attention. In particular, the design of novel transformations based on a radical process was a bottleneck for distal C-H functionalization reactions, offering synthetic solutions for the selective introduction of fluorinated groups. This Minireview highlights the major contributions in this blossoming field. The development of new methodologies for the remote functionalization of aliphatic derivatives with various fluorinated groups based on a 1,5-hydrogen atom transfer process and a β-fragmentation reaction will be showcased and discussed.
Collapse
Affiliation(s)
- Enzo Nobile
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Thomas Castanheiro
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| | - Tatiana Besset
- Normandie Univ, INSA Rouen, UNIROUEN, CNRS, COBRA (UMR 6014), 76000, Rouen, France
| |
Collapse
|
14
|
Nobile E, Castanheiro T, Besset T. Radical‐Promoted Distal C−H Functionalization of C(sp
3
) Centers with Fluorinated Moieties. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009995] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Enzo Nobile
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Thomas Castanheiro
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| | - Tatiana Besset
- Normandie Univ INSA Rouen UNIROUEN CNRS COBRA (UMR 6014) 76000 Rouen France
| |
Collapse
|
15
|
|
16
|
Fan J, Sun M. Optical properties of kalihinol derivatives in TPA, ECD and ROA. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Krishna Chaitanya N, Dinda S, Mainkar PS, Chandrasekhar S. Epoxy-Tethered Diels-Alder Reaction toward the Tricyclic Core of Kalihinols. Org Lett 2020; 22:3557-3560. [PMID: 32294388 DOI: 10.1021/acs.orglett.0c00998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A chiral-template-driven intramolecular Diels-Alder reaction has been used to build the tricyclic core of kalihinols, a group of antimalarial marine natural products. The key starting materials are commercially available nerol and sulcatone.
Collapse
Affiliation(s)
| | | | - Prathama S Mainkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | | |
Collapse
|
18
|
Yurino T, Ohkuma T. Nucleophilic Isocyanation. ACS OMEGA 2020; 5:4719-4724. [PMID: 32201756 PMCID: PMC7081272 DOI: 10.1021/acsomega.9b04073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Isonitriles are frequently employed as both substrates for organic transformations and ligands for organometallic chemistry. However, despite the wide application of the isonitriles, their synthesis generally depends on the traditional dehydration of N-formamide. "Nucleophilic isocyanation" using cyanide as an N-nucleophile is another straightforward strategy affording the corresponding isonitriles. This method has been available since the 19th century but is still an immature procedure and is therefore more rarely used. In this review, we summarize the concepts and recent progress in nucleophilic isocyanation, including the relatively rare examples of catalytic isocyanation.
Collapse
|
19
|
Mass spectrometry-based metabolomics approach to reveal differential compounds in pufferfish soups: Flavor, nutrition, and safety. Food Chem 2019; 301:125261. [DOI: 10.1016/j.foodchem.2019.125261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/05/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
|
20
|
Klake RK, Gargaro SL, Gentry SL, Elele SO, Sieber JD. Development of a Strategy for Linear-Selective Cu-Catalyzed Reductive Coupling of Ketones and Allenes for the Synthesis of Chiral γ-Hydroxyaldehyde Equivalents. Org Lett 2019; 21:7992-7998. [PMID: 31532684 PMCID: PMC6781103 DOI: 10.1021/acs.orglett.9b02973] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
![]()
We report the development of a stereoselective
method for the allylation
of ketones utilizing N-substituted allyl equivalents
generated from a chiral allenamide. By choice of the appropriate ligand
for the Cu-catalyst, high linear selectivity can be obtained with
good diastereocontrol. This methodology allows access to chiral γ-hydroxyaldehyde
equivalents that were applied in the synthesis of chiral γ-lactones
and 2,5-disubstitued tetrahydrofurans.
Collapse
Affiliation(s)
- Raphael K Klake
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Samantha L Gargaro
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Skyler L Gentry
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Sharon O Elele
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| | - Joshua D Sieber
- Department of Chemistry , Virginia Commonwealth University , 1001 West Main Street , Richmond , Virginia 23284-3028 , United States
| |
Collapse
|
21
|
Yurino T, Tani R, Ohkuma T. Pd-Catalyzed Allylic Isocyanation: Nucleophilic N-Terminus Substitution of Ambident Cyanide. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00858] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Taiga Yurino
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido 060-8628, Japan
| | - Ryutaro Tani
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido 060-8628, Japan
| | - Takeshi Ohkuma
- Division of Applied Chemistry and Frontier Chemistry Center, Faculty of Engineering, Hokkaido University, Kita 13, Nishi 8, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
22
|
Green SA, Crossley SWM, Matos JLM, Vásquez-Céspedes S, Shevick SL, Shenvi RA. The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer. Acc Chem Res 2018; 51:2628-2640. [PMID: 30406655 DOI: 10.1021/acs.accounts.8b00337] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The implementation of any chemical reaction in a structurally complex setting ( King , S. M. J. Org. Chem. 2014 , 79 , 8937 ) confronts structurally defined barriers: steric environment, functional group reactivity, product instability, and through-bond electronics. However, there are also practical barriers. Late-stage reactions conducted on small quantities of material are run inevitably at lower than optimal concentrations. Access to late-stage material limits extensive optimization. Impurities from past reactions can interfere, especially with catalytic reactions. Therefore, chemical reactions on which one can rely at the front lines of a complex synthesis campaign emerge from the crucible of total synthesis as robust, dependable, and widely applied. Trost conceptualized "chemoselectivity" as a reagent's selective reaction of one functional group or reactive site in preference to others ( Trost , B. M. Science 1983 , 219 , 245 ). Chemoselectivity and functional group tolerance can be evaluated quickly using robustness screens ( Collins , K. D. Nat. Chem. 2013 , 5 , 597 ). A reaction may also be characterized by its "chemofidelity", that is, its reliable reaction with a functional group in any molecular context. For example, ketone reduction by an electride (dissolving metal conditions) exhibits high chemofidelity but low chemoselectivity: it usually works, but many other functional groups are reduced at similar rates. Conversely, alkene coordination chemistry effected by π Lewis acids can exhibit high chemoselectivity ( Trost , B. M. Science 1983 , 219 , 245 ) but low chemofidelity: it can be highly selective for alkenes but sensitive to the substitution pattern ( Larionov , E. Chem. Commun. 2014 , 50 , 9816 ). In contrast, alkenes undergo reliable, robust, and diverse hydrogen atom transfer reactions from metal hydrides to generate carbon-centered radicals. Although there are many potential applications of this chemistry, its functional group tolerance, high rates, and ease of execution have led to its rapid deployment in complex synthesis campaigns. Its success derives from high chemofidelity, that is, its dependable reactivity in many molecular environments and with many alkene substitution patterns. Metal hydride H atom transfer (MHAT) reactions convert diverse, simple building blocks to more stereochemically and functionally dense products ( Crossley , S. W. M. Chem. Rev. 2016 , 116 , 8912 ). When hydrogen is returned to the metal, MHAT can be considered the radical equivalent of Brønsted acid catalysis-itself a broad reactivity paradigm. This Account summarizes our group's contributions to method development, reagent discovery, and mechanistic interrogation. Our earliest contribution to this area-a stepwise hydrogenation with high chemoselectivity and high chemofidelity-has found application to many problems. More recently, we reported the first examples of dual-catalytic cross-couplings that rely on the merger of MHAT cycles and nickel catalysis. With time, we anticipate that MHAT will become a staple of chemical synthesis.
Collapse
Affiliation(s)
- Samantha A. Green
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Steven W. M. Crossley
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jeishla L. M. Matos
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Suhelen Vásquez-Céspedes
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Sophia L. Shevick
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Ryan A. Shenvi
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
23
|
Tang Y, Qin Y, Meng D, Li C, Wei J, Yang M. Diverse secondary C(sp 3)-H bond functionalization via site-selective trifluoroacetoxylation of aliphatic amines. Chem Sci 2018; 9:6374-6378. [PMID: 30310565 PMCID: PMC6115674 DOI: 10.1039/c8sc01788c] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/28/2018] [Indexed: 02/02/2023] Open
Abstract
We describe a coinage-metal-catalyzed site-selective oxidation of secondary C(sp3)-H bonds for aliphatic amine substrates. Broad amine scope, good functional compatibility and late-stage diversification are demonstrated with this method. The steric demand of the β-substituents controlled diastereoselectivities under this catalytic system. The site selectivity favors secondary C(sp3)-H bonds over tertiary ones underscoring the unique synthetic potential of this method.
Collapse
Affiliation(s)
- Yongzhen Tang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Yuman Qin
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Dongmei Meng
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Chaoqun Li
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Junfa Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| | - Mingyu Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of MOE , School of Chemistry and Chemical Engineering , Shaanxi Normal University , 620 West Chang'an Ave , Xi'an , 710119 , China . ;
| |
Collapse
|
24
|
Abstract
Several Gold's reagents were synthesized from cyanuric chloride and N,N-dialkylformamides. These synthetic equivalents of N,N-dimethylformamide dimethyl acetal were used in an optimized and scalable procedure for the regioselective synthesis of a variety of enaminones from ketone starting materials, whose utility was demonstrated by the stereoselective synthesis of Rawal-type dienes.
Collapse
|
25
|
Daub ME, Roosen PC, Vanderwal CD. General Approaches to Structurally Diverse Isocyanoditerpenes. J Org Chem 2017; 82:4533-4541. [PMID: 28402638 DOI: 10.1021/acs.joc.7b00448] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since their discovery in the 1970s, the striking architectures and the unusual isonitrile functional groups of the isocyanoterpenes have attracted the interest of many organic chemists. The more recent revelation of their potent in vitro antiplasmodial activity sparked new endeavors to synthesize members of this family of secondary metabolites. In this Synopsis, we discuss three distinct strategies that each address multiple structurally different members of the isocyanoterpenes, ending with some of our group's recent contributions in this area.
Collapse
Affiliation(s)
- Mary Elisabeth Daub
- Department of Chemistry, University of California , 1102 Natural Sciences II, Irvine, 92697-2025 California, United States
| | - Philipp C Roosen
- Department of Chemistry, University of California , 1102 Natural Sciences II, Irvine, 92697-2025 California, United States
| | - Christopher D Vanderwal
- Department of Chemistry, University of California , 1102 Natural Sciences II, Irvine, 92697-2025 California, United States
| |
Collapse
|