1
|
Song J, Zhai T, Hahm HS, Li Y, Mao H, Wang X, Jo J, Chang JW. Development of a Dual-Factor Activatable Covalent Targeted Photoacoustic Imaging Probe for Tumor Imaging. Angew Chem Int Ed Engl 2024; 63:e202410645. [PMID: 38935405 DOI: 10.1002/anie.202410645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/28/2024]
Abstract
Photoacoustic imaging (PAI) is an emerging modality in biomedical imaging with superior imaging depth and specificity. However, PAI still has significant limitations, such as the background noise from endogenous chromophores. To overcome these limitations, we developed a covalent activity-based PAI probe, NOx-JS013, targeting NCEH1. NCEH1, a highly expressed and activated serine hydrolase in aggressive cancers, has the potential to be employed for the diagnosis of cancers. We show that NOx-JS013 labels active NCEH1 in live cells with high selectivity relative to other serine hydrolases. NOx-JS013 also presents its efficacy as a hypoxia-responsive imaging probe in live cells. Finally, NOx-JS013 successfully visualizes aggressive prostate cancer tumors in mouse models of PC3, while being negligibly detected in tumors of non-aggressive LNCaP mouse models. These findings show that NOx-JS013 has the potential to be used to develop precision PAI reagents for detecting metastatic progression in various cancers.
Collapse
Affiliation(s)
- Jiho Song
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Tianqu Zhai
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Heung Sik Hahm
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
| | - Yuancheng Li
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Hui Mao
- Department of Radiology and Imaging Science, Emory University, Atlanta, Georgia, 30322, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Janggun Jo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jae Won Chang
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, Georgia, 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, Georgia, 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, Georgia, 30322, United States
| |
Collapse
|
2
|
Beduru S, Kutateladze AG. Complexity-Building ESIPT-Assisted Synthesis of Fused Polyheterocyclic Sulfonamides. Molecules 2023; 28:6549. [PMID: 37764325 PMCID: PMC10534920 DOI: 10.3390/molecules28186549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Excited State Intramolecular Proton Transfer (ESIPT), originally discovered and explored in depth in a number of extensive photophysical studies, is more recently rediscovered as a powerful synthetic tool, offering rapid access to complex polyheterocycles. In our prior work we have employed ESIPT in aromatic o-keto amines and amides, leading to diverse primary photoproducts-complex quinolinols or azacanes possessing a fused lactam moiety-which could additionally be modified in short, high-yielding postphotochemical reactions to further grow complexity of the heterocyclic core scaffold and/or to decorate it with additional functional groups. Given that sulfonamides are generally known as privileged substructures, in this study we pursued two goals: (i) To explore whether sulfonamides could behave as proton donors in the context of ESIPT-initiated photoinduced reactions; (ii) To assess the scope of subsequent complexity-building photochemical and postphotochemical steps, which give access to polyheterocyclic molecular cores with fused cyclic sulfonamide moieties. In this work we show that this is indeed the case. Simple sulfonamide-containing photoprecursors produced the sought-after heterocyclic products in experimentally simple photochemical reactions accompanied by significant step-normalized complexity increases as corroborated by the Böttcher complexity scores.
Collapse
Affiliation(s)
| | - Andrei G. Kutateladze
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA;
| |
Collapse
|
3
|
Racioppo B, Qiu N, Adibekian A. Serine Hydrolase Activity‐Based Probes for use in Chemical Proteomics. Isr J Chem 2023. [DOI: 10.1002/ijch.202300016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Brittney Racioppo
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Nan Qiu
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research La Jolla California 92037 United States
| | - Alexander Adibekian
- Department of Chemistry University of Illinois Chicago Chicago Illinois 60607 United States
| |
Collapse
|
4
|
Buran Uğur S, Dilem Doğan Ş. Iodine-mediated oxidative N–S bond formation: a facile one-pot synthetic approach to 1,2,4-benzothiadiazine 1,1-dioxides under transition metal-free conditions. J Sulphur Chem 2023. [DOI: 10.1080/17415993.2022.2164693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Sümeyye Buran Uğur
- Department of Basic Sciences, Faculty of Pharmacy, Erciyes University Kayseri, Turkey
- Department of Chemistry, Faculty of Science, Erciyes University Kayseri, Turkey
| | - Şengül Dilem Doğan
- Department of Basic Sciences, Faculty of Pharmacy, Erciyes University Kayseri, Turkey
| |
Collapse
|
5
|
Shi Z, Li Y, Li N, Wang WZ, Lu HK, Yan H, Yuan Y, Zhu J, Ye KY. Electrochemical Migratory Cyclization of N-Acylsulfonamides. Angew Chem Int Ed Engl 2022; 61:e202206058. [PMID: 35606293 DOI: 10.1002/anie.202206058] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/11/2022]
Abstract
Benzoxathiazine dioxide, as a bioisostere of the clinically widely used diazoxide, exhibits interesting biological activity. However, limited success has been achieved in terms of its concise and direct synthesis. We report herein a facile electrochemical migratory cyclization of N-acylsulfonamides to access a diverse array of benzoxathiazine dioxides. The inclusion of electrochemistry is crucial for realizing such a novel transformation, which is substantiated both by the experiments and density-functional-theory calculations.
Collapse
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Nan Li
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Wei-Zhen Wang
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hao-Kuan Lu
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hong Yan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ke-Yin Ye
- Institute of Pharmaceutical Science and Technology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
6
|
Shi Z, Li Y, Li N, Wang W, Lu H, Yan H, Yuan Y, Zhu J, Ye K. Electrochemical Migratory Cyclization of
N
‐Acylsulfonamides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhaojiang Shi
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yuanyuan Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Nan Li
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Wei‐Zhen Wang
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hao‐Kuan Lu
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Hong Yan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Yaofeng Yuan
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry, College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Ke‐Yin Ye
- Institute of Pharmaceutical Science and Technology College of Chemistry Fuzhou University Fuzhou 350108 China
| |
Collapse
|
7
|
Chemam Y, Aouf Z, Amira A, K’tir H, Bentoumi H, Ghodbane R, Zerrouki R, Aouf NE. Recent advances in the chemistry of chlorosulfonyl isocyanate: a review. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2056738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yasmine Chemam
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Zineb Aouf
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Aϊcha Amira
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
- National Higher School of Mining and Metallurgy Amar Laskri Annaba, Annaba, Algeria
| | - Hacene K’tir
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Houria Bentoumi
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Racha Ghodbane
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| | - Rachida Zerrouki
- Laboratory of Natural Substances Chemistry, Faculty of Sciences and Technologies, Limoges Cedex, France
| | - Nour-Eddine Aouf
- Bioorganic Chemistry Group, Laboratory of Applied Organic Chemistry, Department of Chemistry, Faculty of Sciences, Badji Mokhtar University, Annaba, Algeria
| |
Collapse
|
8
|
Wang X, Lin Z, Bustin KA, McKnight NR, Parsons WH, Matthews ML. Discovery of Potent and Selective Inhibitors against Protein-Derived Electrophilic Cofactors. J Am Chem Soc 2022; 144:5377-5388. [PMID: 35235319 PMCID: PMC10159212 DOI: 10.1021/jacs.1c12748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrophilic cofactors are widely distributed in nature and play important roles in many physiological and disease processes, yet they have remained blind spots in traditional activity-based protein profiling (ABPP) approaches that target nucleophiles. More recently, reverse-polarity (RP)-ABPP using hydrazine probes identified an electrophilic N-terminal glyoxylyl (Glox) group for the first time in secernin-3 (SCRN3). The biological function(s) of both the protein and Glox as a cofactor has not yet been pharmacologically validated because of the lack of selective inhibitors that could disrupt and therefore identify its activity. Here, we present the first platform for analyzing the reactivity and selectivity of an expanded nucleophilic probe library toward main-chain carbonyl cofactors such as Glox and pyruvoyl (Pyvl) groups. We first applied the library proteome-wide to profile and confirm engagement with various electrophilic protein targets, including secernin-2 (SCRN2), shown here also to possess a Glox group. A broadly reactive indole ethylhydrazine probe was used for a competitive in vitro RP-ABPP assay to screen for selective inhibitors against such cofactors from a set of commercially available nucleophilic fragments. Using Glox-containing SCRN proteins as a case study, naphthyl hydrazine was identified as a potent and selective SCRN3 inhibitor, showing complete inhibition in cell lysates with no significant cross-reactivity detected for other enzymes. Moving forward, this platform provides the fundamental basis for the development of selective Glox inhibitors and represents a starting point to advance small molecules that modulate electrophile-dependent function.
Collapse
Affiliation(s)
- Xie Wang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zongtao Lin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Katelyn A Bustin
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Nate R McKnight
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William H Parsons
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Megan L Matthews
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Grabner GF, Xie H, Schweiger M, Zechner R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat Metab 2021; 3:1445-1465. [PMID: 34799702 DOI: 10.1038/s42255-021-00493-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
The perception that intracellular lipolysis is a straightforward process that releases fatty acids from fat stores in adipose tissue to generate energy has experienced major revisions over the last two decades. The discovery of new lipolytic enzymes and coregulators, the demonstration that lipophagy and lysosomal lipolysis contribute to the degradation of cellular lipid stores and the characterization of numerous factors and signalling pathways that regulate lipid hydrolysis on transcriptional and post-transcriptional levels have revolutionized our understanding of lipolysis. In this review, we focus on the mechanisms that facilitate intracellular fatty-acid mobilization, drawing on canonical and noncanonical enzymatic pathways. We summarize how intracellular lipolysis affects lipid-mediated signalling, metabolic regulation and energy homeostasis in multiple organs. Finally, we examine how these processes affect pathogenesis and how lipolysis may be targeted to potentially prevent or treat various diseases.
Collapse
Affiliation(s)
- Gernot F Grabner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Hao Xie
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Martina Schweiger
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
10
|
Liu Y, Lv S, Peng L, Xie C, Gao L, Sun H, Lin L, Ding K, Li Z. Development and application of novel electrophilic warheads in target identification and drug discovery. Biochem Pharmacol 2021; 190:114636. [PMID: 34062128 DOI: 10.1016/j.bcp.2021.114636] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 10/21/2022]
Abstract
Nucleophilic amino acids play important roles in maintenance of protein structure and function, covalent modification of such amino acid residues by therapeutic agents is an efficient way to treat human diseases. Most of current clinical drugs are structurally limited to α,β-unsaturated amide as an electrophilic warhead. To alleviate this issue, many novel electrophiles have been developed in recent years that can covalently bind to different amino acid residues and provides a unique way to interrogate proteins, including "undruggable" targets. With an activity-based protein profiling (ABPP) approach, the activity and functionality of a protein and its binding sites can be assessed. This facilitates an understanding of protein function, and contributes to the discovery of new druggable targets and lead compounds. Meanwhile, many novel inhibitors bearing new reactive warhead were developed and displayed remarkable pharmaceutical properties. In this perspective, we have reviewed the recent remarkable progress of novel electrophiles and their applications in target identification and drug discovery.
Collapse
Affiliation(s)
- Yue Liu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Shumin Lv
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Chengliang Xie
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510000, China
| | - Liqian Gao
- School of Pharmaceutical Science (Shenzhen), Sun Yat-sen University, Guangzhou 510000, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Ke Ding
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China.
| | - Zhengqiu Li
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China; MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Lin KY, Hin Lam C, Lin XH, Hsu JI, Fan SY, Gupta NK, Lin YC, Khoon Tee B, Li JP, Chen JK, Tan KT. Improved Stabilities of Labeling Probes for the Selective Modification of Endogenous Proteins in Living Cells and In Vivo. Chem Asian J 2021; 16:937-948. [PMID: 33629493 DOI: 10.1002/asia.202100060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/23/2021] [Indexed: 01/24/2023]
Abstract
To date, various affinity-based protein labeling probes have been developed and applied in biological research to modify endogenous proteins in cell lysates and on the cell surface. However, the reactive groups on the labeling probes are also the cause of probe instability and nonselective labeling in a more complex environment, e. g., intracellular and in vivo. Here, we show that labeling probes composed of a sterically stabilized difluorophenyl pivalate can achieve efficient and selective labeling of endogenous proteins on the cell surface, inside living cells and in vivo. As compared with the existing protein labeling probes, probes with the difluorophenyl pivalate exhibit several advantages, including long-term stability in stock solutions, resistance to enzymatic hydrolysis and can be customized easily with diverse fluorophores and protein ligands. With this probe design, endogenous hypoxia biomarker in living cells and nude mice were successfully labeled and validated by in vivo, ex vivo, and immunohistochemistry imaging.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Chak Hin Lam
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Xin-Hui Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Jung-I Hsu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Syuan-Yun Fan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Nitesh K Gupta
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Yu-Chun Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Boon Khoon Tee
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan
| | - Jui-Ping Li
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Jen-Kun Chen
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, 35053, Taiwan
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| |
Collapse
|
12
|
Dutra JK, Foley TL, Huang Z, Fisher EL, Lachapelle EA, Mahapatra S, Ogilvie K, Butler TW, Bellenger J, Devraj Majmudar J, Am Ende CW. Fluorophosphonates on-Demand: A General and Simplified Approach toward Fluorophosphonate Synthesis. Chembiochem 2021; 22:1769-1774. [PMID: 33491295 DOI: 10.1002/cbic.202000852] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/23/2021] [Indexed: 11/08/2022]
Abstract
Herein, we report a general and simplified synthesis of fluorophosphonates directly from p-nitrophenylphosphonates. This FP on-demand reaction is mediated by a commercially available polymer-supported fluoride reagent that produces a variety (25 examples) of fluorophosphonates in high yields while only requiring reagent filtration for pure fluorophosphonate isolation. This reaction protocol facilitates the rapid profiling of serine hydrolases with diverse and novel sets of activated phosphonates with differential proteome reactivity. Moreover, slight modification of the procedure into a reaction-to-assay format has enabled additional screening efficiency.
Collapse
Affiliation(s)
- Jason K Dutra
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Timothy L Foley
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Zhen Huang
- Pfizer Worldwide Research and Development, 1 Portland St, Cambridge, MA 02139, USA
| | - Ethan L Fisher
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Erik A Lachapelle
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Subham Mahapatra
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Kevin Ogilvie
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Todd W Butler
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | - Justin Bellenger
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | | | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA
| |
Collapse
|
13
|
Chan HJ, Lin XH, Fan SY, Ru Hwu J, Tan KT. Rapid and Selective Labeling of Endogenous Transmembrane Proteins in Living Cells with a Difluorophenyl Ester Affinity-Based Probe. Chem Asian J 2020; 15:3416-3420. [PMID: 32931625 DOI: 10.1002/asia.202001049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Indexed: 12/28/2022]
Abstract
The long-term stability of affinity-based protein labeling probes is crucial to obtain reproducible protein labeling results. However, highly stable probes generally suffer from low protein labeling efficiency and pose significant challenges when labeling low abundance native proteins in living cells. In this paper, we report that protein labeling probes based on an ortho-difluorophenyl ester reactive module exhibit long-term stability in DMSO stock solution and aqueous buffer, yet they can undergo rapid and selective labeling of native proteins. This novel electrophile can be customized with a wide range of different protein ligands and is particularly well-suited for the labeling and imaging of transmembrane proteins. With this probe design, the identity and relative levels of basal and hypoxia-induced transmembrane carbonic anhydrases were revealed by live cell imaging and in-gel fluorescence analysis. We believe that the extension of this difluorophenyl ester reactive module would allow for the specific labeling of various endogenous membrane proteins, facilitating in-depth studies of their distribution and functions in biological processes.
Collapse
Affiliation(s)
- Hsin-Ju Chan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Xin-Hui Lin
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Syuan-Yun Fan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Jih Ru Hwu
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China
| | - Kui-Thong Tan
- Department of Chemistry, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu, 30013, Taiwan (Republic of China.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan (Republic of China
| |
Collapse
|
14
|
Chhabra S, Shah K. The novel scaffold 1,2,4-benzothiadiazine-1,1-dioxide: a review. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Gouda MA, Abu-Hashem AA, Hussein HAR, Aly AS. Recent Progress on Fused Thiadiazines: A Literature Review. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1825002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Ulla, Taibah University, KSA
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
- Chemistry Department, Faculty of Science, Jazan University, Jazan, Saudi Arabia
| | - Hoda A. R. Hussein
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
| | - Ahmed S. Aly
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
16
|
Koovits PJ, Dessoy MA, Matheeussen A, Maes L, Caljon G, Ferreira LLG, Chelucci RC, Michelan-Duarte S, Andricopulo AD, Campbell S, Kratz JM, Mowbray CE, Dias LC. Hit-to-lead optimization of a benzene sulfonamide series for potential antileishmanial agents. RSC Med Chem 2020; 11:1267-1274. [PMID: 34085041 PMCID: PMC8126888 DOI: 10.1039/d0md00165a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/07/2020] [Indexed: 01/13/2023] Open
Abstract
A series of benzene sulphonamides with good potency and selectivity against Leishmania spp. intracellular amastigotes was identified by high-throughput screening. Approximately 200 compounds were synthesized as part of a hit-to-lead optimization program. The potency of the series appears to be strongly dependent on lipophilicity, making the identification of suitable orally available candidates challenging due to poor pharmacokinetics. Despite not identifying a clinical candidate, a likely solvent exposed area was found, best exemplified in compound 29. Ongoing detailed mode-of-action studies may provide an opportunity to use target-based medicinal chemistry to overcome the issues with the current series.
Collapse
Affiliation(s)
- Paul J Koovits
- Institute of Chemistry, University of Campinas (UNICAMP) Rua Josué de Castro, S/N, Cidade Universitária Campinas SP 13083-861 Brazil +55 19 3521 3097
| | - Marco A Dessoy
- Institute of Chemistry, University of Campinas (UNICAMP) Rua Josué de Castro, S/N, Cidade Universitária Campinas SP 13083-861 Brazil +55 19 3521 3097
| | - An Matheeussen
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp Universiteitsplein 1 2610 Wilrijk Belgium
| | - Leonardo L G Ferreira
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos, University of Sao Paulo Av. Joao Dagnone 1100 13563-120 Sao Carlos-SP Brazil
| | - Rafael C Chelucci
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos, University of Sao Paulo Av. Joao Dagnone 1100 13563-120 Sao Carlos-SP Brazil
| | - Simone Michelan-Duarte
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos, University of Sao Paulo Av. Joao Dagnone 1100 13563-120 Sao Carlos-SP Brazil
| | - Adriano D Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Physics Institute of Sao Carlos, University of Sao Paulo Av. Joao Dagnone 1100 13563-120 Sao Carlos-SP Brazil
| | - Simon Campbell
- Drugs for Neglected Diseases initiative (DNDi) 15 Chemin Louis-Dunant 1202 Geneva Switzerland
| | - Jadel M Kratz
- Drugs for Neglected Diseases initiative (DNDi) 15 Chemin Louis-Dunant 1202 Geneva Switzerland
| | - Charles E Mowbray
- Drugs for Neglected Diseases initiative (DNDi) 15 Chemin Louis-Dunant 1202 Geneva Switzerland
| | - Luiz C Dias
- Institute of Chemistry, University of Campinas (UNICAMP) Rua Josué de Castro, S/N, Cidade Universitária Campinas SP 13083-861 Brazil +55 19 3521 3097
| |
Collapse
|
17
|
Faucher F, Bennett JM, Bogyo M, Lovell S. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases. Cell Chem Biol 2020; 27:937-952. [PMID: 32726586 PMCID: PMC7484133 DOI: 10.1016/j.chembiol.2020.07.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023]
Abstract
Serine hydrolases comprise a large family of enzymes that have diverse roles in key cellular processes, such as lipid metabolism, cell signaling, and regulation of post-translation modifications of proteins. They are also therapeutic targets for multiple human pathologies, including viral infection, diabetes, hypertension, and Alzheimer disease; however, few have well-defined substrates and biological functions. Activity-based probes (ABPs) have been used as effective tools to both profile activity and screen for selective inhibitors of serine hydrolases. One broad-spectrum ABP containing a fluorophosphonate electrophile has been used extensively to advance our understanding of diverse serine hydrolases. Due to the success of this single reagent, several robust chemistries have been developed to further diversify and tune the selectivity of ABPs used to target serine hydrolases. In this review, we highlight approaches to identify selective serine hydrolase ABPs and suggest new synthetic methodologies that could be applied to further advance probe development.
Collapse
Affiliation(s)
- Franco Faucher
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - John M Bennett
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Scott Lovell
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Kathman SG, Boshart J, Jing H, Cravatt BF. Blockade of the Lysophosphatidylserine Lipase ABHD12 Potentiates Ferroptosis in Cancer Cells. ACS Chem Biol 2020; 15:871-877. [PMID: 32195565 DOI: 10.1021/acschembio.0c00086] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ferroptosis is a type of cell death caused by the pathogenic accumulation of lipid hydroperoxides. Pharmacological mechanisms to induce ferroptosis may provide a way to kill cancer cells that are resistant to other forms of cell death like apoptosis. Nonetheless, the proteins that regulate ferroptotic sensitivity in cancer cells remain incompletely understood. Here, we screened a panel of inhibitors of serine hydrolases-an enzyme class important for regulating lipid metabolism-for potentiation of ferroptosis in HT1080 fibrosarcoma cells. We found that DO264, a selective inhibitor of the lyso- and ox-phosphatidylserine (PS) lipase ABHD12, enhances ferroptotic death caused by RSL3, an inhibitor of the lipid peroxidase GPX4. RSL3-induced ferroptosis was also potentiated by genetic disruption of ABHD12. Metabolomic experiments revealed that, in addition to elevated lyso-PS, ABHD12-inactivated cells show higher quantities of arachidonate (C20:4)-containing PS and 2-arachidonoyl glycerol, pointing to potential oxidation-sensitive lipid mediators of ferroptosis regulated by ABHD12.
Collapse
Affiliation(s)
- Stefan G. Kathman
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Julia Boshart
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Hui Jing
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Benjamin F. Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
19
|
Bua S, Lomelino C, Murray AB, Osman SM, ALOthman ZA, Bozdag M, Abdel-Aziz HA, Eldehna WM, McKenna R, Nocentini A, Supuran CT. "A Sweet Combination": Developing Saccharin and Acesulfame K Structures for Selectively Targeting the Tumor-Associated Carbonic Anhydrases IX and XII. J Med Chem 2019; 63:321-333. [PMID: 31794211 DOI: 10.1021/acs.jmedchem.9b01669] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The sweeteners saccharin (SAC) and acesulfame K (ACE) recently entered the topic of anticancer human carbonic anhydrase (CA, EC 4.2.1.1) inhibitors, as they showed to selectively inhibit the tumor-associated CAs IX/XII over ubiquitous CAs. A drug design strategy is here reported, which took SAC and ACE as leads and produced a series of 2H-benzo[e][1,2,4]thiadiazin-3(4H)-one-1,1-dioxides (BTD). Many derivatives showed greater potency (KIs-CA IX 19.1-408.5 nM) and selectivity (II/IX SI 2-76) than the leads (KIs-CA IX 103, 2400 nM; II/IX-SI 56, >4) against CA IX/XII over off-target isoforms. A thorough X-ray crystallographic study depicted their binding mode to both CA II and IX-mimic. The most representative BTDs were characterized in vitro for their antitumor activity against A549, PC-3, and HCT-116 cancer cell lines both in normoxia and hypoxia. The two most effective compounds were assayed for their effect on several apoptosis markers, identifying promising leads for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Silvia Bua
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Carrie Lomelino
- Department of Biochemistry and Molecular Biology , University of Florida , 1200 Newell Drive , Gainesville , Florida 32610 , United States
| | - Akilah B Murray
- Department of Biochemistry and Molecular Biology , University of Florida , 1200 Newell Drive , Gainesville , Florida 32610 , United States
| | - Sameh M Osman
- Chemistry Department, College of Science , King Saud University , PO Box 2455, Riyadh 11451 , Saudi Arabia
| | - Zeid A ALOthman
- Chemistry Department, College of Science , King Saud University , PO Box 2455, Riyadh 11451 , Saudi Arabia
| | - Murat Bozdag
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry , National Research Center , Dokki, Giza 12622 , Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Kafrelsheikh University , Kafrelsheikh 33516 , Egypt
| | - Robert McKenna
- Department of Biochemistry and Molecular Biology , University of Florida , 1200 Newell Drive , Gainesville , Florida 32610 , United States
| | - Alessio Nocentini
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| | - Claudiu T Supuran
- Department of NEUROFARBA, Section of Pharmaceutical and Nutraceutical Sciences , University of Florence , via Ugo Schiff 6 , 50019 Sesto Fiorentino, Florence , Italy
| |
Collapse
|
20
|
Wang C, Abegg D, Dwyer BG, Adibekian A. Discovery and Evaluation of New Activity‐Based Probes for Serine Hydrolases. Chembiochem 2019; 20:2212-2216. [DOI: 10.1002/cbic.201900126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Chao Wang
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Daniel Abegg
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Brendan G. Dwyer
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| | - Alexander Adibekian
- Department of ChemistryThe Scripps Research Institute 130 Scripps Way Jupiter FL 33418 USA
| |
Collapse
|
21
|
Tasker NR, Rastelli EJ, Blanco IK, Burnett JC, Sharlow ER, Lazo JS, Wipf P. In-flow photooxygenation of aminothienopyridinones generates iminopyridinedione PTP4A3 phosphatase inhibitors. Org Biomol Chem 2019; 17:2448-2466. [PMID: 30746541 DOI: 10.1039/c9ob00025a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A continuous flow photooxygenation of 7-aminothieno[3,2-c]pyridin-4(5H)-ones to produce 7-iminothieno[3,2-c]pyridine-4,6(5H,7H)-diones has been developed, utilizing ambient air as the sole reactant. N-H Imines are formed as the major products, and excellent functional group tolerance and conversion on gram-scale without the need for chromatographic purification allow for facile late-stage diversification of the aminothienopyridinone scaffold. Several analogs exhibit potent in vitro inhibition of the cancer-associated protein tyrosine phosphatase PTP4A3, and the SAR supports an exploratory docking model.
Collapse
Affiliation(s)
- Nikhil R Tasker
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | | | | | | | | | | | |
Collapse
|