1
|
Algera RF, Tcyrulnikov S, Reyes GP. Mechanism-Based Regiocontrol in S NAr: A Case Study of Ortho-Selective Etherification with Chloromagnesium Alkoxides. J Am Chem Soc 2024. [PMID: 39358201 DOI: 10.1021/jacs.4c07427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Although nucleophilic aromatic substitution (SNAr) is routinely employed as a practical alternative to transition-metal-catalyzed cross-coupling, the mechanistic basis for reactivity and regioselectivity remains underexplored and is an active area of research. This article reports a SNAr-based etherification of 2,4-difluoroarylcarboxamides as a model system and shows that the ortho/para regioselectivity spans >500:1 to 1:∼20 simply by varying the reaction conditions via high-throughput experimentation (HTE). An in-depth characterization of the ortho-selective lead conditions is presented, and these insights are used to build a reactivity model that self-consistently accounts for the regioselectivity and reaction scope. This article discusses synthetic implications of condition-dependent magnesium coordination and Schlenk equilibria and demonstrates that consideration of molecular-level stoichiometry and isomerism is an essential prerequisite for rationalizing reactivity and regioselectivity in SNAr.
Collapse
Affiliation(s)
- Russell F Algera
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Giselle P Reyes
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
2
|
Spivey JA, Collum DB. Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures. J Am Chem Soc 2024; 146:17827-17837. [PMID: 38901126 PMCID: PMC11373885 DOI: 10.1021/jacs.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N-29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N',N'-Tetramethylethylenediamine and N,N,N',N'-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at -80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.
Collapse
Affiliation(s)
- Jesse A Spivey
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
3
|
Anderson DE, Tortajada A, Hevia E. Highly Reactive Hydrocarbon Soluble Alkylsodium Reagents for Benzylic Aroylation of Toluenes using Weinreb Amides. Angew Chem Int Ed Engl 2023; 62:e202218498. [PMID: 36636916 DOI: 10.1002/anie.202218498] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Deaggregating the alkyl sodium NaCH2 SiMe3 with polydentate nitrogen ligands enables the preparation and characterisation of new, hydrocarbon soluble chelated alkylsodium reagents. Equipped with significantly enhanced metalating power over their organolithium counterparts, these systems can promote controlled sodiation of weakly acidic benzylic C-H bonds from a series of toluene derivatives under mild stoichiometric conditions. This has been demonstrated through the benzylic aroylation of toluenes with Weinreb amides, that delivers a wide range of 2-arylacetophenones in good to excellent yields. Success in isolating and determining the structures of key organometallic intermediates has provided useful mechanistic insight into these new sodium-mediated transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
4
|
Lui NM, MacMillan SN, Collum DB. Lithiated Oppolzer Enolates: Solution Structures, Mechanism of Alkylation, and Origin of Stereoselectivity. J Am Chem Soc 2022; 144:23379-23395. [PMID: 36534055 PMCID: PMC10071589 DOI: 10.1021/jacs.2c09341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Camphorsultam-based lithium enolates referred to colloquially as Oppolzer enolates are examined spectroscopically, crystallographically, kinetically, and computationally to ascertain the mechanism of alkylation and the origin of the stereoselectivity. Solvent- and substrate-dependent structures include tetramers for alkyl-substituted enolates in toluene, unsymmetric dimers for aryl-substituted enolates in toluene, substrate-independent symmetric dimers in THF and THF/toluene mixtures, HMPA-bridged trisolvated dimers at low HMPA concentrations, and disolvated monomers for the aryl-substituted enolates at elevated HMPA concentrations. Extensive analyses of the stereochemistry of aggregation are included. Rate studies for reaction with allyl bromide implicate an HMPA-solvated ion pair with a +Li(HMPA)4 counterion. Dependencies on toluene and THF are attributed to exclusively secondary-shell (medium) effects. Aided by density functional theory (DFT) computations, a stereochemical model is presented in which neither chelates nor the lithium gegenion serves roles. The stereoselectivity stems from the chirality within the sultam ring and not the camphor skeletal core.
Collapse
Affiliation(s)
- Nathan M Lui
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University Ithaca, New York 14853-1301, United States
| |
Collapse
|
5
|
Harenberg JH, Reddy Annapureddy R, Karaghiosoff K, Knochel P. Continuous Flow Preparation of Benzylic Sodium Organometallics. Angew Chem Int Ed Engl 2022; 61:e202203807. [PMID: 35416397 PMCID: PMC9400861 DOI: 10.1002/anie.202203807] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 12/14/2022]
Abstract
We report a lateral sodiation of alkyl(hetero)arenes using on-demand generated hexane-soluble (2-ethylhexyl)sodium (1) in the presence of TMEDA. (2-Ethylhexyl)sodium (1) is prepared via a sodium packed-bed reactor and used for metalations at ambient temperature in batch as well as in continuous flow. The resulting benzylic sodium species are subsequently trapped with various electrophiles including carbonyl compounds, epoxides, oxetane, allyl/benzyl chlorides, alkyl halides and alkyl tosylates. Wurtz-type couplings with secondary alkyl halides and tosylates proceed under complete inversion of stereochemistry. Furthermore, the utility of this lateral sodiation is demonstrated in the synthesis of pharmaceutical relevant compounds. Thus, fingolimod is prepared from p-xylene applying the lateral sodiation twice. In addition, 7-fold isotopically labeled salmeterol-d7 and fenpiprane as well as precursors to super linear alkylbenzene (SLAB) surfactants are prepared.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | | | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstraße 5–13, Haus F81377MünchenGermany
| |
Collapse
|
6
|
Bole LJ, Tortajada A, Hevia E. Enhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications. Angew Chem Int Ed Engl 2022; 61:e202204262. [PMID: 35420221 PMCID: PMC9323492 DOI: 10.1002/anie.202204262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 12/12/2022]
Abstract
Though LiTMP (TMP=2,2',6,6'-tetramethylpiperidide) is a commonly used amide, surprisingly the heavier NaTMP has hardly been utilised. Here, by mixing NaTMP with tridentate donor PMDETA (N,N,N',N'',N''-pentamethyldiethylenetriamine), we provide structural, and mechanistic insights into the sodiation of non-activated arenes (e.g. anisole and benzene). While these reactions are low yielding, adding B(OiPr)3 has a profound effect, not only by intercepting the CAr -Na bond, but also by driving the metalation reaction towards quantitative formation of more stabilized sodium aryl boronates. Demonstrating its metalating power, regioselective C2-metalation/borylation of naphthalene has been accomplished contrasting with single-metal based protocols which are unselective and low yielding. Extension to other arenes allows for in situ generation of aryl boronates which can then directly engage in Suzuki-Miyaura couplings, furnishing a range of biaryls in a selective and efficient manner.
Collapse
Affiliation(s)
- Leonie J. Bole
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Andreu Tortajada
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und PharmazieUniversität BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
7
|
Bole L, Tortajada A, Hevia E. Enhancing Metalating Efficiency of the Sodium Amide NaTMP in Arene Borylation Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Leonie Bole
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Andreu Tortajada
- Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences SWITZERLAND
| | - Eva Hevia
- Universitat Bern Department of Chemistry and Biochemistry Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
8
|
Harenberg JH, Annapureddy RR, Karaghiosoff K, Knochel P. Continuous Flow Preparation of Benzylic Sodium Organometallics. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | | | - Paul Knochel
- Ludwig-Maximilians-Universitat Munchen Department of Chemistry Butenandtstr. 5-13 81377 München GERMANY
| |
Collapse
|
9
|
Ma Y, Woltornist RA, Algera RF, Collum DB. Reactions of Sodium Diisopropylamide: Liquid-Phase and Solid-Liquid Phase-Transfer Catalysis by N, N, N', N″, N″-Pentamethyldiethylenetriamine. J Am Chem Soc 2021; 143:13370-13381. [PMID: 34375095 PMCID: PMC10042303 DOI: 10.1021/jacs.1c06528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium diisopropylamide (NaDA) in N,N-dimethylethylamine (DMEA) and DMEA-hydrocarbon mixtures with added N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA) reacts with alkyl halides, epoxides, hydrazones, arenes, alkenes, and allyl ethers. Comparisons of PMDTA with N,N,N',N'-tetramethylethylenediamine (TMEDA) accompanied by detailed rate and computational studies reveal the importance of the trifunctionality and κ2-κ3 hemilability. Rate studies show exclusively monomer-based reactions of 2-bromooctane, cyclooctene oxide, and dimethylresorcinol. Catalysis with 10 mol % PMDTA shows up to >30-fold accelerations (kcat > 300) with no evidence of inhibition over 10 turnovers. Solid-liquid phase-transfer catalysis (SLPTC) is explored as a means to optimize the catalysis as well as explore the merits of heterogeneous reaction conditions.
Collapse
Affiliation(s)
- Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Ryan A. Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Russell F. Algera
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| |
Collapse
|
10
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2-Ethylhexyl)sodium: A Hexane-Soluble Reagent for Br/Na-Exchanges and Directed Metalations in Continuous Flow. Angew Chem Int Ed Engl 2021; 60:14296-14301. [PMID: 33826212 PMCID: PMC8252725 DOI: 10.1002/anie.202103031] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Indexed: 12/14/2022]
Abstract
We report the on-demand generation of hexane-soluble (2-ethylhexyl)sodium (1) from 3-(chloromethyl)heptane (2) using a sodium-packed-bed reactor under continuous flow conditions. Thus, the resulting solution of 1 is free of elemental sodium and therefore suited for a range of synthetic applications. This new procedure avoids the storage of an alkylsodium and limits the handling of metallic sodium to a minimum. (2-Ethylhexyl)sodium (1) proved to be a very useful reagent and undergoes in-line Br/Na-exchanges as well as directed sodiations. The resulting arylsodium intermediates are subsequently trapped in batch with various electrophiles such as ketones, aldehydes, Weinreb-amides, imines, allyl bromides, disulfides and alkyl iodides. A reaction scale-up of the Br/Na-exchange using an in-line electrophile quench was also reported.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Alexander J. Wiegand
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Carla A. Hoefer
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | | | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
11
|
Harenberg JH, Weidmann N, Wiegand AJ, Hoefer CA, Annapureddy RR, Knochel P. (2‐Ethylhexyl)natrium: Ein hexanlösliches Reagenz für Br/Na‐Austauschreaktionen und dirigierte Metallierungen im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Alexander J. Wiegand
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Carla A. Hoefer
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Rajasekar Reddy Annapureddy
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
12
|
Gentner TX, Mulvey RE. Alkali-Metal Mediation: Diversity of Applications in Main-Group Organometallic Chemistry. Angew Chem Int Ed Engl 2021; 60:9247-9262. [PMID: 33017511 PMCID: PMC8247348 DOI: 10.1002/anie.202010963] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/23/2022]
Abstract
Organolithium compounds have been at the forefront of synthetic chemistry for over a century, as they mediate the synthesis of myriads of compounds that are utilised worldwide in academic and industrial settings. For that reason, lithium has always been the most important alkali metal in organometallic chemistry. Today, that importance is being seriously challenged by sodium and potassium, as the alkali-metal mediation of organic reactions in general has started branching off in several new directions. Recent examples covering main-group homogeneous catalysis, stoichiometric organic synthesis, low-valent main-group metal chemistry, polymerization, and green chemistry are showcased in this Review. Since alkali-metal compounds are often not the end products of these applications, their roles are rarely given top billing. Thus, this Review has been written to alert the community to this rising unifying phenomenon of "alkali-metal mediation".
Collapse
Affiliation(s)
- Thomas X. Gentner
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Robert E. Mulvey
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
13
|
Kremsmair A, Harenberg JH, Schwärzer K, Hess A, Knochel P. Preparation and reactions of polyfunctional magnesium and zinc organometallics in organic synthesis. Chem Sci 2021; 12:6011-6019. [PMID: 33995997 PMCID: PMC8098701 DOI: 10.1039/d1sc00685a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
Polyfunctional organometallics of magnesium and zinc are readily prepared from organic halides via a direct metal insertion in the presence of LiCl or a Br/Mg-exchange using iPrMgCl·LiCl (turbo-Grignard) or related reagents. Alternatively, such functionalized organometallics are prepared by metalations with TMP-bases (TMP = 2,2,6,6-tetramethylpiperidyl). The scope of these methods is described as well as applications in new Co- or Fe-catalyzed cross-couplings or aminations. It is shown that the use of a continous flow set-up considerably expands the field of applications of these methods and further allows the preparation of highly reactive organosodium reagents.
Collapse
Affiliation(s)
- Alexander Kremsmair
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Johannes H Harenberg
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Kuno Schwärzer
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Andreas Hess
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| | - Paul Knochel
- Department of Chemistry, Ludwig-Maximilans-Universität München Butenandtstraße 5-13 81377 München Germany
| |
Collapse
|
14
|
Kottisch V, Jermaks J, Mak JY, Woltornist RA, Lambert TH, Fors BP. Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angew Chem Int Ed Engl 2021; 60:4535-4539. [PMID: 33137229 PMCID: PMC8145790 DOI: 10.1002/anie.202013419] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Indexed: 12/20/2022]
Abstract
The synthesis of high-molecular-weight poly(vinyl ethers) under mild conditions is a significant challenge, since cationic polymerization reactions are highly sensitive to chain-transfer and termination events. We identified a novel and highly effective hydrogen bond donor (HBD)-organic acid pair that can facilitate controlled cationic polymerization of vinyl ethers under ambient conditions with excellent monomer compatibility. Poly(vinyl ethers) of molar masses exceeding 50 kg mol-1 can be produced within 1 h without elaborate reagent purification. Modification of the HBD structure allowed tuning of the polymerization rate, while DFT calculations helped elucidate crucial intermolecular interactions between the HBD, organic acid, and polymer chain end.
Collapse
Affiliation(s)
- Veronika Kottisch
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Joe-Yee Mak
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Tristan H Lambert
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Baker Lab, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
15
|
Woltornist RA, Collum DB. Aggregation and Solvation of Sodium Hexamethyldisilazide: Across the Solvent Spectrum. J Org Chem 2021; 86:2406-2422. [PMID: 33471993 PMCID: PMC8011853 DOI: 10.1021/acs.joc.0c02546] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report solution structures of sodium hexamethyldisilazide (NaHMDS) solvated by >30 standard solvents (ligands). These include: toluene, benzene, and styrene; triethylamine and related trialkylamines; pyrrolidine as a representative dialkylamine; dialkylethers including THF, tert-butylmethyl ether, and diethyl ether; dipolar ligands such as DMF, HMPA, DMSO, and DMPU; a bifunctional dipolar ligand nonamethylimidodiphosphoramide (NIPA); polyamines N,N,N',N'-tetramethylenediamine (TMEDA), N,N,N',N″,N″-pentamethyldiethylenetriamine (PMDTA), N,N,N',N'-tetramethylcyclohexanediamine (TMCDA), and 2,2'-bipyridine; polyethers 12-crown-4, 15-crown-5, 18-crown-6, and diglyme; 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]hexacosane ([2.2.2] cryptand); and tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1). Combinations of 1H, 13C, 15N, and 29Si NMR spectroscopies, the method of continuous variations, X-ray crystallography, and density functional theory (DFT) computations reveal ligand-modulated aggregation to give mixtures of dimers, monomers, triple ions, and ion pairs. 15N-29Si coupling constants distinguish dimers and monomers. Solvation numbers are determined by a combination of solvent titrations, observed free and bound solvent in the slow exchange limit, and DFT computations. The relative abilities of solvents to compete in binary mixtures often match that predicted by conventional wisdom but with some exceptions and evidence of both competitive and cooperative (mixed) solvation. Crystal structures of a NaHMDS cryptate ion pair and a 15-crown-5-solvated monomer are included. Results are compared with those for lithium hexamethyldisilazide, lithium diisopropylamide, and sodium diisopropylamide.
Collapse
Affiliation(s)
- Ryan A Woltornist
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
16
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Continuous Flow Sodiation of Substituted Acrylonitriles, Alkenyl Sulfides and Acrylates. Angew Chem Int Ed Engl 2021; 60:731-735. [PMID: 33026681 PMCID: PMC7821005 DOI: 10.1002/anie.202012085] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The sodiation of substituted acrylonitriles and alkenyl sulfides in a continuous flow set-up using NaDA (sodium diisopropylamide) in EtNMe2 or NaTMP (sodium 2,2,6,6-tetramethylpiperidide)⋅TMEDA in n-hexane provides sodiated acrylonitriles and alkenyl sulfides, which are subsequently trapped in batch with various electrophiles such as aldehydes, ketones, disulfides and allylic bromides affording functionalized acrylonitriles and alkenyl sulfides. This flow-procedure was successfully extended to other acrylates by using Barbier-type conditions.
Collapse
Affiliation(s)
- Johannes H. Harenberg
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Niels Weidmann
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Konstantin Karaghiosoff
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Paul Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
17
|
Kottisch V, Jermaks J, Mak J, Woltornist RA, Lambert TH, Fors BP. Hydrogen Bond Donor Catalyzed Cationic Polymerization of Vinyl Ethers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202013419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Veronika Kottisch
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Joe‐Yee Mak
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Ryan A. Woltornist
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Tristan H. Lambert
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| | - Brett P. Fors
- Department of Chemistry and Chemical Biology Baker Lab Cornell University Ithaca NY 14853 USA
| |
Collapse
|
18
|
Gentner TX, Mulvey RE. Alkalimetall‐Mediatoren: Vielfältige Anwendungen in der metallorganischen Chemie der Hauptgruppenelemente. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010963] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas X. Gentner
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| | - Robert E. Mulvey
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| |
Collapse
|
19
|
Harenberg JH, Weidmann N, Karaghiosoff K, Knochel P. Natriierung von Substituierten Acrylonitrilen, Alkenylsulfiden und Acrylaten im Kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012085] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Johannes H. Harenberg
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Niels Weidmann
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Konstantin Karaghiosoff
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Department Chemie Ludwig-Maximilians-Universität München Butenandtstrasse 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
20
|
Woltornist RA, Ma Y, Algera RF, Zhou Y, Zhang Z, Collum DB. Structure, Reactivity, and Synthetic Applications of Sodium Diisopropylamide. SYNTHESIS-STUTTGART 2020; 52:1478-1497. [PMID: 34349297 PMCID: PMC8330442 DOI: 10.1055/s-0039-1690846] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The 60-year history of sodium diisopropylamide (NaDA) is described herein. We review various preparations, solvent-dependent stabilities, and solution structures. Synthetic applications of NaDA reported to date are framed by a mechanism-driven approach, emphasizing selectivities when appropriate. We conclude with examples beyond metalation in which NaDA plays a central role and a few thoughts on where future applications could be focused.
Collapse
Affiliation(s)
- Ryan A. Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - Russell F. Algera
- Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yuhui Zhou
- Frontage Laboratories, Inc., 75 E Uwchlan Avenue, Suite 100, Exton, PA, 19341
| | - Zirong Zhang
- Department of Chemistry, University of Michigan, CHEM 3614 930 North University Ave, Ann Arbor, MI, 48109
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| |
Collapse
|
21
|
Gu Y, Duan Y, Shen Y, Martin R. Stereoselective Base‐Catalyzed 1,1‐Silaboration of Terminal Alkynes. Angew Chem Int Ed Engl 2020; 59:2061-2065. [DOI: 10.1002/anie.201913544] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Yiting Gu
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Yangyang Shen
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
22
|
Gu Y, Duan Y, Shen Y, Martin R. Stereoselective Base‐Catalyzed 1,1‐Silaboration of Terminal Alkynes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yiting Gu
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Yaya Duan
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Yangyang Shen
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ)The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Passeig Lluïs Companys, 23 08010 Barcelona Spain
| |
Collapse
|
23
|
Zhou Y, Keresztes I, MacMillan SN, Collum DB. Disodium Salts of Pseudoephedrine-Derived Myers Enolates: Stereoselectivity and Mechanism of Alkylation. J Am Chem Soc 2019; 141:16865-16876. [PMID: 31613094 DOI: 10.1021/jacs.9b08176] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pseudoephedrine-derived dianionic Myers enolates were generated using sodium diisopropylamide (NaDA) in THF solution. The reactivities and selectivities of the disodium salts largely mirror those of the dilithium salts but without the requisite large excesses of inorganic salts (LiCl) or mandated dilute solutions. The disodium salts require careful control of temperature to preclude deleterious aggregate aging effects traced to changes in the aggregate structure and intervening O-alkylations. Structural studies and density functional theory (DFT) computations show a dominant highly symmetric polyhedron quite different from the lithium analogue. No enolate-NaDA mixed aggregates are observed with excess NaDA. Rate studies show an alkylation mechanism involving an intervening tetramer-monomer pre-equilibrium followed by rate-limiting alkylation of tetrasolvated monomers. DFT computations were conducted to explore the possible influences on stereochemistry. A crystal deriving from samples aged at ambient temperature contains six dianionic subunits and two monoanionic (alkoxide-only) subunits. A new preparation of concentrated solutions of NaDA in THF solution is described.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| |
Collapse
|
24
|
Ma Y, Algera RF, Woltornist RA, Collum DB. Sodium Diisopropylamide-Mediated Dehydrohalogenations: Influence of Primary- and Secondary-Shell Solvation. J Org Chem 2019; 84:10860-10869. [PMID: 31436099 PMCID: PMC6737842 DOI: 10.1021/acs.joc.9b01428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Eliminations of alkyl
halides by sodium diisopropylamide (NaDA)
in tetrahydrofuran (THF)/hexane or THF/N,N-dimethylethylamine
(DMEA) solutions are facile
and complementary to analogous reactions of lithium diisopropylamide
in THF. Rate studies show a dominance of monomer-based metalations
and prevalent secondary-shell solvation effects overlaid on primary-shell
effects. 1-Halooctanes exclusively undergo elimination rather than
substitution. Rate and isotopic labeling studies on 1-bromooctane
reveal an E2-like elimination pathway via trisolvated NaDA monomer.
By contrast, 1-chlorooctane is eliminated via disolvated monomer through
a carbenoid mechanism. exo-2-Norbornyl chloride and
bromide are also eliminated via disolvated monomer; a syn E2 mechanism
is inferred for these substrates. The cis- and trans-4-tert-butylcyclohexyl bromides show
a preference for the elimination of the cis isomer (kcis/ax/ktrans/eq = 10). Rate
and isotopic labeling studies are consistent with a trans-diaxial
E2 elimination via trisolvated monomer for the cis isomer and a carbenoid
mechanism via disolvated monomer for the trans isomer. Vicinal haloethers
show substrate-dependent reactivities, affording alkynes and enol
ethers. trans-1-Bromo-2-methoxycyclohexane provides
enol ether 1-methoxycyclohexene, while trans-1-bromo-2-methoxycyclooctane
provides dimeric products consistent with fleeting cycloocta-1,2-diene
(cyclic allene), which was fully characterized as two conformers.
Collapse
Affiliation(s)
- Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Russell F Algera
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| |
Collapse
|
25
|
Ma Y, Woltornist RA, Algera RF, Collum DB. Aryl Carbamates: Mechanisms of Orthosodiations and Snieckus-Fries Rearrangements. J Org Chem 2019; 84:9051-9057. [PMID: 31257864 DOI: 10.1021/acs.joc.9b00968] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aryl carbamates are orthometalated by sodium diisopropylamide (NaDA) in tetrahydrofuran. The resulting arylsodiums undergo Snieckus-Fries rearrangement to give orthoacylated phenols in good yield. The intermediate arylsodiums and resulting orthoacylated phenolates are suggested to be monomeric. The rate-limiting step in the two-step sequence depends on the steric demands of the carbamoyl moiety and the substituents in the meta position of the arene. Rate studies reveal a dominant disolvated-monomer-based orthometalation followed by a di- or trisolvated arylsodium monomer-based rearrangement. Kinetic evidence of a NaDA-catalyzed Snieckus-Fries rearrangement suggests the intermediacy of mixed trimers. Competitive halide eliminations to form benzyne are also discussed.
Collapse
Affiliation(s)
- Yun Ma
- Department of Chemistry and Chemical Biology Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Ryan A Woltornist
- Department of Chemistry and Chemical Biology Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - Russell F Algera
- Department of Chemistry and Chemical Biology Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| | - David B Collum
- Department of Chemistry and Chemical Biology Baker Laboratory , Cornell University , Ithaca , New York 14853-1301 , United States
| |
Collapse
|
26
|
Han Z, Chen S, Tu Y, Lian X, Li G. Fluoroform: an Efficient Precursor for the Trifluoromethylation of Aromatic Esters by Sodium Diisopropylamide with Trialkylamines. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhaomeng Han
- Department of Research and Development; Shanghai Qixun medical technology co. LTD; 4nd floor, Building 9, 500 Furonghua Road 200321 Shanghai China
| | - Sihan Chen
- Department of Research and Development; Shanghai Qixun medical technology co. LTD; 4nd floor, Building 9, 500 Furonghua Road 200321 Shanghai China
| | - Yongjun Tu
- Department of Research and Development; Shanghai Qixun medical technology co. LTD; 4nd floor, Building 9, 500 Furonghua Road 200321 Shanghai China
| | - Xiongdong Lian
- Department of Research and Development; Shanghai Qixun medical technology co. LTD; 4nd floor, Building 9, 500 Furonghua Road 200321 Shanghai China
| | - Gongyong Li
- Department of Research and Development; Shanghai Qixun medical technology co. LTD; 4nd floor, Building 9, 500 Furonghua Road 200321 Shanghai China
| |
Collapse
|
27
|
Asako S, Kodera M, Nakajima H, Takai K. Lithium‐Free Synthesis of Sodium 2,2,6,6‐Tetramethylpiperidide and Its Synthetic Applications. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900215] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sobi Asako
- Division of Applied Chemistry, Graduate School of Natural Science and TechnologyOkayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
- Present Address: RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako Saitama 351-0198 Japan
| | - Masato Kodera
- Division of Applied Chemistry, Graduate School of Natural Science and TechnologyOkayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Hirotaka Nakajima
- Division of Applied Chemistry, Graduate School of Natural Science and TechnologyOkayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and TechnologyOkayama University 3-1-1 Tsushimanaka, Kita-ku Okayama 700-8530 Japan
| |
Collapse
|
28
|
Zhou Y, Jermaks J, Keresztes I, MacMillan SN, Collum DB. Pseudophedrine-Derived Myers Enolates: Structures and Influence of Lithium Chloride on Reactivity and Mechanism. J Am Chem Soc 2019; 141:5444-5460. [PMID: 30896939 PMCID: PMC7079698 DOI: 10.1021/jacs.9b00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structures and reactivities of pseudoephedrine-derived dianionic Myers enolates are examined. A combination of NMR and IR spectroscopic, crystallographic, and computational data reveal that the homoaggregated dianions form octalithiated tetramers displaying S4-symmetric Li8O8 cores and overall C2 symmetry. Computational and isotopic labeling studies reveal strong N-Li contacts in the carboxamide enolate moiety. The method of continuous variations proves deceptive, as octalithiated tetrameric homoaggregates afford hexalithiated trimeric heteroaggregates. A lithium diisopropylamide-lithium enolate mixed aggregate is found to be a C2-symmetric hexalithiated species incorporating two enolate dianions and two lithium diisopropylamide (LDA) subunits. Structural and rate studies show that lithium chloride has little effect on the dynamics of the enolate homoaggregates but forms adducts of unknown structure. Rate studies of alkylations indicate that the aging of the aggregates can have effects spanning orders of magnitude. The LiCl-enolate adduct dramatically accelerates the reaction but requires superstoichiometric quantities owing to putative autoinhibition. Efforts and progress toward eliminating the requisite large excess of LiCl are discussed.
Collapse
Affiliation(s)
- Yuhui Zhou
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - Janis Jermaks
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - Ivan Keresztes
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - Samantha N. MacMillan
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell
University, Ithaca, New York 14853–1301
| |
Collapse
|
29
|
Huffman TR, Wu Y, Emmerich A, Shenvi RA. Intermolecular Heck Coupling with Hindered Alkenes Directed by Potassium Carboxylates. Angew Chem Int Ed Engl 2019; 58:2371-2376. [PMID: 30602064 DOI: 10.1002/anie.201813233] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/31/2018] [Indexed: 12/31/2022]
Abstract
Pd0 -catalyzed Mizoroki-Heck reactions traditionally exhibit poor reactivity with polysubstituted, unbiased alkenes. Intermolecular reactions with simple, all-carbon tetrasubstituted alkenes are unprecedented. Herein we report that pendant carboxylic acids, combined with bulky monophospine ligands on palladium, can direct the arylation of tri- and tetrasubstituted olefins. Quaternary carbons are established at high Fsp3 attached-ring junctures and the carboxylate directing group can be removed after coupling. Carboxylate directivity prevents over-arylation of the new, less substituted alkene, which can be diversified in subsequent reactions.
Collapse
Affiliation(s)
- Tucker R Huffman
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Yebin Wu
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Alexis Emmerich
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Ryan A Shenvi
- Department of Chemistry, The Scripps Research Institute (TSRI), 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
30
|
Huffman TR, Wu Y, Emmerich A, Shenvi RA. Intermolecular Heck Coupling with Hindered Alkenes Directed by Potassium Carboxylates. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tucker R. Huffman
- Department of Chemistry; The Scripps Research Institute (TSRI); 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Yebin Wu
- Department of Chemistry; The Scripps Research Institute (TSRI); 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Alexis Emmerich
- Department of Chemistry; The Scripps Research Institute (TSRI); 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Ryan A. Shenvi
- Department of Chemistry; The Scripps Research Institute (TSRI); 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
31
|
Zhang Z, Collum DB. Structures and Reactivities of Sodiated Evans Enolates: Role of Solvation and Mixed Aggregation on the Stereochemistry and Mechanism of Alkylations. J Am Chem Soc 2019; 141:388-401. [PMID: 30462500 PMCID: PMC7185956 DOI: 10.1021/jacs.8b10364] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oxazolidinone-based sodiated enolates (Evans enolates) were generated using sodium diisopropylamide (NaDA) or sodium hexamethyldisilazide (NaHMDS) in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA), ( R,R)- trans- N,N,N',N'-tetramethylcyclohexanediamine [( R,R)-TMCDA], or ( S,S)-TMCDA. 13C NMR spectroscopic analysis in conjunction with the method of continuous variations (MCV), x-ray crystallography, and density functional theory (DFT) computations revealed the enolates to be octahedral bis-diamine-chelated monomers. Rate and computational studies of an alkylation with allyl bromide implicate a bis-diamine-chelated-monomer-based transition structure. The sodiated Evans enolates form mixed dimers with NaHMDS, NaDA, or sodium 2,6-di- tert-butylphenolate, the reactivities of which are examined. Stereoselective quaternizations, aldol additions, and azaaldol additions are described.
Collapse
Affiliation(s)
- Zirong Zhang
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| | - David B. Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853–1301
| |
Collapse
|
32
|
Gu Y, Shen Y, Zarate C, Martin R. A Mild and Direct Site-Selective sp2 C–H Silylation of (Poly)Azines. J Am Chem Soc 2018; 141:127-132. [DOI: 10.1021/jacs.8b12063] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yiting Gu
- Institute of Chemical
Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Yangyang Shen
- Institute of Chemical
Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Cayetana Zarate
- Institute of Chemical
Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, c/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Ruben Martin
- Institute of Chemical
Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
33
|
Weidmann N, Ketels M, Knochel P. Natriierung von Aromaten und Heteroaromaten im kontinuierlichen Durchfluss. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803961] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Niels Weidmann
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Marthe Ketels
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| | - Paul Knochel
- Ludwig-Maximilians-Universität MünchenDepartment Chemie Butenandtstraße 5–13, Haus F 81377 München Deutschland
| |
Collapse
|
34
|
Weidmann N, Ketels M, Knochel P. Sodiation of Arenes and Heteroarenes in Continuous Flow. Angew Chem Int Ed Engl 2018; 57:10748-10751. [PMID: 29873427 DOI: 10.1002/anie.201803961] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The first sodiations of (hetero)arenes in continuous flow using NaDA (sodium diisopropylamide) in Me2 EtN are reported. This flow procedure enables sodiation of functionalized arenes and heteroarenes that decompose under batch-sodiation conditions. The resulting sodiated (hetero)arenes react instantly with various electrophiles, such as ketones, aldehydes, isocyanates, alkyl bromides, and disulfides, affording polyfunctionalized (hetero)arenes in high yields. Scale-up is possible without further optimization.
Collapse
Affiliation(s)
- Niels Weidmann
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Marthe Ketels
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| | - Paul Knochel
- Ludwig-Maximilians-Universität München, Department Chemie, Butenandtstrasse 5-13, Haus F, 81377, München, Germany
| |
Collapse
|
35
|
Bookser BC, Weinhouse MI, Burns AC, Valiere AN, Valdez LJ, Stanczak P, Na J, Rheingold AL, Moore CE, Dyck B. Solvent-Controlled, Site-Selective N-Alkylation Reactions of Azolo-Fused Ring Heterocycles at N1-, N2-, and N3-Positions, Including Pyrazolo[3,4-d]pyrimidines, Purines, [1,2,3]Triazolo[4,5]pyridines, and Related Deaza-Compounds. J Org Chem 2018; 83:6334-6353. [DOI: 10.1021/acs.joc.8b00540] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
| | | | | | | | | | | | | | - Arnold L. Rheingold
- Department of Chemistry, Crystallography Laboratory, University of California, San Diego, Urey Hall 5128, mail code 0358, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | - Curtis E. Moore
- Department of Chemistry, Crystallography Laboratory, University of California, San Diego, Urey Hall 5128, mail code 0358, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| | | |
Collapse
|
36
|
Algera RF, Ma Y, Collum DB. Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Arene Metalations. J Am Chem Soc 2017; 139:15197-15204. [PMID: 28946744 DOI: 10.1021/jacs.7b08734] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Sodium diisopropylamide (NaDA)-mediated metalations of arenes in tetrahydrofuran (THF)/hexane or THF/Me2NEt solutions are described. A survey of >40 benzenoid- and pyridine-based arenes with a range of substituents demonstrates the efficacy and regioselectivity of metalation. Metalations of activated disubstituted arenes and selected monosubstituted arenes are rapid at -78 °C. Rate studies of 1,3-dimethoxybenzene and related methoxylated arenes show exclusively monomer-based orthometalations with two or three coordinated THF ligands. Rate studies of the isotopic exchange of benzene and monosubstituted arenes with weakly activating groups reveal analogous di- and trisolvated monomer-based metalations. Cooperative inductive, mesomeric, steric, and chelate effects are discussed.
Collapse
Affiliation(s)
- Russell F Algera
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| |
Collapse
|
37
|
Algera RF, Ma Y, Collum DB. Sodium Diisopropylamide in Tetrahydrofuran: Selectivities, Rates, and Mechanisms of Alkene Isomerizations and Diene Metalations. J Am Chem Soc 2017; 139:11544-11549. [PMID: 28735535 PMCID: PMC6059566 DOI: 10.1021/jacs.7b05218] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sodium diisopropylamide in tetrahydrofuran is an effective base for the metalation of 1,4-dienes and isomerization of alkenes. Dienes metalate via tetrasolvated sodium amide monomers, whereas 1-pentene is isomerized by trisolvated monomers. Facile, highly Z-selective isomerizations are observed for allyl ethers under conditions that compare favorably to those of existing protocols. The selectivity is independent of the substituents on the allyl ethers; rate and computational data show that the rates, mechanisms, and roles of sodium-oxygen contacts are substituent-dependent. The competing influences of substrate coordination and solvent coordination to sodium are discussed.
Collapse
Affiliation(s)
- Russell F Algera
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - Yun Ma
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University , Ithaca, New York 14853-1301, United States
| |
Collapse
|