1
|
Liu X, Zheng X. Microfluidic-Based Electrical Operation and Measurement Methods in Single-Cell Analysis. SENSORS (BASEL, SWITZERLAND) 2024; 24:6359. [PMID: 39409403 PMCID: PMC11478560 DOI: 10.3390/s24196359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024]
Abstract
Cellular heterogeneity plays a significant role in understanding biological processes, such as cell cycle and disease progression. Microfluidics has emerged as a versatile tool for manipulating single cells and analyzing their heterogeneity with the merits of precise fluid control, small sample consumption, easy integration, and high throughput. Specifically, integrating microfluidics with electrical techniques provides a rapid, label-free, and non-invasive way to investigate cellular heterogeneity at the single-cell level. Here, we review the recent development of microfluidic-based electrical strategies for single-cell manipulation and analysis, including dielectrophoresis- and electroporation-based single-cell manipulation, impedance- and AC electrokinetic-based methods, and electrochemical-based single-cell detection methods. Finally, the challenges and future perspectives of the microfluidic-based electrical techniques for single-cell analysis are proposed.
Collapse
Affiliation(s)
| | - Xiaolin Zheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| |
Collapse
|
2
|
Yao J, Zhao K, Lou J, Zhang K. Recent Advances in Dielectrophoretic Manipulation and Separation of Microparticles and Biological Cells. BIOSENSORS 2024; 14:417. [PMID: 39329792 PMCID: PMC11429840 DOI: 10.3390/bios14090417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024]
Abstract
Dielectrophoresis (DEP) is an advanced microfluidic manipulation technique that is based on the interaction of polarized particles with the spatial gradient of a non-uniform electric field to achieve non-contact and highly selective manipulation of particles. In recent years, DEP has made remarkable progress in the field of microfluidics, and it has gradually transitioned from laboratory-scale research to high-throughput manipulation in practical applications. This paper reviews the recent advances in dielectric manipulation and separation of microparticles and biological cells and discusses in detail the design of chip structures for the two main methods, direct current dielectrophoresis (DC-DEP) and alternating current dielectrophoresis (AC-DEP). The working principles, technical implementation details, and other improved designs of electrode-based and insulator-based chips are summarized. Functional customization of DEP systems with specific capabilities, including separation, capture, purification, aggregation, and assembly of particles and cells, is then performed. The aim of this paper is to provide new ideas for the design of novel DEP micro/nano platforms with the desired high throughput for further development in practical applications.
Collapse
Affiliation(s)
- Junzhu Yao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Kai Zhao
- Liaoning Key Laboratory of Marine Sensing and Intelligent Detection, Department of Information Science and Technology, Dalian Maritime University, Dalian 116026, China
| | - Jia Lou
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Kaihuan Zhang
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
3
|
Tian Z, Wang X, Chen J. On-chip dielectrophoretic single-cell manipulation. MICROSYSTEMS & NANOENGINEERING 2024; 10:117. [PMID: 39187499 PMCID: PMC11347631 DOI: 10.1038/s41378-024-00750-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 07/07/2024] [Indexed: 08/28/2024]
Abstract
Bioanalysis at a single-cell level has yielded unparalleled insight into the heterogeneity of complex biological samples. Combined with Lab-on-a-Chip concepts, various simultaneous and high-frequency techniques and microfluidic platforms have led to the development of high-throughput platforms for single-cell analysis. Dielectrophoresis (DEP), an electrical approach based on the dielectric property of target cells, makes it possible to efficiently manipulate individual cells without labeling. This review focusses on the engineering designs of recent advanced microfluidic designs that utilize DEP techniques for multiple single-cell analyses. On-chip DEP is primarily effectuated by the induced dipole of dielectric particles, (i.e., cells) in a non-uniform electric field. In addition to simply capturing and releasing particles, DEP can also aid in more complex manipulations, such as rotation and moving along arbitrary predefined routes for numerous applications. Correspondingly, DEP electrodes can be designed with different patterns to achieve different geometric boundaries of the electric fields. Since many single-cell analyses require isolation and compartmentalization of individual cells, specific microstructures can also be incorporated into DEP devices. This article discusses common electrical and physical designs of single-cell DEP microfluidic devices as well as different categories of electrodes and microstructures. In addition, an up-to-date summary of achievements and challenges in current designs, together with prospects for future design direction, is provided.
Collapse
Affiliation(s)
- Zuyuan Tian
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Xihua Wang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada.
- Academy for Engineering & Technology, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
4
|
Clark MJ, Moser HJ, Anand RK. Dielectrophoretic capture and electrochemical enzyme-linked immunosorbent assay of single melanoma cells at an array of interlocked spiral bipolar electrodes. ChemElectroChem 2024; 11:e202400182. [PMID: 39483376 PMCID: PMC11526340 DOI: 10.1002/celc.202400182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Indexed: 11/03/2024]
Abstract
Analysis of single cancer cells is critical to obtain accurate patient diagnosis and prognosis. In this work, we report the selective dielectrophoretic capture and electrochemical analysis of single melanoma cells at an array of interlocked spiral bipolar electrodes (iBPEs). Following dielectrophoretic capture, individual melanoma cells are hydrodynamically transferred into picoliter-scale chambers for subsequent analysis. The interlocked spiral end of the iBPE (the sensing pole) is utilized to read out an electrochemical enzyme-linked immunosorbent assay (eELISA), which quantifies the expression of a cell surface antigen, melanoma cell adhesion marker (MCAM). The opposite pole of each BPE is located in a fluidically isolated compartment containing reagents for electrogenerated chemiluminescence (ECL), such that luminescence reports iBPE current. In a preliminary device design, the ECL intensity was insufficient to detect MCAM expression on single cells. To achieve single-cell analysis, we decreased the gap size between the interlocked spirals tenfold (5.0 μm to 0.5 μm), thereby creating a more sensitive biosensor by enhanced redox cycling of the product of eELISA. This work is significant because it allows for the selective isolation and sensitive analysis of individual melanoma cells in a device amenable to point-of-care (POC) application by combining dielectrophoresis (DEP) with interdigitated bipolar electrodes (IDBPEs).
Collapse
Affiliation(s)
- Morgan J Clark
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Hanna J Moser
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, 1605 Gilman Hall, 2415 Osborn Drive, Ames, IA 50011-1021
| |
Collapse
|
5
|
Qiu Q, Xu Y. Rapid and Sensitive Detection by Combining Electric Field Effects and Surface Plasmon Resonance: A Theoretical Study. MICROMACHINES 2024; 15:653. [PMID: 38793226 PMCID: PMC11123134 DOI: 10.3390/mi15050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/09/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Surface plasmon resonance (SPR) has been extensively employed in biological sensing, environmental detection, as well as chemical industry. Nevertheless, the performance possessed by conventional surface plasmon resonance (SPR) biosensors can be further limited by the transport of analyte molecules to the sensing surface, noteworthily when small molecules or low levels of substances are being detected. In this study, a rapid and highly sensitive SPR biosensor is introduced to enhance the ability of the target analytes' collection by integrating AC electroosmosis (ACEO) and dielectrophoresis (DEP). Both the above-mentioned phenomena principally arise from the generation of the AC electric fields. This generation can be tailored by shaping the interdigitated electrodes (IDEs) that also serve as the SPR biomarker sensing area. The effects exerted by different parameters (e.g., the frequency and voltage of the AC electric field as well as microelectrode structures) are considered in the iSPR (interdigitated SPR) biosensor operation, and the iSPR biosensors are optimized with the sensitivity. The results of this study confirm that the iSPR can efficiently concentrate small molecules into the SPR sensing area, such that SPR reactions achieve an order of magnitude increase, and the detection time is shortened. The rapid and sensitive sensor takes on critical significance in the development of on-site diagnostics in a wide variety of human and animal health applications.
Collapse
Affiliation(s)
| | - Yan Xu
- School of Mechanical Engineering, University of Xinjiang, Urumqi 830049, China;
| |
Collapse
|
6
|
Chai H, Zhu J, Feng Y, Liang F, Wu Q, Ju Z, Huang L, Wang W. Capillarity Enabled Large-Array Liquid Metal Electrodes for Compact and High-Throughput Dielectrophoretic Microfluidics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310212. [PMID: 38236647 DOI: 10.1002/adma.202310212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/30/2023] [Indexed: 01/30/2024]
Abstract
Dielectrophoresis (DEP) particle separation has label-free, well-controllable, and low-damage merits. Sidewall microelectrodes made of liquid metal alloy (LMA) inherits the additional advantage of thick electrodes to generate impactful DEP force. However, existing LMA electrode-based devices lack the ability to integrate large-array electrodes in a compact footprint, severely limiting flow rate and thus throughput. Herein, a facile and versatile method is proposed to integrate high-density thick LMA electrodes in microfluidic devices, taking advantage of the passive control ability of capillary burst valves (CBVs). CBVs with carefully designed burst pressures are co-designed in microfluidic channels, allowing self-assembly of LMA electrode array through simple hand-push injection. The arrayed electrode configuration brings the accumulative DEP deflection effect. Specifically, The fabricated 5000 pairs of sidewall electrodes in a compact chip are demonstrted to achieve ten times higher throughput in DEP deflection. The 5000-electrode-pair device is applied to successfully separate four mixed samples, including human peripheral blood mononuclear cells and A549 cells with the flow rate of 70 µL min-1. It is envisioned that this work can greatly facilitate LMA electrode array fabrication and offer a robust and versatile platform for DEP separation applications.
Collapse
Affiliation(s)
- Huichao Chai
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Junwen Zhu
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongxiang Feng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Fei Liang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| | - Qiyan Wu
- The First Medical Center of PLA General Hospital, Beijing, 100853, P. R. China
| | - Zhongjian Ju
- The First Medical Center of PLA General Hospital, Beijing, 100853, P. R. China
| | - Liang Huang
- School of Instrument Science and Opto-Electronics Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
7
|
Wu Y, Ma X, Li K, Yue Y, Zhang Z, Meng Y, Wang S. Bipolar Electrode-based Sheath-Less Focusing and Continuous Acoustic Sorting of Particles and Cells in an Integrated Microfluidic Device. Anal Chem 2024; 96:3627-3635. [PMID: 38346846 DOI: 10.1021/acs.analchem.3c05755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Sheath-less focusing and sorting of cells or particles is an important preprocessing step in a variety of biochemical applications. Most of the previous sorting methods depend on the use of sheath flows to realize efficient cell focusing. The sheath flow dilutes the sample and requires precise flow control via additional channels. We, for the first time, reported a method of bipolar electrode (BPE)-based sheath-less focusing, switching, and tilted-angle standing surface acoustic wave-based sorting of cells and particles in continuous flow. The device consists of a piezoelectric substrate with a pair of BPEs for focusing and switching, and a pair of interdigitated transducers for cell sorting. Smaller cells experience a weak acoustic force and reach the lower outlet, whereas larger cells are subjected to a strong acoustic force such that they are propelled toward the upper outlet. We first validate the device functionality by sorting 5 and 8 μm PS beads with a high sorting efficiency. The working and deflection regions were increased by propelling the particle beam toward the bottom edge of BPE via changing the applied voltage of BPE, further improving the sorting performance with high efficiency (94%) and purity (92%). We then conducted a verification for sorting THP-1 and yeast cells, and the efficiency and purity reached 90.7 and 91.5%, respectively. This integrated device eliminates the requirement of balancing the flow of several sheath inlets and provides a robust and unique approach for cell sorting applications, showing immense promise in various applications, such as medical diagnosis, drug delivery, and personalized medicine.
Collapse
Affiliation(s)
- Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518000, PR China
- Yangtze River Delta Research Institute of NPU, Taicang 215400, PR China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yingqi Meng
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai 201800, PR China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
8
|
Rane A, Jarmoshti J, Siddique AB, Adair S, Torres-Castro K, Honrado C, Bauer TW, Swami NS. Dielectrophoretic enrichment of live chemo-resistant circulating-like pancreatic cancer cells from media of drug-treated adherent cultures of solid tumors. LAB ON A CHIP 2024; 24:561-571. [PMID: 38174422 PMCID: PMC10826460 DOI: 10.1039/d3lc00804e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Due to low numbers of circulating tumor cells (CTCs) in liquid biopsies, there is much interest in enrichment of alternative circulating-like mesenchymal cancer cell subpopulations from in vitro tumor cultures for utilization within molecular profiling and drug screening. Viable cancer cells that are released into the media of drug-treated adherent cancer cell cultures exhibit anoikis resistance or anchorage-independent survival away from their extracellular matrix with nutrient sources and waste sinks, which serves as a pre-requisite for metastasis. The enrichment of these cell subpopulations from tumor cultures can potentially serve as an in vitro source of circulating-like cancer cells with greater potential for scale-up in comparison with CTCs. However, these live circulating-like cancer cell subpopulations exhibit size overlaps with necrotic and apoptotic cells in the culture media, which makes it challenging to selectively enrich them, while maintaining them in their suspended state. We present optimization of a flowthrough high frequency (1 MHz) positive dielectrophoresis (pDEP) device with sequential 3D field non-uniformities that enables enrichment of the live chemo-resistant circulating cancer cell subpopulation from an in vitro culture of metastatic patient-derived pancreatic tumor cells. Central to this strategy is the utilization of single-cell impedance cytometry with gates set by supervised machine learning, to optimize the frequency for pDEP, so that live circulating cells are selected based on multiple biophysical metrics, including membrane physiology, cytoplasmic conductivity and cell size, which is not possible using deterministic lateral displacement that is solely based on cell size. Using typical drug-treated samples with low levels of live circulating cells (<3%), we present pDEP enrichment of the target subpopulation to ∼44% levels within 20 minutes, while rejecting >90% of dead cells. This strategy of utilizing single-cell impedance cytometry to guide the optimization of dielectrophoresis has implications for other complex biological samples.
Collapse
Affiliation(s)
- Aditya Rane
- Chemistry, University of Virginia, Charlottesville, USA.
| | - Javad Jarmoshti
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| | | | - Sara Adair
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | | | - Carlos Honrado
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Todd W Bauer
- Surgery, School of Medicine, University of Virginia, Charlottesville, USA
| | - Nathan S Swami
- Chemistry, University of Virginia, Charlottesville, USA.
- Electrical & Computer Engineering, University of Virginia, Charlottesville, USA
| |
Collapse
|
9
|
Ino K, Utagawa Y, Shiku H. Microarray-Based Electrochemical Biosensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:317-338. [PMID: 37306698 DOI: 10.1007/10_2023_229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microarrays are widely utilized in bioanalysis. Electrochemical biosensing techniques are often applied in microarray-based assays because of their simplicity, low cost, and high sensitivity. In such systems, the electrodes and sensing elements are arranged in arrays, and the target analytes are detected electrochemically. These sensors can be utilized for high-throughput bioanalysis and the electrochemical imaging of biosamples, including proteins, oligonucleotides, and cells. In this chapter, we summarize recent progress on these topics. We categorize electrochemical biosensing techniques for array detection into four groups: scanning electrochemical microscopy, electrode arrays, electrochemiluminescence, and bipolar electrodes. For each technique, we summarize the key principles and discuss the advantages, disadvantages, and bioanalysis applications. Finally, we present conclusions and perspectives about future directions in this field.
Collapse
Affiliation(s)
- Kosuke Ino
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
| | - Yoshinobu Utagawa
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan
| | - Hitoshi Shiku
- Graduate School of Engineering, Tohoku University, Sendai, Miyagi, Japan.
- Graduate School of Environmental Studies, Tohoku University, Sendai, Miyagi, Japan.
| |
Collapse
|
10
|
Lee H, Kim J, Hwang M, Kim J. Galvanic Bipolar Electrode Arrays with Self-Driven Optical Readouts. ACS Sens 2023; 8:4374-4383. [PMID: 37857596 DOI: 10.1021/acssensors.3c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
In this work, we report a bipolar electrode (BPE) array system with self-driven optical readouts of the faradic current flowing through the BPEs. The BPE array system is based on the spontaneous redox reactions that are respectively occurring at opposite poles of the BPEs with appropriate electrocatalysts on the poles; this system is analogous to one consisting of galvanic electrochemical cells. The galvanic BPE array system operates in a self-powered mode that requires there to be neither a direct electrical connection nor external electrical polarization to each BPE. Importantly, the appropriate electrocatalysts on the poles play a critical role in the galvanic BPE array system to induce the spontaneous redox reactions occurring at the poles of BPEs. Moreover, the galvanic BPE array system provides self-driven optical readouts, including fluorometric and colorimetric ones, to report the faradaic current resulting from the spontaneous redox reactions on the BPE poles. Based on the unique benefits that the galvanic BPE array system has over conventional BPEs, we demonstrated the promising potential of galvanic BPE arrays for the simple yet rapid and quantitative screening of electrocatalysts for the oxygen reduction reaction as well as sensitive sensing of H2O2 in parallel.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jiwoo Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Misol Hwang
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Joohoon Kim
- Department of Chemistry, Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
11
|
Wu Y, Yue Y, Zhang H, Ma X, Li K, Zeng W, Wang S, Meng Y. Label free and high-throughput discrimination of cells at a bipolar electrode array using the AC electrodynamics. Anal Chim Acta 2023; 1278:341701. [PMID: 37709447 DOI: 10.1016/j.aca.2023.341701] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Cell characterization and manipulation play an important role in biological and medical applications. Cell viability evaluation is of significant importance for cell toxicology assay, dose test of anticancer drugs, and other biochemical stimulations. The electrical properties of cells change when cells transform from healthy to a pathological state. Current methods for evaluating cell viability usually requires a complicated chip and the throughput is limited. RESULTS In this paper, a bipolar electrode (BPE) array based microfluidic device for assessing cell viability is exploited using AC electrodynamics. The viability of various cells including yeast cells and K562 cells, can be evaluated by analyzing the electro-rotation (ROT) speed and direction of cells, as well as the dielectrophoresis (DEP) responses of cells. Firstly, the cell viability can be identified by the position of the cell captured on the BPE electrode in terms of DEP force. Besides, cell viability can also be evaluated based on both the cell rotation speed and direction using ROT. Under the action of travelling wave dielectric electrophoresis force, the cell viability can also be distinguished by the rotational motion of cells on bipolar electrode edges. SIGNIFICANCE This study demonstrates the utility of BPEs to enable scalable and high-throughput AC electrodynamics platforms by imparting a flexibility in chip design that is unparalleled by using traditional electrodes. By using BPEs, our proposed new technique owns wide application for cell characterization and viability assessment in situ detection and analysis.
Collapse
Affiliation(s)
- Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518000, PR China; Yangtze River Delta Research Institute of NPU, Taicang, 215400, PR China.
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haohao Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, PR China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China.
| | - Yingqi Meng
- Jiading District Central Hospital Affiliated Shanghai University of Medicine and Health Sciences, Shanghai, 201800, PR China.
| |
Collapse
|
12
|
Han X, Xu X, Yang C, Liu G. Microfluidic design in single-cell sequencing and application to cancer precision medicine. CELL REPORTS METHODS 2023; 3:100591. [PMID: 37725985 PMCID: PMC10545941 DOI: 10.1016/j.crmeth.2023.100591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Single-cell sequencing (SCS) is a crucial tool to reveal the genetic and functional heterogeneity of tumors, providing unique insights into the clonal evolution, microenvironment, drug resistance, and metastatic progression of cancers. Microfluidics is a critical component of many SCS technologies and workflows, conferring advantages in throughput, economy, and automation. Here, we review the current landscape of microfluidic architectures and sequencing techniques for single-cell omics analysis and highlight how these have enabled recent applications in oncology research. We also discuss the challenges and the promise of microfluidics-based single-cell analysis in the future of precision oncology.
Collapse
Affiliation(s)
- Xin Han
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Xing Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China; Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related 12 Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China
| | - Chaoyang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China; Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related 12 Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, P.R. China.
| | - Guozhen Liu
- CUHK(SZ)-Boyalife Joint Laboratory of Regenerative Medicine Engineering, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China; Ciechanover Institute of Precision and Regenerative Medicine, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China.
| |
Collapse
|
13
|
Chen X, Liu S, Shen M, Gao Z, Hu S, Zhao Y. Dielectrophoretic assembly and separation of particles and cells in continuous flow. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4485-4493. [PMID: 37610139 DOI: 10.1039/d3ay00666b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Dielectrophoretic (DEP) separation has been recognized as a practical tool in the separation of cells and particles for clinical diagnosis, the pharmaceutical industry and environmental monitoring. Assembly of particles and cells under DEP force is a common phenomenon and has an influence on their separation but has not been understood fully. Encouraged by these aspects, we developed a microfluidic device with a bipolar electrode array to investigate the assembly and separation of particles and cells at a large scale. First, we studied the assembly and evolution mechanisms of particles of one type under an AC electric field. Then, we investigated the interaction and assembly of multiple particles with dissimilar properties under DEP force. Depending on the development of microfluidic devices, we visualize the assembly process of yeast cells at the electrode rims and of polystyrene particles at the channel centers, and explore the influence of pearl chain formation on their separation. With increasing flow velocity from 288 to 720 μL h-1, the purity of 5 μm polystyrene particles surpasses 94.9%. Furthermore, we studied the DEP response of Scenedesmus sp. and C. vulgaris, and explored the influence of cell chains on the isolation of C. vulgaris. The purity of Scenedesmus sp. and C. vulgaris witnessed a decrease from 95.7% to 90.8% when the flow rate increased from 288 to 864 μL h-1. Finally, we investigated the extension of the electric field under chains of Oocystis sp. at the electrode rims by studying chain formation and capture of C. vulgaris, and studied its effect on cell chain length, recovered cell purity and cell concentration. When chains of Oocystis sp. were formed, the purity of C. vulgaris kept unchanged and the concentration decreased from 2793 cells per μL to 2039 cells per μL. This work demonstrates continuous DEP-based assembly and separation of particles and cells, which facilitates high-efficiency isolation of targeted cells.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Ziwei Gao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
| | - Sheng Hu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China
| |
Collapse
|
14
|
Chen X, Liu S, Hu XG, Liu T, Shen M, Peng Y, Hu S, Zhao Y. Enrichment and Selection of Particles through Parallel Induced-Charge Electro-osmotic Streaming for Detection of Low-Abundance Nanoparticles and Targeted Microalgae. Anal Chem 2023; 95:11714-11722. [PMID: 37486806 DOI: 10.1021/acs.analchem.3c01729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Manipulation of micro- and nanoscale objects is an essential procedure in many detection and sensing applications, including disease diagnosis and environmental monitoring. Induced-charge electro-osmotic (ICEO) vortices present excellent advantages in the enrichment and selection of micro/nanoscale particles for downstream detection due to gentle conditions and contactless operation, but the application of this method is currently constrained by the throughput. Double-layer charging at the ends of bipolar electrodes can maintain a continuous flow of electric current in the fluidically isolated channels, which provides a feasible method to manipulate particles using parallel ICEO vortices, promoting throughput of particle manipulation without compromising efficiency and overcoming the complicated ohmic contact of electrodes. Encouraged by these, we put forward a novel method with parallel ICEO vortices to manipulate micro/nanoscale samples for downstream detection. First, we study the extension regulation of the low-frequency electric field and mediating effect of the open BPEs on the extended electric field and characterize electric equilibrium states of microparticles and their voltage dependence. Afterward, we leverage this method to enrich nanoparticles for detection of low-abundance nanoparticles with about 20- and 40-fold fluorescence intensities by integrating with a simple fiber-optic sensor. Furthermore, this technique is engineered for the selection of targeted microalgae to continuously detect their proliferation behaviors by combining with a homemade electrical impedance spectroscopy device. This method can reinforce the throughput of ICEO vortices and enables it to integrate with simple and economical sensors to accomplish disease diagnosis and environmental monitoring.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| | - Xu-Guang Hu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| | - Tengteng Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| | - Yun Peng
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| | - Sheng Hu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, PR China
| |
Collapse
|
15
|
Li WM, Ren XD, Jiang YZ, Su N, Li BW, Sun XG, Li RX, Lu WP, Deng SL, Li J, Li MX, Huang Q. Rapid detection of EGFR mutation in CTCs based on a double spiral microfluidic chip and the real-time RPA method. Anal Bioanal Chem 2023:10.1007/s00216-023-04743-2. [PMID: 37254002 DOI: 10.1007/s00216-023-04743-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Circulating tumor cells (CTCs) are cells shed from primary or metastatic tumors and spread into the peripheral bloodstream. Mutation detection in CTCs can reveal vital genetic information about the tumors and can be used for "liquid biopsy" to indicate cancer treatment and targeted medication. However, current methods to measure the mutations in CTCs are based on PCR or DNA sequencing which are cumbersome and time-consuming and require sophisticated equipment. These largely limited their applications especially in areas with poor healthcare infrastructure. Here we report a simple, convenient, and rapid method for mutation detection in CTCs, including an example of a deletion at exon 19 (Del19) of the epidermal growth factor receptor (EGFR). CTCs in the peripheral blood of NSCLC patients were first sorted by a double spiral microfluidic chip with high sorting efficiency and purity. The sorted cells were then lysed by proteinase K, and the E19del mutation was detected via real-time recombinase polymerase amplification (RPA). Combining the advantages of microfluidic sorting and real-time RPA, an accurate mutation determination was realized within 2 h without professional operation or complex data interpretation. The method detected as few as 3 cells and 1% target variants under a strongly interfering background, thus, indicating its great potential in the non-invasive diagnosis of E19del mutation for NSCLC patients. The method can be further extended by redesigning the primers and probes to detect other deletion mutations, insertion mutations, and fusion genes. It is expected to be a universal molecular diagnostic tool for real-time assessment of relevant mutations and precise adjustments in the care of oncology patients.
Collapse
Affiliation(s)
- Wen-Man Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiao-Dong Ren
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Yu-Zhu Jiang
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Ning Su
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Bo-Wen Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Xian-Ge Sun
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Ruo-Xu Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei-Ping Lu
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Shao-Li Deng
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin Li
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China
| | - Meng-Xia Li
- Department of Cancer Center, Daping Hospital, Army Medical University, Chongqing, China.
| | - Qing Huang
- Department of Laboratory Medicine, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
16
|
Chen H, Osman SY, Moose DL, Vanneste M, Anderson JL, Henry MD, Anand RK. Quantification of capture efficiency, purity, and single-cell isolation in the recovery of circulating melanoma cells from peripheral blood by dielectrophoresis. LAB ON A CHIP 2023; 23:2586-2600. [PMID: 37185977 PMCID: PMC10228177 DOI: 10.1039/d2lc01113a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/31/2023] [Indexed: 05/17/2023]
Abstract
This paper describes a dielectrophoretic method for selection of circulating melanoma cells (CMCs), which lack reliable identifying surface antigens and are extremely rare in blood. This platform captures CMCs individually by dielectrophoresis (DEP) at an array of wireless bipolar electrodes (BPEs) aligned to overlying nanoliter-scale chambers, which isolate each cell for subsequent on-chip single-cell analysis. To determine the best conditions to employ for CMC isolation in this DEP-BPE platform, the static and dynamic dielectrophoretic response of established melanoma cell lines, melanoma cells from patient-derived xenografts (PDX) and peripheral blood mononuclear cells (PBMCs) were evaluated as a function of frequency using two established DEP platforms. Further, PBMCs derived from patients with advanced melanoma were compared with those from healthy controls. The results of this evaluation reveal that each DEP method requires a distinct frequency to achieve capture of melanoma cells and that the distribution of dielectric properties of PBMCs is more broadly varied in and among patients versus healthy controls. Based on this evaluation, we conclude that 50 kHz provides the highest capture efficiency on our DEP-BPE platform while maintaining a low rate of capture of unwanted PBMCs. We further quantified the efficiency of single-cell capture on the DEP-BPE platform and found that the efficiency diminished beyond around 25% chamber occupancy, thereby informing the minimum array size that is required. Importantly, the capture efficiency of the DEP-BPE platform for melanoma cells when using optimized conditions matched the performance predicted by our analysis. Finally, isolation of melanoma cells from contrived (spike-in) and clinical samples on our platform using optimized conditions was demonstrated. The capture and individual isolation of CMCs, confirmed by post-capture labeling, from patient-derived samples suggests the potential of this platform for clinical application.
Collapse
Affiliation(s)
- Han Chen
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Sommer Y Osman
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Devon L Moose
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Marion Vanneste
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
| | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| | - Michael D Henry
- Departments of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA 52242, USA
- Pathology, Urology and Radiation Oncology, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Robbyn K Anand
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
| |
Collapse
|
17
|
Banovetz JT, Manimaran S, Schelske B, Anand RK. Parallel Dielectrophoretic Capture, Isolation, and Electrical Lysis of Individual Breast Cancer Cells to Assess Variability in Enzymatic Activity. Anal Chem 2023; 95:7880-7887. [PMID: 37172139 PMCID: PMC10578154 DOI: 10.1021/acs.analchem.3c00078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tumor cell heterogeneity drives disease progression and response to therapy, and therefore, there is a need for single-cell analysis methods. In this paper, we present an integrated, scalable method to analyze enzymatic activity in many individual cancer cells at once. The reported method uses dielectrophoresis (DEP) to selectively capture tumor cells at wireless electrodes aligned to an overlying array of cell-sized micropockets. Following hydrodynamic transfer of the captured cells into microfluidic chambers, the chambers are fluidically isolated and sealed with a hydrophobic ionic liquid, which possesses sufficient conductivity to allow for subsequent electrical lysis of the cells to access their contents for enzymatic assay. The wireless electrodes have an interlocking spiral design that ensures successful electrical lysis regardless of the location of the cell within the chamber. Here, breast cancer cells are assessed for β-galactosidase through its activation of a fluorogenic substrate. A key point is that the fluorogenic assay solution was optimized to allow for dielectrophoretic cell capture, thereby obviating the need for a solution exchange step. Our approach has several distinct advantages including a high rate of single-cell capture, a capture efficiency that is independent of the dimensions of the reaction chambers, no need for mechanical closure of reaction volumes, and no observed cross-talk. In this study, first, the steps of cell capture, transfer, and lysis are established on this platform in the presence of the optimized assay solution. We then quantify the increase in fluorescence intensity obtained over the duration of the enzymatic assay of individual cells. Finally, this method is applied to the analysis of β-galactosidase activity in 258 individual MDA-MB-231 breast cancer cells, revealing heterogeneity in expression of this enzyme in this cell line. We expect that the adaptability of this method will allow for expanded studies of single-cell enzymatic expression and activity. This will in turn open avenues of research into cancer cell heterogeneity in metabolism, invasiveness, and drug response. The ability to study these features of cancer at the single-cell level raises the possibility for treatment plans tailored to target the specific combinations of cell subpopulations present in tumors. Furthermore, we expect that this method can be adapted to uses outside of cancer research, such as studies of neuron metabolism, pathogenesis in bacteria, and stem cell development.
Collapse
Affiliation(s)
- Joseph T. Banovetz
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| | - Sivani Manimaran
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| | - Benjamin Schelske
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| | - Robbyn K. Anand
- Department of Chemistry, Iowa State University, 2415 Osborn Drive, Ames, IA 50011-1021, USA
| |
Collapse
|
18
|
Li X, Wang T, Xie T, Dai J, Zhang Y, Ling N, Guo J, Li C, Sun X, Zhang X, Peng Y, Wang H, Peng T, Ye M, Tan W. Aptamer-Mediated Enrichment of Rare Circulating Fetal Nucleated Red Blood Cells for Noninvasive Prenatal Diagnosis. Anal Chem 2023; 95:5419-5427. [PMID: 36920371 DOI: 10.1021/acs.analchem.3c00115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Isolation of circulating fetal nucleated red blood cells (cfNRBCs) from maternal peripheral blood provides a superior strategy for noninvasive prenatal genetic diagnosis. Recent technical advances in single-cell isolation and genetic analyses have promoted the clinical application of circulating fetal cell-based noninvasive prenatal diagnosis. However, the lack of highly specific ligands for rare circulating fetal cell enrichment from massive maternal cells significantly impedes the clinical transformation progress. In this work, aptamers specific to NRBCs were developed through clinical sample-based cell-SELEX. Herein, the complex clinical system provides natural selection stringency through binding competition between target and background cells, and it empowers aptamers with high specificity. An aptamer-based strategy was also established to isolate cfNRBCs from maternal peripheral blood. Results show the remarkable selectivity and affinity of developed aptamers, enabling efficient enrichment of cfNRBCs from abundant maternal cells. Moreover, screening for fetal sex and trisomy syndrome achieved high accuracy through chromosome analysis of enriched cfNRBCs. To the best of our knowledge, this is the first report to develop aptamer ligands for cfNRBC enrichment, providing an efficient strategy to screen cfNRBC-specific ligands and demonstrating broad application potential for cfNRBC-based noninvasive prenatal diagnosis.
Collapse
Affiliation(s)
- Xiaodong Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tiantian Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Tiantian Xie
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Jing Dai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yibin Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Neng Ling
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Junxiao Guo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Chang Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xing Sun
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiaotian Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ying Peng
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China
| | - Hua Wang
- Pediatric Research Institute, Hunan Children's Hospital, Changsha, Hunan 410007, China
| | - Tianhuan Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Mao Ye
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
19
|
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, Buyong MR. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis 2023; 44:573-620. [PMID: 36604943 DOI: 10.1002/elps.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.,ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
20
|
Bai S, You Y, Chen X, Liu C, Wang L. Monitoring Bipolar Electrochemistry and Hydrogen Evolution Reaction of a Single Gold Microparticle under Sub-Micropipette Confinement. Anal Chem 2023; 95:2054-2061. [PMID: 36625753 DOI: 10.1021/acs.analchem.2c04744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Herein, an approach to track the process of autorepeating bipolar reactions and hydrogen evolution reaction (HER) on a micro gold bipolar electrode (BPE) is established. Once blocking the channel of the sub-micropipette tip, the formed gold microparticle is polarized into the wireless BPE, which induces the dissolution of the gold at the anode and the HER at the cathode. The current response shows a periodic behavior with three regions: the bubble generation region (I), the bubble rupture/generation region (II), and the channel opening region (III). After a stable low baseline current of region I, a series of positive spike signals caused by single H2 nanobubbles rupture/generation are recorded standing for the beginning of region II. Meanwhile, the dissolution of the gold blocking at the orifice will create a new channel, increasing the baseline current for region III, where the synthesis of gold occurs again, resulting in another periodic response. Finite element simulations are applied to unveil the mechanism thermodynamically. In addition, the integral charge of the H2 nanobubbles in region II corresponds to the consumption of the anode gold. It simultaneously monitors autorepeating bipolar reactions of a single gold microparticle and HER of a single H2 nanobubble electrochemically, which reveals an insightful physicochemical mechanism in nanoscale confinement and makes the glass nanopore an ideal candidate to further reveal the heterogeneity of catalytic capability at the single particle level.
Collapse
Affiliation(s)
- Silan Bai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Yongtao You
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| | - Xiangping Chen
- Jewelry Institute, Guangzhou Panyu Polytechnic, Guangzhou511483, China
| | - Cheng Liu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
- School of Chemistry, South China Normal University, Guangzhou510006, China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
21
|
Qin Y, Wu L, Chiu DT. Dielectrophoresis-Assisted Self-Digitization Chip for High-Efficiency Single-Cell Analysis. Methods Mol Biol 2023; 2689:27-38. [PMID: 37430044 DOI: 10.1007/978-1-0716-3323-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Single-cell analysis of cell phenotypic information such as surface protein expression and nucleic acid content is essential for understanding heterogeneity within cell populations. Here the design and use of a dielectrophoresis-assisted self-digitization (SD) microfluidics chip is described; it captures single cells in isolated microchambers with high efficiency for single-cell analysis. The self-digitization chip spontaneously partitions aqueous solution into microchambers through a combination of fluidic forces, interfacial tension, and channel geometry. Single cells are guided to and trapped at the entrances of microchambers by dielectrophoresis (DEP) due to local electric field maxima created by an externally applied AC voltage. Excess cells are flushed away, and trapped cells are released into the chambers and prepared for in situ analysis by turning off the external voltage, by running reaction buffer through the chip, and by sealing the chambers with a flow of an immiscible oil phase through the surrounding channels. The use of this device in single-cell analysis is demonstrated by performing single-cell nucleic acid quantitation based on loop-mediated isothermal amplification (LAMP). This platform provides a powerful new tool for single-cell research pertaining to drug discovery. For example, the single-cell genotyping of cancer-related mutant gene observed from the digital chip could be useful biomarker for targeted therapy.
Collapse
Affiliation(s)
- Yuling Qin
- School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China.
| | - Li Wu
- School of Public Health, Nantong University, Nantong, Jiangsu, P. R. China
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
22
|
Jain A, Jobson I, Griffin M, Rahman R, Smith S, Rawson FJ. Electric field responsive nanotransducers for glioblastoma. Bioelectron Med 2022; 8:17. [PMID: 36258238 PMCID: PMC9580136 DOI: 10.1186/s42234-022-00099-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/07/2022] [Indexed: 11/12/2022] Open
Abstract
Background Electric field therapies such as Tumor Treating Fields (TTFields) have emerged as a bioelectronic treatment for isocitrate dehydrogenase wild-type and IDH mutant grade 4 astrocytoma Glioblastoma (GBM). TTFields rely on alternating current (AC) electric fields (EF) leading to the disruption of dipole alignment and induced dielectrophoresis (DEP) during cytokinesis. Although TTFields have a favourable side effect profile, particularly compared to cytotoxic chemotherapy, survival benefits remain limited (~ 4.9 months) after an extensive treatment regime (20 hours/day for 18 months). The cost of the technology also limits its clinical adoption worldwide. Therefore, the discovery of new technology that can enhance both the therapeutic efficiency and efficacy of these TTFields will be of great benefit to cancer treatment and decrease healthcare costs worldwide. Methods In this work, we report the role of electrically conductive gold (GNPs), dielectric silica oxide (SiO2), and semiconductor zinc oxide (ZnO) nanoparticles (NPs) as transducers for enhancing EF mediated anticancer effects on patient derived GBM cells. Physicochemical properties of these NPs were analyzed using spectroscopic, electron microscopy, and light-scattering techniques. Results In vitro TTFields studies indicated an enhanced reduction in the metabolic activity of patient-derived Glioma INvasive marginal (GIN 28) and Glioma contrast enhanced core (GCE 28) GBM As per our journal style, article titles should not include capitalised
letters unless these are proper nouns/acronyms. We have therefore used
the article title “Electric field responsive nanotransducers for
glioblastoma” as opposed to “Electric Field Responsive Nanotransducers
for Glioblastoma” as given in the submission system. Please check if
this is correct.cells in groups treated with NPs vs. control groups, irrespective of NPs dielectric properties. Our results indicate the inorganic NPs used in this work enhance the intracellular EF effects that could be due to the virtue of bipolar dielectrophoretic and electrophoretic effects. Conclusions This work presents preliminary evidence which could help to improve future EF applications for bioelectronic medicine. Furthermore, the merits of spherical morphology, excellent colloidal stability, and low toxicity, make these NPs ideal for future studies for elucidating the detailed mechanism and efficacy upon their delivery in GBM preclinical models. Supplementary Information The online version contains supplementary material available at 10.1186/s42234-022-00099-7.
Collapse
Affiliation(s)
- Akhil Jain
- Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK.
| | - Isobel Jobson
- Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michaela Griffin
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stuart Smith
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK.,Department of Neurosurgery, Nottingham University Hospitals, Nottingham, NG7 2UH, UK
| | - Frankie J Rawson
- Bioelectronics Laboratory, Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
23
|
Bakhshi MS, Rizwan M, Khan GJ, Duan H, Zhai K. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells. Sci Rep 2022; 12:17016. [PMID: 36220844 PMCID: PMC9554048 DOI: 10.1038/s41598-022-20886-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer is one of the foremost causes of death globally. Late-stage presentation, inaccessible diagnosis, and treatment are common challenges in developed countries. Detection, enumeration of Circulating Tumor Cells (CTC) as early as possible can reportedly lead to more effective treatment. The isolation of CTC at an early stage is challenging due to the low probability of its presence in peripheral blood. In this study, we propose a novel two-stage, label-free, rapid, and continuous CTC separation device based on hydrodynamic inertial focusing and dielectrophoretic separation. The dominance and differential of wall-induced inertial lift force and Dean drag force inside a curved microfluidic channel results in size-based separation of Red Blood Cells (RBC) and platelets (size between 2-4 µm) from CTC and leukocytes (9-12.2 µm). A numerical model was used to investigate the mechanism of hydrodynamic inertial focusing in a curvilinear microchannel. Simulations were done with the RBCs, platelets, CTCs, and leukocytes (four major subtypes) to select the optimized value of the parameters in the proposed design. In first stage, the focusing behavior of microscale cells was studied to sort leukocytes and CTCs from RBCs, and platelets while viable CTCs were separated from leukocytes based on their inherent electrical properties using dielectrophoresis in the second stage. The proposed design of the device was evaluated for CTC separation efficiency using numerical simulations. This study considered the influence of critical factors like aspect ratio, dielectrophoretic force, channel size, flow rate, separation efficiency, and shape on cell separation. Results show that the proposed device yields viable CTC with 99.5% isolation efficiency with a throughput of 12.2 ml/h.
Collapse
Affiliation(s)
- Maliha Saleem Bakhshi
- grid.444938.60000 0004 0609 0078Mechatronics and Control Engineering Department, University of Engineering and Technology, Lahore, Pakistan
| | - Mohsin Rizwan
- grid.444938.60000 0004 0609 0078Mechatronics and Control Engineering Department, University of Engineering and Technology, Lahore, Pakistan
| | - Ghulam Jilany Khan
- grid.444936.80000 0004 0608 9608Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore, Pakistan
| | - Hong Duan
- grid.263761.70000 0001 0198 0694School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000 China
| | - Kefeng Zhai
- grid.263761.70000 0001 0198 0694School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, Anhui 234000 China ,grid.459584.10000 0001 2196 0260Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Guangxi Normal University), Guilin, 541004 People’s Republic of China
| |
Collapse
|
24
|
Sun X, Li B, Li W, Ren X, Su N, Li R, Li J, Huang Q. A Resistance-Based Microfluidic Chip for Deterministic Single Cell Trapping Followed by Immunofluorescence Staining. MICROMACHINES 2022; 13:1272. [PMID: 36014194 PMCID: PMC9416254 DOI: 10.3390/mi13081272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/31/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Microchips are fundamental tools for single-cell analysis. Although various microfluidic methods have been developed for single-cell trapping and analysis, most microchips cannot trap single cells deterministically for further analysis. In this paper, we describe a novel resistance-based microfluidic chip to implement deterministic single-cell trapping followed by immunofluorescence staining based on the least flow resistance principle. The design of a large circular structure before the constriction and the serpentine structure of the main channel made the flow resistance of the main channel higher than that of the trapping channel. Since cells preferred to follow paths with lower flow resistance, this design directed cells into the capture sites and improved single-cell trapping efficiency. We optimized the geometric parameters using numerical simulations. Experiments using A549 and K562 cell lines demonstrated the capability of our chip with (82.7 ± 2.4)% and (84 ± 3.3)% single-cell trapping efficiency, respectively. In addition, cells were immobilized at capture sites by applying the pulling forces at the outlet, which reduced the cell movement and loss and facilitated tracking of the cell in real time during the multistep immunofluorescence staining procedure. Due to the simple operation, high-efficiency single-cell trapping and lower cell loss, the proposed chip is expected to be a potential analytical platform for single tumor cell heterogeneity studies and clinical diagnosis.
Collapse
|
25
|
Çağlayan Arslan Z, Demircan Yalçın Y, Külah H. Label-free enrichment of MCF7 breast cancer cells from leukocytes using continuous flow dielectrophoresis. Electrophoresis 2022; 43:1531-1544. [PMID: 35318696 DOI: 10.1002/elps.202100318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 12/25/2022]
Abstract
Circulating tumor cells (CTCs) present in the bloodstream are strongly linked to the invasive behavior of cancer; therefore, their detection holds great significance for monitoring disease progression. Currently available CTC isolation tools are often based on tumor-specific antigen or cell size approaches. However, these techniques are limited due to the lack of a unique and universal marker for CTCs, and the overlapping size between CTCs and regular blood cells. Dielectrophoresis (DEP), governed by the intrinsic dielectric properties of the particles, is a promising marker-free, accurate, fast, and low-cost technique that enables the isolation of CTCs from blood cells. This study presents a continuous flow, antibody-free DEP-based microfluidic device to concentrate MCF7 breast cancer cells, a well-established CTC model, in the presence of leukocytes extracted from human blood samples. The enrichment strategy was determined according to the DEP responses of the corresponding cells, obtained in our previously reported DEP spectrum study. It was based on the positive-DEP integrated with hydrodynamic focusing under continuous flow. In the proposed device, the parylene microchannel with two inlets and outlets was built on top of rectangular and equally spaced isolated planar electrodes rotated certain degree relative to the main flow (13°). The recovery of MCF7 cells mixed with leukocytes was 74%-98% at a frequency of 1 MHz and a magnitude of 10-12 Vpp . Overall, the results revealed that the presented system successfully concentrates MCF7 cancer cells from leukocytes, ultimately verifying our DEP spectrum study, in which the enrichment frequency and separation strategy of the microfluidic system were determined.
Collapse
Affiliation(s)
- Zeynep Çağlayan Arslan
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey.,METU MEMS Center, Ankara, Turkey
| | - Yağmur Demircan Yalçın
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey
| | - Haluk Külah
- Department of Electrical and Electronics Engineering, Middle East Technical University (METU), Ankara, Turkey.,METU MEMS Center, Ankara, Turkey
| |
Collapse
|
26
|
Huang X, Torres‐Castro K, Varhue W, Rane A, Rasin A, Swami NS. On‐chip microfluidic buffer swap of biological samples in‐line with downstream dielectrophoresis. Electrophoresis 2022; 43:1275-1282. [PMID: 35286736 PMCID: PMC9203925 DOI: 10.1002/elps.202100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/12/2021] [Accepted: 01/24/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic cell enrichment by dielectrophoresis, based on biophysical and electrophysiology phenotypes, requires that cells be resuspended from their physiological media into a lower conductivity buffer for enhancing force fields and enabling the dielectric contrast needed for separation. To ensure that sensitive cells are not subject to centrifugation for resuspension and spend minimal time outside of their culture media, we present an on‐chip microfluidic strategy for swapping cells into media tailored for dielectrophoresis. This strategy transfers cells from physiological media into a 100‐fold lower conductivity media by using tangential flows of low media conductivity at 200‐fold higher flow rate versus sample flow to promote ion diffusion over the length of a straight channel architecture that maintains laminarity of the flow‐focused sample and minimizes cell dispersion across streamlines. Serpentine channels are used downstream from the flow‐focusing region to modulate hydrodynamic resistance of the central sample outlet versus flanking outlets that remove excess buffer, so that cell streamlines are collected in the exchanged buffer with minimal dilution in cell numbers and at flow rates that support dielectrophoresis. We envision integration of this on‐chip sample preparation platform prior to or post‐dielectrophoresis, in‐line with on‐chip monitoring of the outlet sample for metrics of media conductivity, cell velocity, cell viability, cell position, and collected cell numbers, so that the cell flow rate and streamlines can be tailored for enabling dielectrophoretic separations from heterogeneous samples.
Collapse
Affiliation(s)
- Xuhai Huang
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Karina Torres‐Castro
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Walter Varhue
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Aditya Rane
- Department of Chemistry University of Virginia Charlottesville Virginia USA
| | - Ahmed Rasin
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
| | - Nathan S. Swami
- Electrical and Computer Engineering University of Virginia Charlottesville Virginia USA
- Department of Chemistry University of Virginia Charlottesville Virginia USA
| |
Collapse
|
27
|
Stanke S, Wenger C, Bier FF, Hölzel R. AC electrokinetic immobilization of influenza virus. Electrophoresis 2022; 43:1309-1321. [DOI: 10.1002/elps.202100324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/26/2021] [Accepted: 01/06/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Sandra Stanke
- Fraunhofer Institute for Cell Therapy and Immunology Branch Bioanalytics and Bioprocesses (IZI‐BB) Potsdam‐Golm Germany
- Institute of Biochemistry and Biology University of Potsdam Potsdam‐Golm Germany
| | - Christian Wenger
- IHP – Leibnizinstitut für innovative Mikroelektronik Frankfurt/Oder Germany
- Brandenburg University of Technology Cottbus–Senftenberg Cottbus Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology University of Potsdam Potsdam‐Golm Germany
| | - Ralph Hölzel
- Fraunhofer Institute for Cell Therapy and Immunology Branch Bioanalytics and Bioprocesses (IZI‐BB) Potsdam‐Golm Germany
| |
Collapse
|
28
|
Thompson JR, Crooks RM. Enriching Cations Using Electric Field Gradients Generated by Bipolar Electrodes in the Absence of Buffer. ChemElectroChem 2022. [DOI: 10.1002/celc.202200251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jonathan R. Thompson
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 105 E. 24th St., Stop A5300 Austin Texas 78712-1224 United States
| |
Collapse
|
29
|
Bhat MP, Thendral V, Uthappa UT, Lee KH, Kigga M, Altalhi T, Kurkuri MD, Kant K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. BIOSENSORS 2022; 12:220. [PMID: 35448280 PMCID: PMC9025399 DOI: 10.3390/bios12040220] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 05/05/2023]
Abstract
CTCs (circulating tumor cells) are well-known for their use in clinical trials for tumor diagnosis. Capturing and isolating these CTCs from whole blood samples has enormous benefits in cancer diagnosis and treatment. In general, various approaches are being used to separate malignant cells, including immunomagnets, macroscale filters, centrifuges, dielectrophoresis, and immunological approaches. These procedures, on the other hand, are time-consuming and necessitate multiple high-level operational protocols. In addition, considering their low efficiency and throughput, the processes of capturing and isolating CTCs face tremendous challenges. Meanwhile, recent advances in microfluidic devices promise unprecedented advantages for capturing and isolating CTCs with greater efficiency, sensitivity, selectivity and accuracy. In this regard, this review article focuses primarily on the various fabrication methodologies involved in microfluidic devices and techniques specifically used to capture and isolate CTCs using various physical and biological methods as well as their conceptual ideas, advantages and disadvantages.
Collapse
Affiliation(s)
- Mahesh Padmalaya Bhat
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
| | - Venkatachalam Thendral
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | | | - Kyeong-Hwan Lee
- Agricultural Automation Research Center, Chonnam National University, Gwangju 61186, Korea;
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Korea
| | - Madhuprasad Kigga
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Tariq Altalhi
- Department of Chemistry, Faculty of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Mahaveer D. Kurkuri
- Centre for Research in Functional Materials (CRFM), Jain Global Campus, Jain University, Bengaluru 562112, Karnataka, India; (M.P.B.); (V.T.); (M.K.)
| | - Krishna Kant
- Departamento de Química Física, Campus Universitario, CINBIO Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
30
|
Liquid Biopsy and Dielectrophoretic Analysis—Complementary Methods in Skin Cancer Monitoring. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The incidence and prevalence of skin cancers is currently increasing worldwide, with early detection, adequate treatment, and prevention of recurrences being topics of great interest for researchers nowadays. Although tumor biopsy remains the gold standard of diagnosis, this technique cannot be performed in a significant proportion of cases, so that the use of alternative methods with high sensitivity and specificity is becoming increasingly desirable. In this context, liquid biopsy appears to be a feasible solution for the study of cellular and molecular markers relevant to different types of skin cancers. Circulating tumor cells are just one of the components of interest obtained from performing liquid biopsy, and their study by complementary methods, such as dielectrophoresis, could bring additional benefits in terms of characterizing skin tumors and subsequently applying personalized therapy. One purpose of this review is to demonstrate the utility of liquid biopsy primarily in monitoring the most common types of skin tumors: basal cell carcinoma, squamous cell carcinoma, and malign melanoma. In addition, the originality of the article is based on the detailed presentation of the dielectrophoretic analysis method of the most important elements obtained from liquid biopsy, with direct impact on the clinical and therapeutic approach of skin tumors.
Collapse
|
31
|
Li H, Li J, Zhang Z, Guo Z, Zhang C, Wang Z, Guo Q, Li C, Li C, Yao J, Zheng A, Xu J, Gao Q, Zhang W, Zhou L. Integrated microdevice with a windmill-like hole array for the clog-free, efficient, and self-mixing enrichment of circulating tumor cells. MICROSYSTEMS & NANOENGINEERING 2022; 8:23. [PMID: 35251688 PMCID: PMC8844004 DOI: 10.1038/s41378-021-00346-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/15/2021] [Accepted: 12/12/2021] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) have tremendous potential to indicate disease progression and monitor therapeutic response using minimally invasive approaches. Considering the limitations of affinity strategies based on their cost, effectiveness, and simplicity, size-based enrichment methods that involve low-cost, label-free, and relatively simple protocols have been further promoted. Nevertheless, the key challenges of these methods are clogging issues and cell aggregation, which reduce the recovery rates and purity. Inspired by the natural phenomenon that the airflow around a windmill is disturbed, in this study, a windmill-like hole array on the SU-8 membrane was designed to perturb the fluid such that cells in a fluid would be able to self-mix and that the pressure acting on cells or the membrane would be dispersed to allow a greater velocity. In addition, based on the advantages of fluid coatings, a lipid coating was used to modify the membrane surface to prevent cell aggregation and clogging of the holes. Under the optimal conditions, recovery rates of 93% and 90% were found for A549 and HeLa cells in a clinical simulation test of our platform with a CTC concentration of 20-100 cells per milliliter of blood. The white blood cell (WBC) depletion rate was 98.7% (n = 15), and the CTC detection limit was less than 10 cells per milliliter of blood (n = 6). Moreover, compared with conventional membrane filtration, the advantages of the proposed device for the rapid (2 mL/min) and efficient enrichment of CTCs without clogging were shown both experimentally and theoretically. Due to its advantages in the efficient, rapid, uniform, and clog-free enrichment of CTCs, our platform offers great potential for metastatic detection and therapy analyses.
Collapse
Affiliation(s)
- Hao Li
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Zhen Guo
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Ji Hua Laboratory, 528000 Foshan, China
| | - Changsong Zhang
- Department of Laboratory Medicine, The Affiliated Suzhou Science and Technology Town Hospital, Nanjing Medical University, 215153 Suzhou, China
| | - Zixu Wang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qiuquan Guo
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, 518000 Shenzhen, China
| | - Chao Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Anran Zheng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Jingyi Xu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Qingxue Gao
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Wei Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
| | - Lianqun Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, 260026 Hefei, China
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, 215163 Suzhou, China
- Suzhou CASENS Co., Ltd, 215163 Suzhou, China
- Jinan Guoke Medical Technology Development Co., Ltd, 250001 Jinan, China
| |
Collapse
|
32
|
Salahi A, Honrado C, Rane A, Caselli F, Swami NS. Modified Red Blood Cells as Multimodal Standards for Benchmarking Single-Cell Cytometry and Separation Based on Electrical Physiology. Anal Chem 2022; 94:2865-2872. [PMID: 35107262 PMCID: PMC8852356 DOI: 10.1021/acs.analchem.1c04739] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/18/2022] [Indexed: 02/04/2023]
Abstract
Biophysical cellular information at single-cell sensitivity is becoming increasingly important within analytical and separation platforms that associate the cell phenotype with markers of disease, infection, and immunity. Frequency-modulated electrically driven microfluidic measurement and separation systems offer the ability to sensitively identify single cells based on biophysical information, such as their size and shape, as well as their subcellular membrane morphology and cytoplasmic organization. However, there is a lack of reliable and reproducible model particles with well-tuned subcellular electrical phenotypes that can be used as standards to benchmark the electrical physiology of unknown cell types or to benchmark dielectrophoretic separation metrics of novel device strategies. Herein, the application of red blood cells (RBCs) as multimodal standard particles with systematically modulated subcellular electrophysiology and associated fluorescence level is presented. Using glutaraldehyde fixation to vary membrane capacitance and by membrane resealing after electrolyte penetration to vary interior cytoplasmic conductivity and fluorescence in a correlated manner, each modified RBC type can be identified at single-cell sensitivity based on phenomenological impedance metrics and fitted to dielectric models to compute biophysical information. In this manner, single-cell impedance data from unknown RBC types can be mapped versus these model RBC types for facile determination of subcellular biophysical information and their dielectrophoretic separation conditions, without the need for time-consuming algorithms that often require unknown fitting parameters. Such internal standards for biophysical cytometry can advance in-line phenotypic recognition strategies.
Collapse
Affiliation(s)
- Armita Salahi
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Carlos Honrado
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
| | - Aditya Rane
- Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| | - Federica Caselli
- Civil
Engineering and Computer Science, University
of Rome Tor Vergata, 00133 Rome, Italy
| | - Nathan S. Swami
- Electrical
and Computer Engineering, University of
Virginia, Charlottesville, Virginia 22904, United States
- Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
33
|
Descamps L, Le Roy D, Deman AL. Microfluidic-Based Technologies for CTC Isolation: A Review of 10 Years of Intense Efforts towards Liquid Biopsy. Int J Mol Sci 2022; 23:ijms23041981. [PMID: 35216097 PMCID: PMC8875744 DOI: 10.3390/ijms23041981] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 02/01/2023] Open
Abstract
The selection of circulating tumor cells (CTCs) directly from blood as a real-time liquid biopsy has received increasing attention over the past ten years, and further analysis of these cells may greatly aid in both research and clinical applications. CTC analysis could advance understandings of metastatic cascade, tumor evolution, and patient heterogeneity, as well as drug resistance. Until now, the rarity and heterogeneity of CTCs have been technical challenges to their wider use in clinical studies, but microfluidic-based isolation technologies have emerged as promising tools to address these limitations. This review provides a detailed overview of latest and leading microfluidic devices implemented for CTC isolation. In particular, this study details must-have device performances and highlights the tradeoff between recovery and purity. Finally, the review gives a report of CTC potential clinical applications that can be conducted after CTC isolation. Widespread microfluidic devices, which aim to support liquid-biopsy-based applications, will represent a paradigm shift for cancer clinical care in the near future.
Collapse
Affiliation(s)
- Lucie Descamps
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
| | - Damien Le Roy
- Institut Lumière Matière ILM-UMR 5306, CNRS, Université Lyon 1, 69622 Villeurbanne, France;
| | - Anne-Laure Deman
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INSA Lyon, Ecole Centrale de Lyon, CPE Lyon, INL, UMR5270, 69622 Villeurbanne, France;
- Correspondence:
| |
Collapse
|
34
|
Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen NT, Zhang J. Multiphysics microfluidics for cell manipulation and separation: a review. LAB ON A CHIP 2022; 22:423-444. [PMID: 35048916 DOI: 10.1039/d1lc00869b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Multiphysics microfluidics, which combines multiple functional physical processes in a microfluidics platform, is an emerging research area that has attracted increasing interest for diverse biomedical applications. Multiphysics microfluidics is expected to overcome the limitations of individual physical phenomena through combining their advantages. Furthermore, multiphysics microfluidics is superior for cell manipulation due to its high precision, better sensitivity, real-time tunability, and multi-target sorting capabilities. These exciting features motivate us to review this state-of-the-art field and reassess the feasibility of coupling multiple physical processes. To confine the scope of this paper, we mainly focus on five common forces in microfluidics: inertial lift, elastic, dielectrophoresis (DEP), magnetophoresis (MP), and acoustic forces. This review first explains the working mechanisms of single physical phenomena. Next, we classify multiphysics techniques in terms of cascaded connections and physical coupling, and we elaborate on combinations of designs and working mechanisms in systems reported in the literature to date. Finally, we discuss the possibility of combining multiple physical processes and associated design schemes and propose several promising future directions.
Collapse
Affiliation(s)
- Haotian Cha
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria 3216, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland 4111, Australia.
| |
Collapse
|
35
|
Khan M, Chen X. Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation. Electrophoresis 2022; 43:879-891. [PMID: 35015306 DOI: 10.1002/elps.202100187] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/30/2023]
Abstract
Circulating tumor cells (CTCs) have been proven to have significant prognostic, diagnostic, and clinical values in early-stage cancer detection and treatment. The efficient separation of CTCs from peripheral blood can ensure intact and viable CTCs and can, thus, give proper genetic characterization and drug innovation. In this study, continuous and high-throughput separation of MDA-231 CTCs from overlapping sized white blood cells (WBCs) is achieved by modifying inertial cell focusing with dielectrophoresis (DEP) in a single-stage microfluidic platform by numeric simulation. The DEP is enabled by embedding interdigitated electrodes with alternating field control on a serpentine microchannel to avoid creating two-stage separation. Rather than using the electrokinetic migration of cells which slows down the throughput, the system leverages the inertial microfluidic flow to achieve high-speed continuous separation. The cell migration and cell positioning characteristics are quantified through coupled physics analyses to evaluate the effects of the applied voltages and Reynolds numbers (Re) on the separation performance. The results indicate that the introduction of DEP successfully migrates WBCs away from CTCs and that separation of MDA-231 CTCs from similar sized WBCs at a high Re of 100 can be achieved with a low voltage of magnitude 4 ×106 V/m. Additionally, the viability of MDA-231 CTCs is expected to be sustained after separation due to the short-term DEP exposure. The developed technique could be exploited to design active microchips for high-throughput separation of mixed cell beads despite their significant size overlap, using DEP-modified inertial focusing controlled simply by adjusting the applied external field.
Collapse
Affiliation(s)
- Mohammed Khan
- School of Engineering and Computer Science, Washington State University, Vancouver, WA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, Vancouver, WA
| |
Collapse
|
36
|
Rapid and efficient capturing of circulating tumor cells from breast cancer Patient's whole blood via the antibody functionalized microfluidic (AFM) chip. Biosens Bioelectron 2022; 201:113965. [PMID: 35016111 DOI: 10.1016/j.bios.2022.113965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/29/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022]
Abstract
Accurate enumeration of circulating tumor cells (CTCs) in cancer patient's blood functions as a form of "liquid biopsy", which is pivotal for cancer screening, prognosis, and diagnosis. Herein, we demonstrate a novel antibody functionalized microfluidic (AFM) chip that rapidly and accurately qualifies CTCs from breast cancer patient's whole blood. The AFM chip consists of three buffering zones, and four main capturing zones filled with equilateral triangular pillars and periodically distributed obstacles. We validate the AFM chip with three Epithelial cell adhesion molecule (EpCAM) positive cancer cell lines, including breast (MCF-7), prostate (PC3), and lung cancer cell lines (A549), achieving capture efficiencies of 99.5%, 98.5%, and 96.72%, respectively, at a flow rate of 0.6 mL/hour. We further confirm the efficacy of the AFM chip with five advanced breast cancer patients' whole blood to capture EpCAM+/CK19+/CD45-/DAPI + CTCs. Interestingly, high number of CTCs were identified from each patient's 1 mL whole blood (595-2270), The AFM chip is highly efficient at rapidly capturing CTCs from cancer patients' whole blood without requiring extra equipment, which is critically beneficial for clinical application.
Collapse
|
37
|
Russo GI, Musso N, Romano A, Caruso G, Petralia S, Lanzanò L, Broggi G, Camarda M. The Role of Dielectrophoresis for Cancer Diagnosis and Prognosis. Cancers (Basel) 2021; 14:198. [PMID: 35008359 PMCID: PMC8750463 DOI: 10.3390/cancers14010198] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/17/2022] Open
Abstract
Liquid biopsy is emerging as a potential diagnostic tool for prostate cancer (PC) prognosis and diagnosis. Unfortunately, most circulating tumor cells (CTC) technologies, such as AdnaTest or Cellsearch®, critically rely on the epithelial cell adhesion molecule (EpCAM) marker, limiting the possibility of detecting cancer stem-like cells (CSCs) and mesenchymal-like cells (EMT-CTCs) that are present during PC progression. In this context, dielectrophoresis (DEP) is an epCAM independent, label-free enrichment system that separates rare cells simply on the basis of their specific electrical properties. As compared to other technologies, DEP may represent a superior technique in terms of running costs, cell yield and specificity. However, because of its higher complexity, it still requires further technical as well as clinical development. DEP can be improved by the use of microfluid, nanostructured materials and fluoro-imaging to increase its potential applications. In the context of cancer, the usefulness of DEP lies in its capacity to detect CTCs in the bloodstream in their epithelial, mesenchymal, or epithelial-mesenchymal phenotype forms, which should be taken into account when choosing CTC enrichment and analysis methods for PC prognosis and diagnosis.
Collapse
Affiliation(s)
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Science (BIOMETEC), University of Catania, 95123 Catania, Italy
- STLab s.r.l., Via Anapo 53, 95126 Catania, Italy;
| | - Alessandra Romano
- Haematological Section, University of Catania, 95125 Catania, Italy;
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (S.P.)
| | - Salvatore Petralia
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy; (G.C.); (S.P.)
| | - Luca Lanzanò
- Department of Physics and Astronomy “Ettore Majorana”, University of Catania, 95123 Catania, Italy;
| | - Giuseppe Broggi
- Pathology Section, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | |
Collapse
|
38
|
Ruan Q, Yang J, Zou F, Chen X, Zhang Q, Zhao K, Lin X, Zeng X, Yu X, Wu L, Lin S, Zhu Z, Yang C. Single-Cell Digital Microfluidic Mass Spectrometry Platform for Efficient and Multiplex Genotyping of Circulating Tumor Cells. Anal Chem 2021; 94:1108-1117. [PMID: 34964350 DOI: 10.1021/acs.analchem.1c04194] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Gene mutation profiling of heterogeneous circulating tumor cells (CTCs) offers comprehensive and real-time molecular information of tumors for targeted therapy guidance, but the lack of efficient and multiplex genotyping techniques for single-CTC analysis greatly hinders its development and clinical application. This paper reports a single-CTC mass spectrometry analysis method for efficient and multiplex mutation profiling based on digital microfluidics. Digital microfluidics affords integrated single-CTC manipulation, from single-CTC isolation to high-performance whole genome amplification, via nanoliter droplet-based wettability trapping and hydrodynamic adjustment of cell distribution. Coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, multiplex mutation information of individual CTCs can be efficiently and accurately identified by the inherent mass differences of different DNA sequences. This platform achieves Kirsten rat sarcoma viral oncogene mutation profiling of heterogeneous CTCs at the single-cell level from cancer patient samples, offering new avenues for genotype profiling of single CTCs and cancer therapy guidance.
Collapse
Affiliation(s)
- Qingyu Ruan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jian Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fenxiang Zou
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaofeng Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qianqian Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Kaifeng Zhao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiaoye Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xi Zeng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiyuan Yu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.,Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
39
|
Robinson A, Jain A, Rahman R, Abayzeed S, Hague RJM, Rawson FJ. Impedimetric Characterization of Bipolar Nanoelectrodes with Cancer Cells. ACS OMEGA 2021; 6:29495-29505. [PMID: 34778621 PMCID: PMC8581971 DOI: 10.1021/acsomega.1c03547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Merging of electronics with biology, defined as bioelectronics, at the nanoscale holds considerable promise for sensing and modulating cellular behavior. Advancing our understanding of nanobioelectronics will facilitate development and enable applications in biosensing, tissue engineering, and bioelectronic medicine. However, studies investigating the electrical effects when merging wireless conductive nanoelectrodes with biology are lacking. Consequently, a tool is required to develop a greater understanding of merging conductive nanoparticles with cells. Herein, this challenge is addressed by developing an impedimetric method to evaluate bipolar electrode (BPE) systems that could report on electrical input. A theoretical framework is provided, using impedance to determine if conductive nanoparticles can be polarized and used to drive current. It is then demonstrated that 125 nm of gold nanoparticle (AuNP) bipolar electrodes (BPEs) could be sensed in the presence of cells when incorporated intracellularly at 500 μg/mL using water and phosphate-buffered saline (PBS) as electrolytes. These results highlight how nanoscale BPEs act within biological systems. This research will impact the rational design of using BPE systems in cells for both sensing and actuating applications.
Collapse
Affiliation(s)
- Andie
J. Robinson
- Regenerative
Medicine and Cellular Therapies, Biodiscovery Institute, School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Akhil Jain
- Regenerative
Medicine and Cellular Therapies, Biodiscovery Institute, School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Ruman Rahman
- Children’s
Brain Tumour Research Centre (CBTRC), Biodiscovery Institute, School
of Medicine, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sidahmed Abayzeed
- Optics
and Photonics Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Richard J. M. Hague
- Centre
for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Nottingham NG8 1BB, U.K.
| | - Frankie J. Rawson
- Regenerative
Medicine and Cellular Therapies, Biodiscovery Institute, School of
Pharmacy, University of Nottingham, Nottingham NG7 2RD, U.K.
| |
Collapse
|
40
|
Lin S, Liu Y, Zhang M, Xu X, Chen Y, Zhang H, Yang C. Microfluidic single-cell transcriptomics: moving towards multimodal and spatiotemporal omics. LAB ON A CHIP 2021; 21:3829-3849. [PMID: 34541590 DOI: 10.1039/d1lc00607j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cells are the basic units of life with vast heterogeneity. Single-cell transcriptomics unveils cell-to-cell gene expression variabilities, discovers novel cell types, and uncovers the critical roles of cellular heterogeneity in biological processes. The recent advances in microfluidic technologies have greatly accelerated the development of single-cell transcriptomics with regard to throughput, sensitivity, cost, and automation. In this article, we review state-of-the-art microfluidic single-cell transcriptomics, with a focus on the methodologies. We first summarize six typical microfluidic platforms for isolation and transcriptomic analysis of single cells. Then the on-going trend of microfluidic transcriptomics towards multimodal omics, which integrates transcriptomics with other omics to provide more comprehensive pictures of gene expression networks, is discussed. We also highlight single-cell spatial transcriptomics and single-cell temporal transcriptomics that provide unprecedented spatiotemporal resolution to reveal transcriptomic dynamics in space and time, respectively. The emerging applications of microfluidic single-cell transcriptomics are also discussed. Finally, we discuss the current challenges to be tackled and provide perspectives on the future development of microfluidic single-cell transcriptomics.
Collapse
Affiliation(s)
- Shichao Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingxia Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yingwen Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Huimin Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
41
|
Maidin NNM, Buyong MR, Rahim RA, Mohamed MA. Dielectrophoresis applications in biomedical field and future perspectives in biomedical technology. Electrophoresis 2021; 42:2033-2059. [PMID: 34346062 DOI: 10.1002/elps.202100043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 11/09/2022]
Abstract
Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in non-uniform electric fields by utilising unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to dielectrophoresis application in biomedical field reported between 2016 and 2020. Firstly, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Secondly, the biomedical uses of DEP in liquid biopsies, stem cell therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Ruslinda A Rahim
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,National Nanotechnology Centre (NNC), Ministry of Science Technology and Innovation (MOSTI), Federal Government Administrative Centre, Putrajaya, 62662, Malaysia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronic (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
42
|
Bouffier L, Zigah D, Sojic N, Kuhn A. Bipolar (Bio)electroanalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2021; 14:65-86. [PMID: 33940930 DOI: 10.1146/annurev-anchem-090820-093307] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This contribution reviews a selection of the most recent studies on the use of bipolar electrochemistry in the framework of analytical chemistry. Despite the fact that the concept is not new, with several important studies dating back to the middle of the last century, completely novel and very original approaches have emerged over the last decade. This current revival illustrates that scientists still (re)discover some exciting virtues of this approach, which are useful in many different areas, especially for tackling analytical challenges in an unconventional way. In several cases, this "wireless" electrochemistry strategy enables carrying out measurements that are simply not possible with classic electrochemical approaches. This review will hopefully stimulate new ideas and trigger scientists to integrate some aspects of bipolar electrochemistry in their work in order to drive the topic into yet unexplored and eventually completely unexpected directions.
Collapse
Affiliation(s)
- Laurent Bouffier
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Dodzi Zigah
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Neso Sojic
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| | - Alexander Kuhn
- Bordeaux INP, Institute of Molecular Science, and CNRS UMR 5255, University of Bordeaux, 33607 Pessac, France; , , ,
| |
Collapse
|
43
|
Jiang T, Chen X, Ren Y, Tang D, Jiang H. Dielectric Characterization and Multistage Separation of Various Cells via Dielectrophoresis in a Bipolar Electrode Arrayed Device. Anal Chem 2021; 93:10220-10228. [PMID: 34261311 DOI: 10.1021/acs.analchem.1c01610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isolation of microalgal cells is as an indispensable part of producing biofuels for energy security and detecting toxic contaminants for marine routine monitoring. Microalgae live together with various microalgae naturally, and abundant samples need to be tackled in practical applications. Therefore, effective separation technologies need to be developed urgently to achieve high-throughput separation of various microalgae. Herein, we develop a reliable device to characterize the dielectric response of microalgae and sequentially separate various microalgae utilizing dielectrophoretic force in a bipolar electrode (BPE) arrayed device. First, by investigating the array width extension (AWE) effect on the electric- and flow-field distributions, we explore consequences of incidental electrohydrodynamic mechanisms and axial flow rate on the separation. Second, based on device performance on sample characterizations, we demonstrate this technology by separating microparticles in three- and five-channel devices. Third, we discriminate dead and live cells to explore its capability using the cell viability test and illustrate the AWE influence on the separation. Fourth, we characterize dielectric responses of different microalgae and separate C. vulgaris and Oocystis sp. Finally, we extended BPEs in length and developed an arrayed device for sequential separation of various microalgae, and this platform is successfully engineered in high-throughput isolation of C. vulgaris from complex samples. This technology presents good potential in addressing depleting fossil fuel and burgeoning environmental concerns due to its performance in the separation of microalgal strains from complex samples.
Collapse
Affiliation(s)
- Tianyi Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Xiaoming Chen
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, PR China
| | - Dewei Tang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001, PR China
| |
Collapse
|
44
|
Hyler AR, Hong D, Davalos RV, Swami NS, Schmelz EM. A novel ultralow conductivity electromanipulation buffer improves cell viability and enhances dielectrophoretic consistency. Electrophoresis 2021; 42:1366-1377. [PMID: 33687759 DOI: 10.1002/elps.202000324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/23/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Cell separation has become a critical diagnostic, research, and treatment tool for personalized medicine. Despite significant advances in cell separation, most widely used applications require the use of multiple, expensive antibodies to known markers in order to identify subpopulations of cells for separation. Dielectrophoresis (DEP) provides a biophysical separation technique that can target cell subpopulations based on phenotype without labels and return native cells for downstream analysis. One challenge in employing any DEP device is the sample being separated must be transferred into an ultralow conductivity medium, which can be detrimental in retaining cells' native phenotypes for separation. Here, we measured properties of traditional DEP reagents and determined that after just 1-2 h of exposure and subsequent culture, cells' viability was significantly reduced below 50%. We developed and tested a novel buffer (Cyto Buffer) that achieved 6 weeks of stable shelf-life and demonstrated significantly improved viability and physiological properties. We then determined the impact of Cyto Buffer on cells' dielectric properties and morphology and found that cells retained properties more similar to that of their native media. Finally, we vetted Cyto Buffer's usability on a cell separation platform (Cyto R1) to determine combined efficacy for cell separations. Here, more than 80% of cells from different cell lines were recovered and were determined to be >70% viable following exposure to Cyto Buffer, flow stimulation, electromanipulation, and downstream collection and growth. The developed buffer demonstrated improved opportunities for electrical cell manipulation, enrichment, and recovery for next generation cell separations.
Collapse
Affiliation(s)
| | - Daly Hong
- CytoRecovery, Inc., Blacksburg, VA, USA
| | - Rafael V Davalos
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Nathan S Swami
- Electrical and Computer Engineering, University of Virginia, Charlottesville, VA, USA
| | - Eva M Schmelz
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.,Human Nutrition, Foods and Exercise, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
45
|
Borchers JS, Campbell CR, Van Scoy SB, Clark MJ, Anand RK. Redox Cycling at an Array of Interdigitated Bipolar Electrodes for Enhanced Sensitivity in Biosensing**. ChemElectroChem 2021. [DOI: 10.1002/celc.202100523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Janis S. Borchers
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Claire R. Campbell
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Savanah B. Van Scoy
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Morgan J. Clark
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| | - Robbyn K. Anand
- Department of Chemistry Iowa State University 1605 Gilman Hall, 2415 Osborn Drive Ames, Iowa 50011 USA
| |
Collapse
|
46
|
Cornejo MA, Linz TH. Harnessing Joule heating in microfluidic thermal gel electrophoresis to create reversible barriers for cell enrichment. Electrophoresis 2021; 42:1238-1246. [PMID: 33570796 PMCID: PMC8178196 DOI: 10.1002/elps.202000379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 11/07/2022]
Abstract
Gel electrophoresis is a ubiquitous bioanalytical technique used to characterize the components of cell lysates. However, analyses of bulk lysates sacrifice detection sensitivity because intracellular biomolecules become diluted, and the liberation of proteases and nucleases can degrade target analytes. This report describes a method to enrich cells directly within a microfluidic gel as a first step toward online measurement of trace intracellular biomolecules with minimal dilution and degradation. Thermal gels were employed as the gel matrix because they can be reversibly converted between liquid and solid phases as a function of temperature. Rather than fabricate costly heating elements into devices to control temperature-and thus the phase of the gel-Joule heating was used instead. Adjoining regions of liquid-phase and solid-phase gel were formed within microfluidic channels by selectively inducing localized Joule heat. Cells migrated through the liquid gel but could not enter the solid gel-accumulating at the liquid-solid gel boundary-whereas small molecule contaminants passed through to waste. Barriers were then liquified on-demand by removing Joule heat to collect the purified, non-lysed cells for downstream analyses. Using voltage-controlled Joule heating to regulate the phase of thermal gels is an innovative approach to facilitate in-gel cell enrichment in low-cost microfluidic devices.
Collapse
Affiliation(s)
- Mario A Cornejo
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| | - Thomas H Linz
- Department of Chemistry, Wayne State University, Detroit, Michigan, USA
| |
Collapse
|
47
|
Wu Y, Chattaraj R, Ren Y, Jiang H, Lee D. Label-Free Multitarget Separation of Particles and Cells under Flow Using Acoustic, Electrophoretic, and Hydrodynamic Forces. Anal Chem 2021; 93:7635-7646. [PMID: 34014074 DOI: 10.1021/acs.analchem.1c00312] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Multiplex separation of mixed biological samples is essential in a considerable portion of biomedical research and clinical applications. An automated and operator-independent process for the separation of samples is highly sought after. There is a significant unmet need for methods that can perform fractionation of small volumes of multicomponent mixtures. Herein, we design an integrated chip that combines acoustic and electric fields to enable efficient and label-free separation of multiple different cells and particles under flow. To facilitate the connection of multiple sorting mechanisms in tandem, we investigate the electroosmosis (EO)-induced deterministic lateral displacement (DLD) separation in a combined pressure- and DC field-driven flow and exploit the combination of the bipolar electrode (BPE) focusing and surface acoustic wave (SAW) sorting modules. We successfully integrate four sequential microfluidic modules for multitarget separation within a single platform: (i) sorting particles and cells relying on the size and surface charge by adjusting the flow rate and electric field using a DLD array; (ii) alignment of cells or particles within a microfluidic channel by a bipolar electrode; (iii) separation of particles based on compressibility and density by the acoustic force; and (iv) separation of viable and nonviable cells using dielectric properties via the dielectrophoresis (DEP) force. As a proof of principle, we demonstrate the sorting of multiple cell and particle types (polystyrene (PS) particles, oil droplets, and viable and nonviable yeast cells) with high efficiency. This integrated microfluidic platform combines multiple functional components and, with its ability to noninvasively sort multiple targeted cells in a label-free manner relying on different properties, is compatible with high-definition imaging, showing great potential in diverse diagnostic and analysis applications.
Collapse
Affiliation(s)
- Yupan Wu
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China.,School of Microelectronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China.,Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518000, P. R. China.,Yangtze River Delta Research Institute of NPU, Taicang 215400, P. R. China
| | - Rajarshi Chattaraj
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yukun Ren
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Hongyuan Jiang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, P. R. China
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
48
|
Zhang S, Zhang Z, Chen S, Zhu R. Measurement of Electric Double Layer Capacitance Using Dielectrophoresis-Based Particle Manipulation. Anal Chem 2021; 93:5882-5889. [PMID: 33797871 DOI: 10.1021/acs.analchem.1c00226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An electric double layer (EDL) generally exists at the interface between a conductive electrode and its adjacent liquid electrolyte. Accurate measurement of the capacitance of EDL is requisite but a great challenge due to the complexity of its variation mechanism correlated with the magnitude and frequency of applied signals and the difficulty in measuring the inner layer potentials across the EDL. Herein, a novel dielectrophoresis (DEP)-based approach is proposed to measure the capacitance of an EDL at a microelectrode/electrolyte interface. The measurement is achieved by employing DEP manipulation to micro polystyrene (PS) spheres suspended in a liquid electrolyte and determining the capacitance of EDL on the microelectrodes from the moving velocities of spheres. This method allows measurement of the capacitances of EDL under alternating current (AC) signals with different magnitudes and frequencies, so that the capacitance change with the magnitude and frequency of the applied signal can be characterized. The method avoids the impedance interference from the liquid electrolyte, external measuring systems, and other crosstalks, enabling an accurate measurement of double layer capacitance. In addition, the inner layer potentials across EDL under different magnitudes and frequencies of applied signals are comprehensively investigated, which facilitates an understanding of the ion behavior at the interfacial boundary that governs external observations of electrochemical reactions. The accurate measurement of the capacitance of EDL is of significance to explore the mechanism of interfacial functioning of electrochemical and bioelectrical devices and systems.
Collapse
Affiliation(s)
- Shengsen Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Zhizhong Zhang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shengjie Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Rong Zhu
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
49
|
Wang Z, Wu Z, Sun N, Cao Y, Cai X, Yuan F, Zou H, Xing C, Pei R. Antifouling hydrogel-coated magnetic nanoparticles for selective isolation and recovery of circulating tumor cells. J Mater Chem B 2021; 9:677-682. [PMID: 33333542 DOI: 10.1039/d0tb02380a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
For reliable downstream molecular analysis, it is crucially important to recover circulating tumor cells (CTCs) from clinical blood samples with high purity and viability. Herein, magnetic nanoparticles coated with an antifouling hydrogel layer based on the polymerization method were developed to realize cell-friendly and efficient CTC capture and recovery. Particularly, the hydrogel layer was fabricated by zwitterionic sulfobetaine methacrylate (SBMA) and methacrylic acid (MAA) cross-linked with N,N-bis(acryloyl)cystamine (BACy), which could not only resist nonspecific adhesion but also gently recover the captured cells by glutathione (GSH) responsiveness. Moreover, the anti-epithelial cell adhesion molecule (anti-EpCAM) antibody was modified onto the surface of the hydrogel to provide high specificity for CTC capture. As a result, 96% of target cells were captured in the mimic clinical blood samples with 5-100 CTCs per mL in 25 min of incubation time. After the GSH treatment, about 96% of the obtained cells were recovered with good viability. Notably, the hydrogel-coated magnetic nanoparticles were also usefully applied to isolate CTCs from the blood samples of cancer patients. The favorable results indicate that the hydrogel-modified magnetic nanoparticles may have a promising opportunity to capture and recover CTCs for subsequent research.
Collapse
Affiliation(s)
- Zhili Wang
- CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Li Y, Wang Y, Wan K, Wu M, Guo L, Liu X, Wei G. On the design, functions, and biomedical applications of high-throughput dielectrophoretic micro-/nanoplatforms: a review. NANOSCALE 2021; 13:4330-4358. [PMID: 33620368 DOI: 10.1039/d0nr08892g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As an efficient, rapid and label-free micro-/nanoparticle separation technique, dielectrophoresis (DEP) has attracted widespread attention in recent years, especially in the field of biomedicine, which exhibits huge potential in biomedically relevant applications such as disease diagnosis, cancer cell screening, biosensing, and others. DEP technology has been greatly developed recently from the low-flux laboratory level to high-throughput practical applications. In this review, we summarize the recent progress of DEP technology in biomedical applications, including firstly the design of various types and materials of DEP electrode and flow channel, design of input signals, and other improved designs. Then, functional tailoring of DEP systems with endowed specific functions including separation, purification, capture, enrichment and connection of biosamples, as well as the integration of multifunctions, are demonstrated. After that, representative DEP biomedical application examples in aspects of disease detection, drug synthesis and screening, biosensing and cell positioning are presented. Finally, limitations of existing DEP platforms on biomedical application are discussed, in which emphasis is given to the impact of other electrodynamic effects such as electrophoresis (EP), electroosmosis (EO) and electrothermal (ET) effects on DEP efficiency. This article aims to provide new ideas for the design of novel DEP micro-/nanoplatforms with desirable high throughput toward application in the biomedical community.
Collapse
Affiliation(s)
- Yalin Li
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Mingxue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Lei Guo
- Research Center for High-Value Utilization of Waste Biomass, College of Life Science, College of Life Science, Qingdao University, 266071 Qingdao, PR China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071 Qingdao, PR China.
| |
Collapse
|