1
|
Ling H, Zhang J, Wang Y, Zeng X. One-step achieving high performance all-solid-state and all-in-one flexible electrochromic supercapacitor by polymer dispersed electrochromic device strategy. J Colloid Interface Sci 2024; 665:969-976. [PMID: 38569313 DOI: 10.1016/j.jcis.2024.03.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/05/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Electrochromic devices (ECD) are widely used to regulate the transmittance of sunlight by applying a small voltage, but the drawbacks like complex layer-by-layer preparation procedures and inconvenient assembling process still exist. To address these problems, gel or solution-type all-in-one ECDs were recently developed for the simple structure, however, the leakage risk and absence of flexible large-area production have limited real applications. Herein, a novel all-solid-state and all-in-one flexible ECD was reported by originally developed polymer dispersed electrochromic device (PDECD) strategy. This all-solid-state flexible ECD could be efficiently prepared only by one step of phase separation without any extra treatment, and demonstrated outstanding stability (92.1 % of original ΔT remained after 10,000 cycles), high coloration efficiency (197 cm2/C), low power consumption (86.4 μW/cm2) and satisfied response time (≤12 s). Meanwhile, the stored power in ECD during coloring process could drive a LED with excellent cyclic stability (93 % of original capacity remained after 3000 cycles), implying that ECD could also serve as an idea electrochromic supercapacitor. What'more, a reported largest viologen-based all-solid-state flexible ECD (17.8 × 13.2 cm2) with robust bending resistance (up to 1000 bending cycles) was successfully fabricated with industrial roller coating technique, which indicated the huge potential in real world.
Collapse
Affiliation(s)
- Huan Ling
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China; Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China
| | - Junsen Zhang
- Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China
| | - Yu Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China.
| | - Xiping Zeng
- Research and Development Center, Shenzhen Huake-Tek Co., Ltd., Shenzhen, China.
| |
Collapse
|
2
|
Wang Y, Lei C, Guan W, Shi W, Shen R, Zhang SXA, Yu G. Sustainable, low-cost, high-contrast electrochromic displays via host-guest interactions. Proc Natl Acad Sci U S A 2024; 121:e2401060121. [PMID: 38648475 PMCID: PMC11067027 DOI: 10.1073/pnas.2401060121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/02/2024] [Indexed: 04/25/2024] Open
Abstract
Electrochromic (EC) displays with electronically regulating the transmittance of solar radiation offer the opportunity to increase the energy efficiency of the building and electronic products and improve the comfort and lifestyle of people. Despite the unique merit and vast application potential of EC technologies, long-awaited EC windows and related visual content displays have not been fully commercialized due to unsatisfactory production cost, durability, color, and complex fabrication processes. Here we develop a unique EC strategy and system based on the natural host and guest interactions to address the above issues. A completely reusable and sustainable EC device has been fabricated with potential advantages of extremely low cost, ideal user-/environment friendly property, and excellent optical modulation, which is benefited from the extracted biomass EC materials and reusable transparent electrodes involved in the system. The as-prepared EC window and nonemissive transparent display also show comprehensively excellent properties: high transmittance change (>85%), broad spectra modulation covering Ultraviolet (UV), Visible (Vis) to Infrared (IR) ranges, high durability (no attenuation under UV radiation for more than 1.5 mo), low open voltage (0.9 V), excellent reusability (>1,200 cycles) of the device's key components and reversibility (>4,000 cycles) with a large transmittance change, and pleasant multicolor. It is anticipated that unconventional exploration and design principles of dynamic host-guest interactions can provide unique insight into different energy-saving and sustainable optoelectronic applications.
Collapse
Affiliation(s)
- Yuyang Wang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Wen Shi
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| | - Ruipeng Shen
- Key Lab of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun1130012, China
| | - Sean Xiao-An Zhang
- Key Lab of Supramolecular Structure and Materials, Department of Chemistry, Jilin University, Changchun1130012, China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
3
|
Hamo Y, Neudert A, Bendikov T, Lahav M, van der Boom ME. Compositionally Controlled Electron Transfer in Metallo-Organics. J Am Chem Soc 2023; 145:18075-18083. [PMID: 37529898 PMCID: PMC10436274 DOI: 10.1021/jacs.3c05874] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 08/03/2023]
Abstract
We demonstrate here the assembly of a nanolayer of electrochromic iron complexes on the top of composite layers of cobalt and ruthenium complexes. Depending on the ratio of the latter two complexes, we can tailor materials that show different electron transport pathways, redox activities, and color transitions. No redox activity of the top layer, consisting of iron complexes, is observable when the relative amount of the ruthenium complexes is low in the underlying composite layer because of the insulating properties of the isostructural cobalt complexes. Increasing the amount of ruthenium complexes opens an electron transport channel, resulting in charge storage in both the cobalt and iron complexes. The trapped charges can be chemically released by redox-active ferrocyanide complexes at the film-water interface.
Collapse
Affiliation(s)
- Yonatan Hamo
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Alena Neudert
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Tatyana Bendikov
- Department
of Chemical Research Support, The Weizmann
Institute of Science, 7610001 Rehovot, Israel
| | - Michal Lahav
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Milko E. van der Boom
- Department
of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
4
|
Han Y, Cheng X, Zhong Y, Cui B. Near‐Infrared Electrochromism Based on Intervalence Charge Transfer. MIXED‐VALENCE SYSTEMS 2023:431-462. [DOI: 10.1002/9783527835287.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Zhou X, Huang E, Zhang R, Xiang H, Zhong W, Xu B. Multicolor Tunable Electrochromic Materials Based on the Burstein-Moss Effect. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101580. [PMID: 37241997 DOI: 10.3390/nano13101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Inorganic electrochromic (EC) materials, which can reversibly switch their optical properties by current or potential, are at the forefront of commercialization of displays and smart windows. However, most inorganic EC materials have challenges in achieving multicolor tunability. Here, we propose that the Burstein-Moss (BM) effect, which could widen the optical gap by carrier density, could be a potential mechanism to realize the multicolor tunable EC phenomenon. Degenerated semiconductors with suitable fundament band gaps and effective carrier masses could be potential candidates for multicolor tunable EC materials based on the BM effect. We select bulk Y2CF2 as an example to illustrate multicolor tunability based on the BM effect. In addition to multicolor tunability, the BM effect also could endow EC devices with the ability to selectively modulate the absorption for near infrared and visible light, but with a simpler device structure. Thus, we believe that this mechanism could be applied to design novel EC smart windows with unprecedented functions.
Collapse
Affiliation(s)
- Xia Zhou
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Enhui Huang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Rui Zhang
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Hui Xiang
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, China
| | - Wenying Zhong
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| | - Bo Xu
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Ranathunge TA, Curiac C, Green KA, Kolodziejczyk W, Hill G, Morgan S, Delcamp JH, Watkins DL. Heteroacene-Based Polymer with Fast-Switching Visible-Near Infrared Electrochromic Behavior. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7217-7226. [PMID: 36692904 DOI: 10.1021/acsami.2c21111] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The electrochromic properties and application of electronically conducting polymers (ECPs) (PTRPZ-EDOT) consisting of a 3,4-ethylenedioxythiophene (EDOT) and the heteroacene-based molecular scaffold, 6H-pyrrolo[3,2-b:4,5-b'] bis [1,4] benzothiazine (TRPZ), are reported. Known for its high electron mobility and conducting properties, the novel TRPZ scaffold was synthesized to possess two EDOT molecules termini affording TRPZ-EDOT. Electropolymerization of TRPZ-EDOT resulted in remarkable spectroscopic and conductive properties suitable for electrochromic device fabrication. Using atomic force microscopy (AFM), the average surface roughness and surface topography of PTRPZ-EDOT polymer thin films were determined. Spectroelectrochemical data showed that the polymer achieved switching times of 4.07 (coloration) and 0.47 s (bleaching) at 539 nm. The PTRPZ-EDOT film exhibits an optical contrast of 36-44% at 539 nm between its neutral and colored states, respectively. The NIR region from 1000 to 1700 nm shows the appearance of charge carrier bands with a 0-1 V potential range. An electrochromic device was successfully fabricated from PTRPZ-EDOT, showcasing the potential and applicability of the polymer material for advanced technologies such as smart windows, flexible electrochromic screens, and energy storage devices.
Collapse
Affiliation(s)
- Tharindu A Ranathunge
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, Mississippi 38677, United States
- Department of Chemistry, Brown University, 324 Brook Street Thayer Street, MacMillan Lawn, Providence, Rhode Island 02912, United States
| | - Christine Curiac
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, Mississippi 38677, United States
| | - Kevin A Green
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Wojciech Kolodziejczyk
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson- State University, Jackson, Mississippi 39217, United States
| | - Glake Hill
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson- State University, Jackson, Mississippi 39217, United States
| | - Sarah Morgan
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, Mississippi 39406, United States
| | - Jared H Delcamp
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, Mississippi 38677, United States
| | - Davita L Watkins
- Department of Chemistry and Biochemistry, University of Mississippi University, Oxford, Mississippi 38677, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 W Woodruff Ave., Columbus, Ohio 43210, United States
| |
Collapse
|
7
|
Tao CA, Li Y, Wang J. The progress of electrochromic materials based on metal–organic frameworks. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Chen Y, Wu J, Lu S, Facchetti A, Marks TJ. Semiconducting Copolymers with Naphthalene Imide/Amide π‐Conjugated Units: Synthesis, Crystallography, and Systematic Structure‐Property‐Mobility Correlations. Angew Chem Int Ed Engl 2022; 61:e202208201. [DOI: 10.1002/anie.202208201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Chen
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
| | - Jianglin Wu
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
| | - Shirong Lu
- Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 P. R. China
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
- Flexterra Corporation Skokie IL 60077 USA
| | - Tobin J. Marks
- Department of Chemistry and the Materials Research Center Northwestern University Evanston IL 60208 USA
| |
Collapse
|
9
|
Liu Q, Yang L, Ling W, Guo B, Chen L, Wang J, Zhang J, Wang W, Mo F. Organic electrochromic energy storage materials and device design. Front Chem 2022; 10:1001425. [PMID: 36212068 PMCID: PMC9538391 DOI: 10.3389/fchem.2022.1001425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
While not affecting electrochemical performance of energy storage devices, integrating multi-functional properties such as electrochromic functions into energy storage devices can effectively promote the development of multifunctional devices. Compared with inorganic electrochromic materials, organic materials possess the significant advantages of facile preparation, low cost, and large color contrast. Specifically, most polymer materials show excellent electrochemical properties, which can be widely used in the design and development of energy storage devices. In this article, we focus on the application of organic electrochromic materials in energy storage devices. The working mechanisms, electrochemical performance of different types of organics as well as the shortcomings of organic electrochromic materials in related devices are discussed in detail.
Collapse
Affiliation(s)
- Qingjiang Liu
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Liangliang Yang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Wei Ling
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Binbin Guo
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, China
| | - Lina Chen
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaqi Wang
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Jiaolong Zhang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| | - Wenhui Wang
- Department of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, China
| | - Funian Mo
- Sauvage Laboratory for Smart Materials, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen, China
- *Correspondence: Jiaolong Zhang, ; Funian Mo,
| |
Collapse
|
10
|
Das S, Patra D, Shankar S, Ajayaghosh A. Photocycloaddition as a Tool for Modulation of the Lower Critical Solution Temperature in a Molecular π‐System to Control Transmission of Solar Radiation. Angew Chem Int Ed Engl 2022; 61:e202207641. [DOI: 10.1002/anie.202207641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Satyajit Das
- Photosciences and Photonics Section Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Dipak Patra
- Photosciences and Photonics Section Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sreejith Shankar
- Photosciences and Photonics Section Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section Chemical Sciences and Technology Division, CSIR— National Institute for Interdisciplinary Sciences and Technology (CSIR—NIIST) Thiruvananthapuram 695019 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
11
|
Chen Y, Wu J, Lu S, Facchetti A, Marks TJ. Semiconducting Copolymers with Naphthalene Imide/Amide π‐Conjugated Units: Synthesis, Crystallography, and Systematic Structure−Property−Mobility Correlations. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yao Chen
- Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology CHINA
| | - Jianglin Wu
- Northwestern University Department of Chemistry and the Materials Research Center UNITED STATES
| | - Shirong Lu
- Chinese Academy of Sciences Chongqing Institute of Green and Intelligent Technology CHINA
| | - Antonio Facchetti
- Northwestern University Department of Chemistry and the Materials Research Center UNITED STATES
| | - Tobin Jay Marks
- Northwestern University Department of Chemistry 2145 Sheridan Rd. 60208-3113 Evanston UNITED STATES
| |
Collapse
|
12
|
Fully organic electroactive monomers for electrochromic behaviors having high coloration efficiency and long cycle stability towards flexible Solid-State electrochromic device. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Mukkatt I, Mohanachandran AP, Nirmala A, Patra D, Sukumaran PA, Pillai RS, Rakhi RB, Shankar S, Ajayaghosh A. Tunable Capacitive Behavior in Metallopolymer-based Electrochromic Thin Film Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31900-31910. [PMID: 35791964 DOI: 10.1021/acsami.2c05744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Volumetric capacitance is a more critical performance parameter for rechargeable power supply in lightweight and microelectronic devices as compared to gravimetric capacitance in larger devices. To this end, we report three electrochromic metallopolymer-based electrode materials containing Fe2+ as the coordinating metal ion with high volumetric capacitance and energy densities in a symmetric two-electrode supercapacitor setup. These metallopolymers exhibited volumetric capacitance up to 866.2 F cm-3 at a constant current density of 0.25 A g-1. The volumetric capacitance (poly-Fe-L2: 544.6 F cm-3 > poly-Fe-L1: 313.8 F cm-3 > poly-Fe-L3: 230.8 F cm-3 at 1 A g-1) and energy densities (poly-Fe-L2: 75.5 mWh cm-3 > poly-Fe-L1: 43.6 mWh cm-3 > poly-Fe-L3: 31.2 mWh cm-3) followed the order of the electrical conductivity of the metallopolymers and are among the best values reported for metal-organic systems. The variation in the ligand structure was key toward achieving different electrical conductivities in these metallopolymers with excellent operational stability under continuous cycling. High volumetric capacitances and energy densities combined with tunable electro-optical properties and electrochromic behavior of these metallopolymers are expected to contribute to high performance and compact microenergy storage systems. We envision that the integration of smart functionalities with thin film supercapacitors would warrant the surge of miniaturized on-chip microsupercapacitors integrated in-plane with other microelectronic devices for wearable applications.
Collapse
Affiliation(s)
- Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anjana Padmaja Mohanachandran
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Department of Physics, University of Kerala, Thiruvananthapuram, Kerala 695581, India
| | - Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dipak Patra
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priyanka A Sukumaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Renjith S Pillai
- Department of Chemistry, Christ University, Bangalore 560029, Karnataka, India
| | - R B Rakhi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Material Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR - National Institute for Interdisciplinary Sciences and Technology (CSIR - NIIST), Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Das S, Patra D, Shankar S, Ajayaghosh A. Photocycloaddition as a Tool for LCST Modulation in a Molecular π‐System to Control Transmission of Solar Radiation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Satyajit Das
- National Institute for Interdisciplinary Science and Technology CSIR Chemical Sciences and Technology Division INDIA
| | - Dipak Patra
- National Institute for Interdisciplinary Science and Technology CSIR Chemical Sciences and Technology Division INDIA
| | - Sreejith Shankar
- National Institute for Interdisciplinary Science and Technology CSIR Chemical Sciences and Technology Division INDIA
| | - Ayyappanpillai Ajayaghosh
- CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST) Photosciences and Photonics Group, Chemical Sciences and Technology Division PappanamcodeIndustrial Estate P. O 695 019 Trivandrum INDIA
| |
Collapse
|
15
|
Bera MK, Mohanty S, Kashyap SS, Sarmah S. Electrochromic coordination nanosheets: Achievements and future perspective. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214353] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Nanocomposites of Fe(II)-Based Metallo-Supramolecular Polymer and a Layered Inorganic–Organic Hybrid for Improved Electrochromic Materials. Polymers (Basel) 2022; 14:polym14050915. [PMID: 35267738 PMCID: PMC8912828 DOI: 10.3390/polym14050915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/21/2022] [Accepted: 02/23/2022] [Indexed: 01/26/2023] Open
Abstract
Fe-based metallo-supramolecular polymer (polyFe), composed of Fe(II) ions and bis(terpyridyl)benzene, is known as a good electrochromic (EC) material. For the first time, to improve the EC properties, we prepared nanocomposites comprising polyFe and a layered inorganic–imidazoline covalently bonded hybrid (LIIm) by simply mixing them in methanol and then examined the effect of the nanocomposition on EC properties. The obtained blue/purple-colored composites (polyFe/LIIm composites) were demonstrated by scanning electron microscopy (SEM) to comprise a structure of LIIm nanoparticles coated with amorphous polyFe. Interestingly, X-ray diffraction (XRD) measurements suggested that there was no intercalation of polyFe in the interlayer space of LIIm. Ultraviolet-visible (UV-vis) spectroscopy measurements demonstrated that light absorption close to 600 nm was attributed to metal-to-ligand charge transfer (MLCT) from the Fe(II) ion to the bisterpyridine ligand and was influenced by LIIm in the composites. The composites exhibited a pair of redox waves, assigned to the redox between Fe(II) and Fe(III), in the cyclic voltammograms; moreover, the composites were estimated to be diffusion controlled. Thin composite films demonstrated reversible EC changes, triggered by the redox reaction of the metal. Furthermore, the results show that the nano-scale composition of the metallo-supramolecular polymers with LIIm can effectively improve the memory properties without reducing the contrast in transmittance (ΔT) of 70–76% in EC changes after applying 1.2 V vs. Ag/Ag+. The EC properties varied with varying ratios (3/0.1, 0.5, 1, and 5) of the polyFe/LIIm, and the ratio of 3/1 exhibited the longest memory and largest MLCT absorption peak among composites. The results show that the polyFe/LIIm composites are useful EC materials for dimming glass applications, such as smart windows.
Collapse
|
17
|
Abstract
Paper substrate has many advantages, such as low cost, bendable, foldable, printable, and environmentally friendly recycling. Nowadays, paper has been further extended as a flexible platform to deliver electronic information with the integration of organic optoelectronic devices, such as organic thin-film transistor, organic solar cell, organic electrochromic device, and organic light-emitting device. It has great potential to become the new generation of flexible substrate. Given rough surface and porous of paper, many efforts have been underway in recent years to enable the compatibility between optoelectronics and paper substrate. In this review, we present the development history of paper and its physicochemical properties, and summarize the current development of paper-based organic optoelectronic devices. We also discuss the challenges that need to be addressed before practical uses of paper-based organic optoelectronic devices.
Collapse
Affiliation(s)
- Teng Pan
- State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, China
| | - Shihao Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, China
| | - Letian Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, China
| | - Wenfa Xie
- State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
18
|
Wang Y, Shen R, Wang S, Zhang YM, Zhang SXA. Dynamic Metal-Ligand Interaction of Synergistic Polymers for Bistable See-Through Electrochromic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104413. [PMID: 34894163 DOI: 10.1002/adma.202104413] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Bistable electrochromic materials are a promising alternative solution to reduce energy consumption in displays. Limited by the mechanism and lack of a design strategy, only a few electrochromic materials have truly been able achieve bistability. Herein, a novel strategy is proposed to design bistable electrochromic materials based on polymer-assisted dynamic metal-ligand coordination. The mechanism and materials of such unconventional electrochromic systems are proved by sufficient characterization. Synergistic stabilization of polymerized switchable dyes and the ionic ligand polymer are attracted to each other by supramolecular forces. The color states of the dye molecules are controlled and stabilized by valence changes of the metal ions. Meanwhile, through the polymerization of the electrochromic material and the nearby metal-ligand material, the metal ions of the electroinduced valence change are tightly fixed, and the related diffusion problem of the active EC component is also almost completely suppressed. This strategy successfully enables preparation of the corresponding transparent electrochromic displays with good performances, such as, the display information is clearly visible for more than 1.5 h without consuming energy. Furthermore, the new way of dynamic coordination or dissociation bistable displays could likely prosper the development of the electrochromic area and inspire other fields.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Ruipeng Shen
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Shuo Wang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Yu-Mo Zhang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Sean Xiao-An Zhang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| |
Collapse
|
19
|
Ming S, Zhen S, Zhang H, Han X, Zhang Y, Xu J, Zhao J. Electrochromic polymer with asymmetric substituents – Inhibit aggregation and modify respond speed. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110938] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Rani K, Sengupta S. Multi-stimuli programmable FRET based RGB absorbing antennae towards ratiometric temperature, pH and multiple metal ion sensing. Chem Sci 2021; 12:15533-15542. [PMID: 35003582 PMCID: PMC8654024 DOI: 10.1039/d1sc05112a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023] Open
Abstract
A red-green-blue (RGB) multichromophoric antenna 1 consisting of energy donors naphthalimides and perylenediimides and a central aza-BODIPY energy acceptor along with two subchromophoric red-blue (RB 6) and green-blue (GB 12) antennae was designed that showed efficient cascade Förster resonance energy transfer (FRET). RGB antenna 1 showed pronounced temperature-dependent emission behaviour where emission intensities in green and red channels could be tuned in opposite directions by temperature giving rise to unique ratiometric sensing with a temperature sensitivity of 0.4% °C. RGB antenna 1 showed reversible absorption modulation selectively in the blue region (RGB ↔ RG) upon acid/base addition giving rise to pH sensing behaviour. Furthermore, RGB antenna 1 was utilized to selectively sense metal ions such as Co2+ and Fe3+ through a FRET turn-off mechanism induced by a redox process at the aza-BODIPY site that resulted in the selective spectral modulation of the red band (i.e., RGB → GB). Model antenna RB 6 showed white light emission with chromaticity coordinates (0.32, 0.33) on acid addition. Antennae 1, 6 and 12 also exhibited solution state electrochromic switching characterized by distinct colour changes upon changing the potential. Finally, antennae 1, 6 and 12 served as reversible fluorescent inks in PMMA/antenna blends whereby the emission colours could be switched or tuned using different stimuli such as acid vapour, temperature and metal ions.
Collapse
Affiliation(s)
- Kavita Rani
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab-140306 India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali Punjab-140306 India
| |
Collapse
|
21
|
Poh WC, Gong X, Yu F, Lee PS. Electropolymerized 1D Growth Coordination Polymer for Hybrid Electrochromic Aqueous Zinc Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101944. [PMID: 34532997 PMCID: PMC8564436 DOI: 10.1002/advs.202101944] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Organic materials are always viewed as promising electrochromic (EC) materials due to their synthetic versatility, color tunability, ready processability, and derivability from sustainable feedstocks. Most organic materials, however, are prone to undesirable redox side reactions in the presence of oxygen and water. As such, redox-active organic layers are often used in tandem with organic electrolytes to preserve their electrochemical stability. With the growing interest in electronics that are environmentally sustainable and biologically safe, developing aqueous-compatible organic materials is gaining growing interest. Herein, a rationally designed iron terpyridyl coordination polymer (CP) is prepared by controlled electropolymerization for realization of aqueous compatible EC and energy storage applications. Detailed analysis is established, showing that the CP grows in a 1D fashion and exhibits a predominant capacitive behavior which is reflected from its rapid charge-transfer kinetics. Taking this as an advantage, an integrated hybrid electrochromic zinc battery device is demonstrated with high color contrast, fast response time, and good endurance.
Collapse
Affiliation(s)
- Wei Church Poh
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Xuefei Gong
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Fei Yu
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Pooi See Lee
- School of Materials Science and EngineeringNanyang Technological UniversitySingapore639798Singapore
- Singapore‐HUJ Alliance for Research and Enterprise (SHARE)Nanomaterials for Energy and Water Nexus (NEW)Campus for Research Excellence and Technological Enterprise (CREATE)1 Create WaySingapore138602Singapore
| |
Collapse
|
22
|
Malik N, Singh V, Shimon LJW, Houben L, Lahav M, van der Boom ME. Pathway-Dependent Coordination Networks: Crystals versus Films. J Am Chem Soc 2021; 143:16913-16918. [PMID: 34617735 PMCID: PMC8532112 DOI: 10.1021/jacs.1c08087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
We demonstrate the
formation of both metallo-organic crystals and nanoscale
films that have entirely different compositions
and structures despite using the same set of starting materials. This
difference is the result of an unexpected cation exchange process.
The reaction of an iron polypyridyl complex with a copper salt by
diffusion of one solution into another resulted in iron-to-copper
exchange, concurrent ligand rearrangement, and the formation of metal–organic
frameworks (MOFs). This observation shows that polypyridyl complexes
can be used as expendable precursors for the growth of MOFs. In contrast,
alternative depositions of the iron polypyridyl complex with a copper
salt by automated spin coating on conductive metal oxides resulted
in the formation of electrochromic coatings, and the structure and
redox properties of the iron complex were retained. The possibility
to form such different networks from the same set of molecular building
blocks by “in solution” versus “on surface”
coordination chemistry broadens the synthetic space to design functional
materials.
Collapse
Affiliation(s)
- Naveen Malik
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Vivek Singh
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lothar Houben
- Department of Chemical Research Support, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Michal Lahav
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Milko E van der Boom
- Department of Molecular Chemistry and Materials Science, The Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
23
|
Laschuk NO, Ebralidze II, Easton EB, Zenkina OV. Post-Synthetic Color Tuning of the Ultra-Effective and Highly Stable Surface-Confined Electrochromic Monolayer: Shades of Green for Camouflage Materials. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39573-39583. [PMID: 34378920 DOI: 10.1021/acsami.1c09863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report here on the strategy for the preparation of a series of electrochromic (EC) materials in green shades designed for camouflage purposes. This top-down post-synthetic modification provides access to new EC materials by fine modulation of the color of the surface-confined metalorganic monolayer pre-deposited on indium tin oxide screen-printed supports. Selective on-surface N-quaternization of the outer pyridine unit of the EC metal complex covalently embedded onto an enhanced surface area electrode results in a bathochromic shift of the absorbance signal as well as visual color change from blue to different shades of green. When assembled into solid-state EC devices (ECDs), the materials demonstrate high color differences between colored and bleached states and significant differences in optical density. Upon electrochemical switching, the ECDs initially featuring different shades of green become yellowish or clay. The accessible gamut of colors, fulfilling the requirements for chameleon-like camouflage materials, is able to mimic conditions of various natural environments including forests and sands. Notably, ECDs demonstrate high long-term durability (95% retention of the performance after 3300 cycles), fast coloration (0.6-1.1 s), and bleaching (1.2-3.3 s) times and outstanding coloration efficiencies of 1018-1513 cm2/C. Importantly, post-synthetic N-quaternization/color tuning does not deteriorate the performance of the resulting EC materials and devices as judged by cyclic voltammetry, spectroelectrochemistry, and electrochemical impedance spectroscopy. This work adds to the limited number of reports that explore color tuning of EC molecular layers via on-surface modification with the aim to access new non-symmetric materials. Notably, the facile and straightforward technology presented here allows the creation of green-colored EC materials that are difficult to prepare in other ways.
Collapse
Affiliation(s)
- Nadia O Laschuk
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| | - Iraklii I Ebralidze
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| | - E Bradley Easton
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| | - Olena V Zenkina
- Faculty of Science, Ontario Tech. University, 2000 Simcoe Street North, Oshawa L1G 0C5, Canada
| |
Collapse
|
24
|
|
25
|
Ebralidze II, Zenkina OV. Dynamic electrochromic play via “mix-and-match” reversible metal-ligand interactions. Chem 2021. [DOI: 10.1016/j.chempr.2021.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Wang Y, Nie H, Han J, An Y, Zhang YM, Zhang SXA. Green revolution in electronic displays expected to ease energy and health crises. LIGHT, SCIENCE & APPLICATIONS 2021; 10:33. [PMID: 33550329 PMCID: PMC7867656 DOI: 10.1038/s41377-020-00455-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 06/02/2023]
Abstract
The technological revolution of long-awaited energy-saving and vision-friendly displays represented by bistable display technology is coming. Here we discuss methods, challenges, and opportunities for implementing bistable displays in terms of molecular design, device structure, further expansion, and required criteria, hopefully benefiting the light-related community.
Collapse
Affiliation(s)
- Yuyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Nie
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, USA
| | - Jinsong Han
- State Grid Heilongjiang Electric Power Co., Ltd, Heihe Power Supply Company, Heihe, 164300, China
| | - Yaxun An
- Jiaxing IrS Display Technology Co., Ltd, Jiashan, 314113, China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
27
|
Mukkatt I, Nirmala A, Madhavan ND, Shankar S, Deb B, Ajayaghosh A. Ligand-Controlled Electrochromic Diversification with Multilayer Coated Metallosupramolecular Polymer Assemblies. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5245-5255. [PMID: 33470782 DOI: 10.1021/acsami.0c20428] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Designing surface-confined molecular systems capable of expressing changes in functional properties as a result of slight variations in chemical structure under the influence of an external stimulus is of contemporary interest. In this context, we have designed three tetraterpyridine ligands with variations in their core architecture (phenyl vs tetraphenylethynyl vs bithiophene) to create spray-coated electrochromic assemblies of iron(II)-based metallosupramolecular polymer network films on transparent conducting oxide substrates. These assemblies exhibited molecular permeability and spectroelectrochemical properties that are in turn dictated by the ligand structure. Electrochromic films with high coloration efficiencies (up to 1050 cm2/C) and superior optical contrast (up to 76%) with a concomitant color-to-color redox transition were readily achieved. These functional switching elements were integrated into sandwich-type electrochromic cells (CE up to 641 cm2/C) that exhibited high contrast ratios of up to 56%, with attractive ON-OFF ratios, fast switching kinetics, and high operational stability. Every measurable spectroelectrochemical property of the films and devices is an associated function of the ligand structure that coordinates the same metal ion to different extents. While exhibiting a ligand-structure induced differential metal coordination leading to porosity and spectroelectrochemical diversification, these assemblies allow the creation of electrochromic patterns and images by a simple spray-coating technique.
Collapse
Affiliation(s)
- Indulekha Mukkatt
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Anjali Nirmala
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
| | - Nayan Dev Madhavan
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
| | - Sreejith Shankar
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Biswapriya Deb
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| | - Ayyappanpillai Ajayaghosh
- Photosciences and Photonics Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Industrial Estate P.O., Pappanamcode, Thiruvananthapuram 695019, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Human Resource Development Centre, Ghaziabad 201002, India
| |
Collapse
|
28
|
Napierała S, Kubicki M, Patroniak V, Wałęsa-Chorab M. Electropolymerization of [2 × 2] grid-type cobalt(II) complex with thiophene substituted dihydrazone ligand. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137656] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
29
|
Li J, Wang X, Sun W, Maleski K, Shuck CE, Li K, Urbankowski P, Hantanasirisakul K, Wang X, Kent P, Wang H, Gogotsi Y. Intercalation‐Induced Reversible Electrochromic Behavior of Two‐Dimensional Ti
3
C
2
T
x
MXene in Organic Electrolytes. ChemElectroChem 2020. [DOI: 10.1002/celc.202001449] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jianmin Li
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 PR China
| | - Xuehang Wang
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Weiwei Sun
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- SEU-FEI Nano-Pico Center Key Laboratory of MEMS of Ministry of Education Southeast University Nanjing 210096 China
| | - Kathleen Maleski
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Christopher E. Shuck
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Ke Li
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Patrick Urbankowski
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Kanit Hantanasirisakul
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Xiaofeng Wang
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| | - Paul Kent
- Center for Nanophase Materials Sciences Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Computational Sciences and Engineering Division Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 PR China
| | - Yury Gogotsi
- A. J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering Drexel University Philadelphia PA 19104 USA
| |
Collapse
|
30
|
Vilà N, Walcarius A. Bis(terpyridine) Iron(II) Functionalized Vertically-Oriented Nanostructured Silica Films: Toward Electrochromic Materials. Front Chem 2020; 8:830. [PMID: 33094099 PMCID: PMC7523427 DOI: 10.3389/fchem.2020.00830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022] Open
Abstract
Recent and potential applications of electrochromic materials include smart windows, optoelectronic devices, and energy conversion. In this study, we have incorporated bis(terpyridine) iron (II) complexes into vertically-oriented silica thin films deposited on indium-tin oxide (ITO) and their electrochromic behavior has been investigated. If 2,2′:6′,2″-terpyridine is commonly used as a ligand for forming metallo-supramolecular assemblies, with the objective to get metal-terpyridine complexes with multiple stable redox states, their simple and reliable arrangement into linear structures enabling effective electronic communication is however more challenging. We propose to overcome this difficulty by generating such complexes within vertical nanochannels on electrode. Terpyridine ligands were firstly immobilized by combining a click chemistry azide/alkyne approach with an electrochemically-assisted self-assembly (EASA) method used to grow an oriented mesoporous silica membrane bearing azide groups which were further derivatized with 4′-ethynyl-terpyridine ligands. The resulting terpyridine-functionalized films were consecutively dipped in an aqueous solution of Fe(BF4)2 and then in a solution of terpyridine in acetonitrile to form the bis(terpyridine) iron (II) complexes in situ. The electrochromic properties of the films functionalized at various levels were examined by monitoring the changes in their UV/Vis spectra upon electrochemical oxidation at controlled potential of +1.2 V vs. Ag/AgCl. Due to facile charge delocalization during the Fe2+ to Fe3+ redox process, the bis(terpyridine) iron (II) functionalized silica films exhibited electrochromic properties by changing from violet to non-colored using TBABF4 in acetonitrile as an electrolyte. The bis(terpyridine) iron(II) film experienced reversible electrochromic switching by applying +0.5 V in a reverse reduction electrochemical process. The Fe(tpy)2-functionalized silica thin films displayed a good contrast ratio (ΔT%) of 47% and relatively high coloration efficiency (CE) of about 245 cm2/C with a response time of coloring and bleaching of a few seconds (< 4 s).
Collapse
Affiliation(s)
- Neus Vilà
- Université de Lorraine, CNRS, LCPME, Nancy, France
| | | |
Collapse
|
31
|
Laschuk NO, Ahmad R, Ebralidze II, Poisson J, Easton EB, Zenkina OV. Multichromic Monolayer Terpyridine-Based Electrochromic Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41749-41757. [PMID: 32870639 DOI: 10.1021/acsami.0c11478] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The article describes novel electrochromic materials (ECMs) that are based on a monolayer consisting of two or three isostructural metal complexes of 4'-(pyridin-4-yl)-2,2':6',2''-terpyridine simultaneously deposited on surface-enhanced support. The support was made by screen printing of indium tin oxide (ITO) nanoparticles on ITO-glass and has a surface area sufficient for a monolayer to give color visible to the naked eye. The ability to separately electrochemically address the oxidation state of the metal centers on the surface (i.e., Co2+/Co3+, Os2+/Os3+, and Fe2+/Fe3+) provides an opportunity to achieve several distinct color-to-color transitions, thus opening the door for constructing monolayer-based multicolor ECMs.
Collapse
Affiliation(s)
- Nadia O Laschuk
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Rana Ahmad
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Iraklii I Ebralidze
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Jade Poisson
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - E Bradley Easton
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| | - Olena V Zenkina
- Faculty of Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada
| |
Collapse
|
32
|
Mondal S, Ninomiya Y, Yoshida T, Mori T, Bera MK, Ariga K, Higuchi M. Dual-Branched Dense Hexagonal Fe(II)-Based Coordination Nanosheets with Red-to-Colorless Electrochromism and Durable Device Fabrication. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31896-31903. [PMID: 32543825 DOI: 10.1021/acsami.0c05921] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Highly dense hexagonal Fe(II)-based coordination nanosheets (CONASHs) were designed by dual-branching, at the metal-coordination moieties and the tritopic ligands, which successfully obtained a liquid/liquid interface by the complexation of Fe(II) ions and the tritopic bidentate ligands. The 1:1 complexation was confirmed by titration. The obtained Fe(II)-based nanosheets were fully characterized by small-angle X-ray scattering (SAXS), atomic force microscopy (AFM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). A monolayer of the sheets was obtained, employing the Langmuir-Blodgett (LB) method, and the determined thickness was ∼2.5 nm. The polymer nanosheets exhibited red-to-colorless electrochromism because the electrochemical redox transformation between Fe(II) and Fe (III) ions controlled the appearance/disappearance of the metal (ion)-to-ligand charge-transfer (MLCT) absorption. The poor π-conjugation in the tritopic ligands contributed to the highly colorless electrochromic state. A solid-state device, with the robust polymer film, exhibited excellent electrochromic (EC) properties, with high optical contrast (ΔT > 65%) and high durability after repeated color changes for >15 000 cycles, upon applying low-operating voltages (+1.5/0 V).
Collapse
Affiliation(s)
- Sanjoy Mondal
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Taizo Mori
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Manas Kumar Bera
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Katsuhiko Ariga
- World Premier International Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa 277-8561, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
33
|
McCune JA, Mommer S, Parkins CC, Scherman OA. Design Principles for Aqueous Interactive Materials: Lessons from Small Molecules and Stimuli-Responsive Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1906890. [PMID: 32227391 DOI: 10.1002/adma.201906890] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Interactive materials are at the forefront of current materials research with few examples in the literature. Researchers are inspired by nature to develop materials that can modulate and adapt their behavior in accordance with their surroundings. Stimuli-responsive systems have been developed over the past decades which, although often described as "smart," lack the ability to act autonomously. Nevertheless, these systems attract attention on account of the resultant materials' ability to change their properties in a predicable manner. These materials find application in a plethora of areas including drug delivery, artificial muscles, etc. Stimuli-responsive materials are serving as the precursors for next-generation interactive materials. Interest in these systems has resulted in a library of well-developed chemical motifs; however, there is a fundamental gap between stimuli-responsive and interactive materials. In this perspective, current state-of-the-art stimuli-responsive materials are outlined with a specific emphasis on aqueous macroscopic interactive materials. Compartmentalization, critical for achieving interactivity, relies on hydrophobic, hydrophilic, supramolecular, and ionic interactions, which are commonly present in aqueous systems and enable complex self-assembly processes. Relevant examples of aqueous interactive materials that do exist are given, and design principles to realize the next generation of materials with embedded autonomous function are suggested.
Collapse
Affiliation(s)
- Jade A McCune
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Stefan Mommer
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Christopher C Parkins
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
34
|
Bera MK, Ninomiya Y, Higuchi M. Constructing Alternated Heterobimetallic [Fe(II)/Os(II)] Supramolecular Polymers with Diverse Solubility for Facile Fabrication of Voltage-Tunable Multicolor Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14376-14385. [PMID: 32150376 DOI: 10.1021/acsami.9b21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metallo-supramolecular polymer (MSP)-based electrochromic devices (ECDs) have drawn much attention because of their variable colors and attractive electrochromic (EC) properties. However, fabrication of voltage-tunable multicolor ECDs using single MSP is yet hard to realize. We anticipated alternate introduction of two different redox-active metal ions in an MSP combined with the adjustment of counteranions could be a solution to fabricate multicolor ECDs. The heterometals will induce color variability upon voltage alteration, and counteranions will help to tune the solubility of MSP in different solvents. In an attempt to fulfill this target, we have synthesized four heterobimetallic supramolecular polymers (HBPs) having different counteranions (BF4-, Cl-, PF6-, and OAc-), in which Fe(II) and Os(II) are alternately complexed by two terpyridine units. To apply as EC material, the HBPs should be soluble in methanol and insoluble in acetonitrile for the preparation of EC film as well as ECDs. However, among the HBPs, only HBP-OAc is found to meet this requirement. The EC behaviors of the spray-coating film of HBP-OAc on an indium tin oxide (ITO)-coated glass substrate are investigated in terms of maximum transmittance contrast, coloration voltage, response time, coloration efficiency, and operational stability, which exhibits reversible multicolor electrochromism (the initial purple color of the film is changed to violet followed by greenish-yellow) upon alteration of the voltage from 0.0 to 0.7 V [required to oxidize the Os(II) ion] and to 1.0 V [required to oxidize the Fe(II) ion]. The film is also integrated into a laminated ECD by using lithium-based gel electrolyte. Finally, as a proof-of-concept, a prototype voltage-tunable multicolor EC display (6 cm × 2.5 cm) is fabricated by using a designed image containing a flower, leaves, and a flower pot, which exhibits six different types of multicolor image upon application of tunable voltages.
Collapse
Affiliation(s)
- Manas Kumar Bera
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
35
|
Hamo Y, Lahav M, Boom ME. Bifunctional Nanoscale Assemblies: Multistate Electrochromics Coupled with Charge Trapping and Release. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yonatan Hamo
- Department of Organic ChemistryWeizmann Institute of Science 7610001 Rehovot Israel
| | - Michal Lahav
- Department of Organic ChemistryWeizmann Institute of Science 7610001 Rehovot Israel
| | - Milko E. Boom
- Department of Organic ChemistryWeizmann Institute of Science 7610001 Rehovot Israel
| |
Collapse
|
36
|
Hamo Y, Lahav M, van der Boom ME. Bifunctional Nanoscale Assemblies: Multistate Electrochromics Coupled with Charge Trapping and Release. Angew Chem Int Ed Engl 2020; 59:2612-2617. [PMID: 31696626 DOI: 10.1002/anie.201912333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/04/2019] [Indexed: 12/13/2022]
Abstract
We demonstrate controlled charge trapping and release, accompanied by multiple color changes in a metallo-organic bilayer. The dual functionality of the metallo-organic materials provides fundamental insight into the metal-mediated electron transport pathways. The electrochemical processes are visualized by distinct, four color-to-color transitions: red, transparent, orange, and brown. The bilayer is composed of two elements: 1) a nanoscale gate consisting of a layer of well-defined polypyridyl ruthenium complexes bound to a flexible transparent electrode, and 2) a charge storage layer consisting of isostructural iron complexes attached to the surface of the gate. This gate mediates or blocks electron transport in response to an applied voltage. The charge storage and release depend on the oxidation state of the layer of ruthenium complexes (=gate). Combining electrochemistry with optical data revealed mechanistic information: the brown coloration of the bilayer directly relates to the formation of intermediate ruthenium species, providing evidence for catalytic positive charge release mediated through the gate.
Collapse
Affiliation(s)
- Yonatan Hamo
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Michal Lahav
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Milko E van der Boom
- Department of Organic Chemistry, Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
37
|
Wang Y, Niu H, Lu Q, Zhang W, Qiao X, Niu H, Zhang Y, Wang W. From aerospace to screen: Multifunctional poly(benzoxazine)s based on different triarylamines for electrochromic, explosive detection and resistance memory devices. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 225:117524. [PMID: 31525631 DOI: 10.1016/j.saa.2019.117524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/07/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Four kinds of main-chain benzoxazine polymers (PBZ) containing triarylamine (TAA) units were synthesized by Mannich reaction and characterized by 1H nuclear magnetic resonance (NMR), Fourier transform infrared (FT-IR) techniques, etc. Thermal, optical, photophysical and electrochemical properties were studied. The 50% of char residue is left in N2 at 800 °C. The polymers are soluble in common organic solvents and easily spin-coated onto indium‑tin oxide (ITO) coated glass substrates. All the polymers have voltage window ranging from 0 to 1.8 V, and the colors change from yellowish to dark red when voltage is applied. Meanwhile, device assembled from polymer exhibit significant color changes. Furthermore, the polymers also have promising potential application in explosive detection and resistance memory devices.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University, Harbin 150086, PR China
| | - Haiying Niu
- Daxinganlingshiyan Middle School, Heilongjiang Province 16500, PR China
| | - Qingyi Lu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University, Harbin 150086, PR China
| | - Wei Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University, Harbin 150086, PR China
| | - Xin Qiao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University, Harbin 150086, PR China
| | - Haijun Niu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University, Harbin 150086, PR China.
| | - Yanhong Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, Department of Macromolecular Science and Engineering, School of Chemical, Chemical Engineering and Materials, Heilongjiang University, Harbin 150086, PR China.
| | - Wen Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, PR China.
| |
Collapse
|
38
|
Jena SR, Choudhury J. A fast-switching electrochromic device with a surface-confined 3D metallo-organic coordination assembly. Chem Commun (Camb) 2020; 56:559-562. [PMID: 31829325 DOI: 10.1039/c9cc06920h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Demonstrated herein is a fast (<1 s)-switching solid-state electrochromic device (t = 0.49 s for coloration and 0.90 s for bleaching), fabricated with a novel imidazolium-linked [Fe(terpyridine)2]2+ chromophore-based surface-confined three dimensional metallo-organic coordination assembly. The device also exhibits promising electrochromic attributes such as high coloration efficiency (η = 275 cm2 C-1), moderate operating voltage (from -2 V to +3.2 V) and transmittance contrast (ΔT = 40%), and high cycling stability (up to 4500 cycles).
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | | |
Collapse
|
39
|
Ma DM, Wang J, Guo H, Qian DJ. Photophysical and electrochemical properties of newly synthesized thioxathone–viologen binary derivatives and their photo-/electrochromic displays in ionic liquids and polymer gels. NEW J CHEM 2020. [DOI: 10.1039/c9nj05286k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Photo- and electrochromic devices based on thioxathone–viologen derivatives were constructed in ionic liquid and gels, which displayed a good transmittance and reversible colour change behaviour under visible light radiation or a bias of −2.4 V.
Collapse
Affiliation(s)
- Dong-Mei Ma
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Jing Wang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Hao Guo
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| | - Dong-Jin Qian
- Department of Chemistry
- Fudan University
- Shanghai 200438
- China
| |
Collapse
|
40
|
Ling H, Dai H, Su F, Tian Y, Liu YJ. A transparent-to-gray electrochromic device based on an asymmetric viologen. NEW J CHEM 2020. [DOI: 10.1039/d0nj04323k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A transparent-to-gray electrochromic device (ECD) based on an asymmetric viologen was fabricated and characterized.
Collapse
Affiliation(s)
- Huan Ling
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
- Department of Materials Science and Engineering
| | - Hongbo Dai
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Fengyu Su
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
- Academy for Advanced Interdisciplinary Studies
| | - Yanqing Tian
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| |
Collapse
|
41
|
Wang Y, Wang S, Wang X, Zhang W, Zheng W, Zhang YM, Zhang SXA. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. NATURE MATERIALS 2019; 18:1335-1342. [PMID: 31501553 DOI: 10.1038/s41563-019-0471-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/29/2019] [Indexed: 05/20/2023]
Abstract
Bistable electrochromic materials have been explored as a viable alternative to reduce energy consumption in display applications. However, the development of ideal bistable electrochromic displays (especially multicolour displays) remains challenging due to the intrinsic limitations associated with existing electrochromic processes. Here, a bistable electrochromic device with good overall performance-including bistability (>52 h), reversibility (>12,000 cycles), colouration efficiency (≥1,240 cm2 C-1) and transmittance change (70%) with fast switching (≤1.5 s)-was designed and developed based on concerted intramolecular proton-coupled electron transfer. This approach was used to develop black, magenta, yellow and blue displays as well as a multicolour bistable electrochromic shelf label. The design principles derived from this unconventional exploration of concerted intramolecular proton-coupled electron transfer may also be useful in different optoelectronic applications.
Collapse
Affiliation(s)
- Yuyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Shuo Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Xiaojun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Weiran Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Wenxuan Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
| |
Collapse
|
42
|
Li W, Luo F, Zhang L, Yan S, Zhao R, Ren N, Wu Y, Chen Y, Dong Y, Ouyang M, Zhang C. Synthesis, electrochemistry, and electrochromic properties of branched thiophene polymers with different conjugation lengths. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Weijun Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Feifei Luo
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ling Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Shuanma Yan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Ruiyang Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology Qingdao 266042 People's Republic of China
| | - Ning Ren
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD South Rd. No. 18 XingChang 313000 People's Republic of China
| | - Yizhao Wu
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD South Rd. No. 18 XingChang 313000 People's Republic of China
| | - Yuliang Chen
- Zhejiang Chaowei Chuangyuan Industrial Co. LTD South Rd. No. 18 XingChang 313000 People's Republic of China
| | - Yujie Dong
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Mi Ouyang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, International Technology Cooperation Base of Energy Material and ApplicationCollege of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
43
|
Near-infrared electrochromism of multilayer films of a cyclometalated diruthenium complex prepared by layer-by-layer deposition on metal oxide substrates. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9640-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
44
|
Balgley R, Rechav K, Lahav M, Boom ME. Nanoscale Spatial Separation to Regulate Gold Microstructures Formation. ChemistrySelect 2019. [DOI: 10.1002/slct.201903067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Renata Balgley
- Department of Organic ChemistryWeizmann Institute of Science 7610001 Rehovot Israel
| | - Katya Rechav
- Department of Chemical Research SupportWeizmann Institute of Science 7610001 Rehovot Israel
| | - Michal Lahav
- Department of Organic ChemistryWeizmann Institute of Science 7610001 Rehovot Israel
| | - Milko E. Boom
- Department of Organic ChemistryWeizmann Institute of Science 7610001 Rehovot Israel
| |
Collapse
|
45
|
Yun J, Song Y, Cho I, Ko Y, Kwon CH, Cho J. High-performance electrochromic films with fast switching times using transparent/conductive nanoparticle-modulated charge transfer. NANOSCALE 2019; 11:17815-17830. [PMID: 31552994 DOI: 10.1039/c9nr06259a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the most critical issues in electrochromic (EC) films based on transition metal oxides such as tungsten oxides (WOx) is their poor charge transfer property, which is closely related to EC performance. Herein, high-performance EC films with enhanced charge transport are prepared using small-molecule linkers and transparent/conductive nanoparticles (NPs). In this work, oleylamine (OAm)-stabilized WO2.72 nanorods (NRs) and OAm-stabilized indium tin oxide (ITO) NPs are layer-by-layer (LbL)-assembled with small-molecule linkers (tris(2-aminoethyl)amine, TREN) using a ligand-exchange reaction between bulky/insulating OAm ligands and TREN molecules. In this case, there is only one TREN layer between neighboring inorganic components (WO2.72 NRs and/or ITO NPs), resulting in a dramatic decrease in the separation distance. This minimized separation distance as well as the periodic insertion of transparent/conductive ITO NPs can significantly reduce the charge transfer resistance within WO2.72 NR-based EC films, which remarkably improves their EC performance. Compared to EC films without ITO NPs, the formed EC films with ITO NPs exhibit faster switching responses (4.1 times in coloration time and 3.5 times in bleaching time) and a maximum optical modulation of approximately 55.8%. These results suggest that electrochemical performance, including EC performance, can be significantly improved through structural/interfacial designing of nanocomposites.
Collapse
Affiliation(s)
- Junsang Yun
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
46
|
Keisar H, Lahav M, van der Boom ME. Integrated Molecular Logic Using a Multistate Electrochromic Platform. Chemphyschem 2019; 20:2403-2407. [PMID: 31402510 DOI: 10.1002/cphc.201900784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Indexed: 01/08/2023]
Abstract
Herein, we present an approach that integrates molecular logic functions using surface-confined metallo-organic assemblies. These assemblies are electrochromic and mimic the behaviour of logic elements. The logic elements are addressed individually by electrochemical methods, and their outputs are simultaneously read-out optically by UV/Vis absorption spectroscopy. The versatility of our setup is demonstrated by the integration of two multi-component assemblies; each acting as ternary logic elements. We used also a laminated cell configuration to demonstrate color-to-color and color-to-transparent transitions. This concept offers a route for the future development of devices with multiple logic states.
Collapse
Affiliation(s)
- Hodaya Keisar
- Department of Organic Chemistry, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Michal Lahav
- Department of Organic Chemistry, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Milko E van der Boom
- Department of Organic Chemistry, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| |
Collapse
|
47
|
Malik N, Elool Dov N, de Ruiter G, Lahav M, van der Boom ME. On-Surface Self-Assembly of Stimuli-Responsive Metallo-Organic Films: Automated Ultrasonic Spray-Coating and Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22858-22868. [PMID: 31117463 DOI: 10.1021/acsami.9b05512] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate the on-surface formation of homogeneous and uniform electrochromic films via ultrasonic spray coating. This fully automated process is capable of fabricating metallo-organic films on transparent conducting oxides (TCOs) on glass or flexible poly(ethylene terephthalate) (PET) with surface areas of up to 36 cm2 and film thicknesses of half a micron. The assembly process involves alternatingly spray-coating dilute solutions of structurally well-defined iron polypyridyl ([Fe(mbpy-py)3]2+) complexes and bis(benzonitrile)palladium dichloride (Pd(PhCN)2Cl2) onto conductive substrates, where the latter palladium salt was used as the inorganic cross-linker. The on-surface self-assembled three-dimensional networks are intensely colored and were subsequently integrated into laminated electrochromic devices (ECDs) containing a lithium-based gel electrolyte. The ECDs retain their intense color in the ground state, having a Δ Tmax of 40-49% at λmax ≈ 600 nm, and can be operated for up to 1500 redox cycles. The fluorine-doped tin oxide counter electrode coated with poly(3,4-ethylene-dioxythiophene)polystyrene sulfonate (PEDOT:PSS) as a charge-storage layer resulted in these stable devices. A significant decrease in the potential window of Δ E ≈ 2.5 V was achieved by using a metal grid on PET as the counter electrode. The operation of the electrochromic films is diffusion-controlled, and the diffusion coefficients ( Df) reflect their molecular densities. During these studies, we found that ClO4- is a suitable counterion of the lithium-based electrolytes for optimal ECD performance.
Collapse
Affiliation(s)
- Naveen Malik
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Neta Elool Dov
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Graham de Ruiter
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Michal Lahav
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| | - Milko E van der Boom
- Department of Organic Chemistry , The Weizmann Institute of Science , 7610001 Rehovot , Israel
| |
Collapse
|
48
|
Echeverría C, Rubio M, López D. Thermo-Reversible Hybrid Gels Formed from the Combination of Isotactic Polystyrene and [Fe(II) (4-Octadecyl-1,2,4-Triazole) 3(ClO 4) 2] n Metallo-Organic Polymer: Thermal and Viscoelastic Properties. Polymers (Basel) 2019; 11:polym11060957. [PMID: 31159458 PMCID: PMC6631267 DOI: 10.3390/polym11060957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 05/20/2019] [Accepted: 05/29/2019] [Indexed: 11/16/2022] Open
Abstract
Nano-sized one-dimensional metallo-organic polymers, characterized by the phenomenon of spin transition, are excellent candidates for advanced technological applications such as optical sensors, storage, and information processing devices. However, the main drawback of this type of polymers is their fragile mechanical properties, which hinders its processing and handling, and makes their practical use unfeasible. To overcome this problem, in this work, hybrid thermo-reversible gels are synthesized by combination of a metallo-organic polymer and isotactic polystyrene (iPS) in cis-decaline. A detailed investigation of the thermal and viscoelastic properties of the hybrid gels, in terms of iPS and metallo-organic polymer concentration is performed by means of differential scanning calorimetry and oscillatory rheology, respectively. From the analysis of the thermal properties, three transitions have been determined upon heating: Monotectic transition of the iPS gel, melting of the iPS gel, and melting of the metal-organic polymer gel, which suggest that the gels of the two polymers are formed independently in the hybrid gel, as long as the two polymers are in concentrations above the corresponding critical gelation concentrations. Results regarding viscoelastic properties and morphology confirmed that hybrid gels consisted of an interpenetrated network of polymer gels, formed by iPS and metallo-organic poymer gels growing independently.
Collapse
Affiliation(s)
- Coro Echeverría
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Miguel Rubio
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Daniel López
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
49
|
Banasz R, Wałęsa-Chorab M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
50
|
Bera MK, Mori T, Yoshida T, Ariga K, Higuchi M. Construction of Coordination Nanosheets Based on Tris(2,2'-bipyridine)-Iron (Fe 2+) Complexes as Potential Electrochromic Materials. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11893-11903. [PMID: 30817110 DOI: 10.1021/acsami.8b22568] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The coordination nanosheets (CONASHs) are emerging as a new class of functional two-dimensional materials, which are one of the most active research areas of chemistry and physics in this decade. Despite the success of various structural and functional CONASHs, the development of a new molecular structure to discover alluring functional CONASHs remains challenging. Herein, we report successful preparation of two novel CONASHs (NBP1 and NBP2) through coordination between one of the unexplored molecular frameworks of bis(2,2'-bipyridine)-based ligands (BP1 and BP2) and Fe2+ ions. Using a liquid-liquid interface as a platform, large-scale thin films of multilayer CONASHs have been prepared without any support, which can be deposited onto any desired substrate. Detailed characterization of the CONASHs using various microscopic and spectroscopic techniques reveals homogeneous and flat morphology of nanometer thickness with the quantitative formation of tris(2,2'-bipyridine)-Fe2+ complex motifs in the nanosheet frameworks. The color of the films has been tuned from blue to magenta by the suitable molecular design of the ligands. Owing to the insolubility of the CONASH films in any solvent and the presence of redox-active Fe2+, we explore the functionality of these nanostructured thin films deposited on indium tin oxide as electrochromic materials. The CONASHs exhibit color-to-colorless and color-to-color electrochromic transitions with attractive response times, switching stabilities, and coloration efficiencies. Finally, we demonstrate solid-state electrochromic devices of the CONASHs operated at a potential range of +2.5 to -2.5 V, which are electrochemically stable for several switching cycles, suggesting that these CONASHs are potential electrochromic materials for next-generation display applications.
Collapse
Affiliation(s)
| | - Taizo Mori
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | | | - Katsuhiko Ariga
- Department of Advanced Materials Science, Graduate School of Frontier Sciences , The University of Tokyo , 5-1-5 Kashiwanoha , Kashiwa , Chiba 277-8561 , Japan
| | | |
Collapse
|