1
|
Li XY, Zhou XD, Hu JM. Peptides in the detection of metal ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:6589-6598. [PMID: 39269217 DOI: 10.1039/d4ay01232a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
By means of their specific interactions with different metal ions, naturally occurring proteins control structures and functions of many biological processes and functions in organisms. In view of natural metallopeptides, scientists have proposed artificial peptides which coordinate with metal ions through their functional groups either for introducing a special reactivity or for constructing various sensors. However, the design of new peptide ligands requires a deep understanding of the structures, assembly properties, and dynamic behaviors of such peptides. This review briefly describes detection strategies of metal ions via coordination to the binding sites in peptides. The principles and functions of sensing systems are described as well. We also highlight some examples of a metal-induced peptide self-assembly with relevance to biotechnology applications.
Collapse
Affiliation(s)
- Xin-Yi Li
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Xiao-Dong Zhou
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| | - Ji-Ming Hu
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
2
|
Zhu LR, Wang ZY, Luo JJ, Zheng YJ, Zou HL, Luo HQ, Zhao LB, Li NB, Li BL. Mercury-Mediated Epitaxial Accumulation of Au Atoms for Stained Hydrogel-Improved On-Site Mercury Monitoring. Anal Chem 2023; 95:18859-18870. [PMID: 38096265 DOI: 10.1021/acs.analchem.3c04338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Trivalent Au ions are easily reduced to be zerovalent atoms by coexisting reductant reagents, resulting in the subsequent accumulation of Au atoms and formation of plasmonic nanostructures. In the absence of stabilizers or presence of weak stabilizers, aggregative growth of Au nanoparticles (NPs) always occurs, and unregular multidimensional Au materials are consequently constructed. Herein, the addition of nanomole-level mercury ions can efficiently prevent the epitaxial accumulation of Au atoms, and separated Au NPs with mediated morphologies and superior plasmonic characteristics are obtained. Experimental results and theoretical simulation demonstrate the Hg-concentration-reliant formation of plasmonic nanostructures with their mediated sizes and shapes in the presence of weak reductants. Moreover, the sensitive plasmonic responses of reaction systems exhibit selectivity comparable to that of Hg species. As a concept of proof, polymeric carbon dots (CDs) were used as the initial reductant, and the reactions between trivalent Au and CDs were studies. Significantly, Hg atoms prevent the epitaxial accumulation of Au atoms, and plasmonic NPs with decreased sizes were in situ synthesized, corresponding to varied surface plasmonic resonance absorption performance of the CD-induced hybrids. Moreover, with the integration of sensing substrates of CD-doped hydrogels, superior response stabilities, analysis selectivity, and sensitivity of Hg2+ ions were achieved on the basis of the mercury-mediated in situ chemical reactions between trivalent Au ions and reductant CDs. Consequently, a high-performance sensing strategy with the use of Au NP-staining hydrogels (nanostaining hydrogels) was exhibited. In addition to Hg sensing, the nanostaining hydrogels facilitated by doping of emerging materials and advanced chem/biostrategies can be developed as high-performance on-site monitoring routes to various pollutant species.
Collapse
Affiliation(s)
- Liang Rui Zhu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Zhao-Yu Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Jun Jiang Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ying Jie Zheng
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Liu-Bin Zhao
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
3
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
4
|
Colloid-like solution behavior of computationally designed coiled coil bundlemers. J Colloid Interface Sci 2022; 606:1974-1982. [PMID: 34749446 DOI: 10.1016/j.jcis.2021.09.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 01/20/2023]
Abstract
The use of isotropic potential models of simple colloids for describing complex protein-protein interactions is a topic of ongoing debate in the biophysical community. This contention stems from the unavailability of synthetic protein-like model particles that are amenable to systematic experimental characterization. In this article, we test the utility of colloidal theory to capture the solution structure, interactions and dynamics of novel globular protein-mimicking, computationally designed peptide assemblies called bundlemers that are programmable model systems at the intersection of colloids and proteins. Small-angle neutron scattering (SANS) measurements of semi-dilute bundlemer solutions in low and high ionic strength solution indicate that bundlemers interact locally via repulsive interactions that can be described by a screened repulsive potential. We also present neutron spin echo (NSE) spectroscopy results that show high-Q freely-diffusive dynamics of bundlemers. Importantly, formation of clusters due to short-range attractive, inter-bundlemer interactions is observed in SANS even at dilute bundlemer concentrations, which is indicative of the complexity of the bundlemer charged surface. The similarities and differences between bundlemers and simple colloidal as well as complex protein-protein interactions is discussed in detail.
Collapse
|
5
|
Su S, Yu T, Hu J, Xianyu Y. A bio-inspired plasmonic nanosensor for angiotensin-converting enzyme through peptide-mediated assembly of gold nanoparticles. Biosens Bioelectron 2022; 195:113621. [PMID: 34555635 DOI: 10.1016/j.bios.2021.113621] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
Angiotensin-converting enzyme (ACE) can indicate blood pressure that relates to human health such as the cardiovascular disease. However, current methods are not competent to detect the ACE activity in a rapid and straightforward way. Plasmonic biosensors built on the modulation of metallic nanomaterials have emerged as novel tools for the detection of biomarkers. In this work, we report a bio-inspired strategy for the plasmonic detection of ACE in a rapid, sensitive, and selective way through peptide-mediated assembly of gold nanoparticles (AuNPs). In this biosensor, cysteine-angiotensin I-cysteine can assemble and aggregate AuNPs due to the Au-S bond. The presence of ACE can specifically catalyze the hydrolysis of angiotensin I, thus dissociating the cysteine-cysteine structure of the peptide that results in the disassembly and dispersion of AuNPs. This bio-inspired plasmonic nanosensor enables naked-eyed readout of ACE detection with great selectivity and high sensitivity with a LOD of 0.40 mU/mL. It also allows for the screening of ACE inhibitors and inhibitory peptides for the development of antihypertensive drugs or food. The biosensing technique developed in this work provides a new plasmonic approach that holds great promise as a point-of-care platform for biomedical diagnostics and the food industry.
Collapse
Affiliation(s)
- Shixuan Su
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jing Hu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yunlei Xianyu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, Zhejiang, China.
| |
Collapse
|
6
|
Bartl J, Reinke L, Koch M, Kubik S. Selective sensing of sulfate anions in water with cyclopeptide-decorated gold nanoparticles. Chem Commun (Camb) 2021; 56:10457-10460. [PMID: 32856639 DOI: 10.1039/d0cc04796a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The interaction of cyclopeptides bound to the surface of mixed monolayer-protected gold nanoparticles with sulfate anions causes the crosslinking and concomitant precipitation of the nanoparticles from aqueous solutions even in presence of an excess of competing anions, thus allowing the naked eye detection of sulfate in water.
Collapse
Affiliation(s)
- Julia Bartl
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Lena Reinke
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Stefan Kubik
- Technische Universität Kaiserslautern, Fachbereich Chemie - Organische Chemie, Erwin-Schrödinger-Straße, 67663 Kaiserslautern, Germany.
| |
Collapse
|
7
|
Chakrabarty S, Maity S, Yazhini D, Ghosh A. Surface-Directed Disparity in Self-Assembled Structures of Small-Peptide l-Glutathione on Gold and Silver Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11255-11261. [PMID: 32880182 DOI: 10.1021/acs.langmuir.0c01527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Despite the key roles of l-glutathiones (GSHs) inbiology and nano-biotechnology, understanding their labile structures and hydrogen bond interactions with nanoparticles has posed a critical challenge to the scientific community. The structural conformation of GSH as a capping layer on gold nanoparticle (AuNP) and silver nanoparticle (AgNP) surfaces is investigated. In this report, we attempt to explore the material-dependent interaction of GSH with different spherical nanoparticle surfaces by employing Fourier transform infrared (FTIR) spectroscopy. The infrared signal of amide I of GSH is studied as a function of different materials' spherical nanoparticles with comparable size. We revealed the β-sheet secondary structure of GSH on AgNPs and the random structure on AuNPs even though both the nanoparticles have comparable shapes and sizes and belong to the same group of the periodic table. The GSH is firmly anchored on the gold and silver surface via the thiol of the cys part. However, our experimental data designate a further interaction with the AgNP surface via the carboxylic acid group of the gly- and glu- end of the molecule. It is observed that enhancement of IR absorption of amide I of GSH is pronounced by a factor of 10 on AuNP but, in contrast, on the same-sized AgNP, the suppression is perceived by a factor of 2, even though both are plasmonic materials with respect to free GSH. This study can be used as a point of reference for understanding the structural conformation of the capping layer on nanoparticle surfaces as well as surface enhancement of the IR absorption of amide I. We would like to emphasize that molecular self-assembly on the nanoparticle surfaces is definitely of very broad interest for chemists working in nearly any subdiscipline, spanning from the nanoparticle-based medicine to surface-enhanced spectroscopy to heterogeneous catalysis, etc.
Collapse
Affiliation(s)
- Suranjana Chakrabarty
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Swagata Maity
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Darshana Yazhini
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| | - Anup Ghosh
- Department of Condensed Matter Physics and Materials Sciences, S. N. Bose National Centre for Basic Sciences, JD Block, Sector-III, Salt Lake City, Kolkata 700106, India
| |
Collapse
|
8
|
Wang X, Zhang D, Wu J, Protsak I, Mao S, Ma C, Ma M, Zhong M, Tan J, Yang J. Novel Salt-Responsive SiO 2@Cellulose Membranes Promote Continuous Gradient and Adjustable Transport Efficiency. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42169-42178. [PMID: 32835481 DOI: 10.1021/acsami.0c12399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Continuously growing interest in the controlled and tunable transport or separation of target molecules has attracted more attention recently. However, traditional "on-off" stimuli-responsive membranes are limited to nongradient feedback, which manifests as filtration efficiency that cannot be increased or decreased gradually along with the different stimuli conditions; indeed, only the transformation of on/off state is visible. Herein, we design and fabricate a series of robust salt-responsive SiO2@cellulose membranes (SRMs) by simply combining salt-responsive poly[3-(dimethyl(4-vinylbenzyl)ammonium)propyl sulfonate] (polyDVBAPS)-modified SiO2 nanoparticles and cellulose membranes under negative-pressure filtering. The antipolyelectrolyte effect induces stretch/shrinkage of polyDVBAPS chains inside the channels and facilities the directional aperture size and surface wettability variation, greatly enhancing the variability of interfacial transport and separation efficiency. Due to the linear salt-responsive feedback mechanism, the optimal SRMs achieve highly efficient target macromolecule separation (>75%) and rapid oil/saline separation (>97%) with a continuous gradient and adjustable permeability, instead of simply an "on-off" switch. The salt-responsive factors (SiO2-polyDVBAPS) could be reversibly separated or self-assembled to membrane substrates; thus, SRMs achieved unprecedented repeatability and reusability even after long-term cyclic testing, which exceeds those of currently reported membranes. Such SRMs possess simultaneously a superfast responsive time, a controllable gradient permeability, a high gating ratio, and an excellent reusability, making our strategy a potentially exciting approach for efficient osmotic transportation and target molecule separation in a more controllable manner.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dong Zhang
- Department of Chemical, Biomolecular and Corrosion Engineering. The University of Akron, Ohio 44325, United States
| | - Jiahui Wu
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Iryna Protsak
- Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, Kyiv 03164, Ukraine
| | - Shihua Mao
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Chunxin Ma
- State Key Laboratory of Marine Resources Utilization in South China Sea, Haikou 570228, PR China
| | - Meng Ma
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, PR China
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
9
|
Sun CC, Zhou MY, Yuan JJ, Yan Y, Song YZ, Fang LF, AbdAllah H, Shalaby MS, Shaban AM, Zhu BK. Regulating the aggregation of anionic nanoparticles for size-tunable nanochannels. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
10
|
Zhu X, Tang R, Wang S, Chen X, Hu J, Lei C, Huang Y, Wang H, Nie Z, Yao S. Protein@Inorganic Nanodumpling System for High-Loading Protein Delivery with Activatable Fluorescence and Magnetic Resonance Bimodal Imaging Capabilities. ACS NANO 2020; 14:2172-2182. [PMID: 31990525 DOI: 10.1021/acsnano.9b09024] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Efficient protein delivery into the target cell is highly desirable for protein therapeutics. Current approaches for protein delivery commonly suffer from low-loading protein capacity, poor specificity for target cells, and invisible protein release. Herein, we report a protein@inorganic nanodumpling (ND) system as an intracellular protein delivery platform. Similar to a traditional Chinese food, the dumpling, ND consists of a protein complex "filling" formed by metal-ion-directed self-assembly of protein cargos fused to histidine-rich green fluorescent proteins (H39GFPs), which are further encapsulated by an external surface "wrapper" of manganese dioxide (MnO2) via in situ biomineralization. This ND structure allows for a high loading capacity (>63 wt %) for protein cargos with enhanced stability. NDs can be targeted and internalized into cancer cells specifically through folic acid receptors by surface-tailored folic acid. The protein cargo release is in a bistimuli-responsive manner, triggered by an either reductive or acidic intracellular microenvironment. Moreover, the MnO2 nanowrapper is an efficient fluorescence quencher for inner fused GFPs and also a "switch-on" magnetic resonance imaging (MRI) agent via triggered release of Mn2+ ions, which enables activatable fluorescence/MRI bimodal imaging of protein release. Finally, the ND is highly potent and specific to deliver functional protein ribonuclease A (RNase A) into cultured target cells and the tumor site in a xenografted mouse model, eliminating the tumor cells with high therapeutic efficacy. Our approach provides a promising alternative to advance protein-based cancer therapeutics.
Collapse
Affiliation(s)
- Xiaohua Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education), College of Chemistry and Chemical Engineering , Hunan Normal University , Changsha 410081 , P. R. China
| | - Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Shigong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Xiaoye Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Jiajun Hu
- College of Biology , Hunan University , Changsha 410082 , P. R. China
| | - Chunyang Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Honghui Wang
- College of Biology , Hunan University , Changsha 410082 , P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology , Hunan University , Changsha 410082 , P. R. China
| |
Collapse
|
11
|
Du M, Zhou K, Wang X, Zhang J, Zhang Y, Dong J, Wu L, Qiao Z, Chen G, Wang Q. Precise Fabrication of De Novo Nanoparticle Lattices on Dynamic 2D Protein Crystalline Lattices. NANO LETTERS 2020; 20:1154-1160. [PMID: 31874042 DOI: 10.1021/acs.nanolett.9b04574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The science of protein self-assembly has experienced significant development, from discrete building blocks of self-assembled nanoarchitectures to advanced nanostructures with adaptive functionalities. Despite the prominent achievements in the field, the desire of designing de novo protein-nanoparticle (NP) complexes and constructing dynamic NP systems remains highly challenging. In previous works, l-rhamnulose-1-phosphate aldolase (C98RhuA) tetramers were self-assembled into two-dimensional (2D) lattices via disulfide bond interactions. These interactions provided 2D lattices with high structural quality and a sophisticated assembly mode. In this study, we devised a rational design for RhuA building blocks to fabricate 2D functionalized protein lattices. More importantly, the lattices were used to direct the precise assembly of NPs into highly ordered and diverse nanoarchitectures. These structures can be employed as an excellent tool to adequately verify the self-assembly mode and structural quality of the designed RhuA crystals. The subsequent redesign of RhuA building blocks enabled us to predictably produce a novel protein lattice whose conformational dynamics can be controllably regulated. Thus, a dynamic system of AuNP lattices was achieved. Transmission electron microscopy and small-angle X-ray scattering indicated the presence of these diverse NP lattices. This contribution enables the fabrication of future NP structures in a more programmable manner with more expected properties for potential applications in nanoelectronics and other fields.
Collapse
Affiliation(s)
- Mingming Du
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Kun Zhou
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Xiao Wang
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jianting Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Yejun Zhang
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Jinchen Dong
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
| | - Longlong Wu
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Zhi Qiao
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Gang Chen
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Qiangbin Wang
- School of Nano-Tech and Nano-Bionics , University of Science and Technology of China , Hefei 230026 , China
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab , Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , Suzhou 215123 , China
- College of Materials Sciences and Optoelectronic Technology , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
12
|
Kopeć K, Pędziwiatr M, Gront D, Sztatelman O, Sławski J, Łazicka M, Worch R, Zawada K, Makarova K, Nyk M, Grzyb J. Comparison of α-Helix and β-Sheet Structure Adaptation to a Quantum Dot Geometry: Toward the Identification of an Optimal Motif for a Protein Nanoparticle Cover. ACS OMEGA 2019; 4:13086-13099. [PMID: 31460436 PMCID: PMC6705085 DOI: 10.1021/acsomega.9b00505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/23/2019] [Indexed: 05/31/2023]
Abstract
While quantum dots (QDs) are useful as fluorescent labels, their application in biosciences is limited due to the stability and hydrophobicity of their surface. In this study, we tested two types of proteins for use as a cover for spherical QDs, composed of cadmium selenide. Pumilio homology domain (Puf), which is mostly α-helical, and leucine-rich repeat (LRR) domain, which is rich in β-sheets, were selected to determine if there is a preference for one of these secondary structure types for nanoparticle covers. The protein sequences were optimized to improve their interaction with the surface of QDs. The solubilization of the apoproteins and their assembly with nanoparticles required the application of a detergent, which was removed in subsequent steps. Finally, only the Puf-based cover was successful enough as a QD hydrophilic cover. We showed that a single polypeptide dimer of Puf, PufPuf, can form a cover. We characterized the size and fluorescent properties of the obtained QD:protein assemblies. We showed that the secondary structure of the Puf proteins was not destroyed upon contact with the QDs. We demonstrated that these assemblies do not promote the formation of reactive oxygen species during illumination of the nanoparticles. The data represent advances in the effort to obtain a stable biocompatible cover for QDs.
Collapse
Affiliation(s)
- Katarzyna Kopeć
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Marta Pędziwiatr
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Dominik Gront
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL02093 Warsaw, Poland
| | - Olga Sztatelman
- Institute
of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, PL02106 Warsaw, Poland
| | - Jakub Sławski
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL50383 Wrocław, Poland
| | - Magdalena Łazicka
- Department
of Metabolic Regulation, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, PL02096 Warsaw, Poland
| | - Remigiusz Worch
- Institute
of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, PL02668 Warsaw, Poland
| | - Katarzyna Zawada
- Department
of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine
Division, The Medical University of Warsaw, Banacha 1 Street, PL02097 Warsaw, Poland
| | - Katerina Makarova
- Department
of Physical Chemistry, Faculty of Pharmacy with the Laboratory Medicine
Division, The Medical University of Warsaw, Banacha 1 Street, PL02097 Warsaw, Poland
| | - Marcin Nyk
- Advanced
Materials Engineering and Modelling Group, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, PL50370 Wrocław, Poland
| | - Joanna Grzyb
- Department
of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie Street 14a, PL50383 Wrocław, Poland
| |
Collapse
|
13
|
Ghosh A, Prasad AK, Chuntonov L. Two-Dimensional Infrared Spectroscopy Reveals Molecular Self-Assembly on the Surface of Silver Nanoparticles. J Phys Chem Lett 2019; 10:2481-2486. [PMID: 30978284 DOI: 10.1021/acs.jpclett.9b00530] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The conformation of molecules, peptides, and proteins, self-assembled into structured monolayers on the surface of metal nanoparticles (NPs), can strongly affect their properties and use in chemical or nanobiomedical applications. Elucidating molecular conformations on the NP surface is highly challenging, and the microscopic details mostly remain elusive. Using polarization-selective third-order two-dimensional ultrafast infrared spectroscopy, we revealed the highly ordered intermolecular structure of γ-tripeptide glutathione on the surface of silver NPs in aqueous solution. Glutathione is an antioxidant thiol abundant in living cells; it is extensively used in NP chemistry and related research. We identified conditions where the interaction of glutathione with the NP surface facilitates formation of a β-sheet-like structure enclosing the NPs. A spectroscopic signature associated with the assembly of β-sheets into an amyloid fibril-like structure was also observed. Remarkably, the interaction with the metal surface promotes formation of a fibril-like structure by a small peptide involving only two amino acids.
Collapse
Affiliation(s)
- Anup Ghosh
- Schulich Faculty of Chemistry and Solid State Institute , Technion - Israel Institute of Technology , Haifa 3200003 , Israel
| | - Amit K Prasad
- Schulich Faculty of Chemistry and Solid State Institute , Technion - Israel Institute of Technology , Haifa 3200003 , Israel
| | - Lev Chuntonov
- Schulich Faculty of Chemistry and Solid State Institute , Technion - Israel Institute of Technology , Haifa 3200003 , Israel
| |
Collapse
|
14
|
Gao R, Xu L, Hao C, Xu C, Kuang H. Circular Polarized Light Activated Chiral Satellite Nanoprobes for the Imaging and Analysis of Multiple Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019; 58:3913-3917. [DOI: 10.1002/anie.201814282] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Changlong Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
15
|
Gao R, Xu L, Hao C, Xu C, Kuang H. Circular Polarized Light Activated Chiral Satellite Nanoprobes for the Imaging and Analysis of Multiple Metal Ions in Living Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814282] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Rui Gao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Liguang Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Changlong Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Chuanlai Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| | - Hua Kuang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of EducationInternational Joint Research Laboratory for Biointerface and BiodetectionState Key Lab of Food Science and TechnologySchool of Food Science and TechnologyJiangnan University Wuxi Jiangsu 214122 P. R. China
| |
Collapse
|
16
|
Wang SR, Wang JQ, Fu BS, Chen K, Xiong W, Wei L, Qing G, Tian T, Zhou X. Supramolecular Coordination-Directed Reversible Regulation of Protein Activities at Epigenetic DNA Marks. J Am Chem Soc 2018; 140:15842-15849. [DOI: 10.1021/jacs.8b09113] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shao-Ru Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Jia-Qi Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Bo-Shi Fu
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, Liaoning, China
| | - Kun Chen
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Wei Xiong
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Lai Wei
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Guangyan Qing
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Tian Tian
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Wuhan University, Wuhan 430072, Hubei, China
| |
Collapse
|