1
|
Xia Q, Li Z, Song J, Chang Y, Lu Z, Zhao J, Zhang C, Hang XC. High-Performance Multicolor Organic Light-Emitting Diodes Based on a Pt(II) Carbene Complex Featuring Hemiligand Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57491-57500. [PMID: 39378394 DOI: 10.1021/acsami.4c12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Utilizing a single organic light-emitting diode (OLED) architecture for multicolor emissions can significantly simplify manufacturing progress and broaden applications. Here, we report on a carbene-based Pt(II) complex, designated as Pt(pyiOppy), which exhibits an unusual dimeric packing mode solely by hemiligand π···π stacking. This feature is distinct from the well-known Pt···Pt or Pt···ligand interactions. The dimer persists in new types of orbital combinations, along with its triplet transition state, which are evidenced for the first time. Pt(pyiOppy), under various doping concentrations in a solid matrix, demonstrates multicolor emissions ranging from green to red, all exhibiting high photoluminescent quantum efficiencies (48-97%). The devices incorporating Pt(pyiOppy) can emit green, yellow, orange, and red lights, covering a CIE coordinate range of (0.28-0.65, 0.61-0.34). All the devices also achieve appreciable maximum external quantum efficiencies (9.4-17.2%) and impressive lifetimes of hundreds of hours (LT70 at 1000 cd/m2). These findings showcase a new type of Pt(II) aggregate enabling well-controlled, multicolor high-performance phosphorescent OLEDs.
Collapse
Affiliation(s)
- Qinghua Xia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Yanshan Branch of Sinopec Beijing Research Institute of Chemical Industry, No. 15, Fenghuangting Road, Fangshan District, Beijing 102500, China
| | - Zhenchun Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyu Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yu Chang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenzhong Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Cong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
2
|
Yoon S, Teets TS. Ancillary Ligand Steric Effects and Cyclometalating Ligand Substituents Control Excited-State Decay Kinetics in Red-Phosphorescent Platinum Complexes. J Am Chem Soc 2024. [PMID: 39357044 DOI: 10.1021/jacs.4c10110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Achieving high-efficiency red phosphorescence remains a significant challenge, especially in cyclometalated platinum complexes where radiative rates are inherently slower than their iridium counterparts. In this work, six red-emitting cyclometalated platinum complexes of the formula Pt(C∧N)[(Ar)acNac] (C∧N is the cyclometalating ligand, and (Ar)acNac is an aryl-substituted β-ketoiminate ancillary ligand) were synthesized and characterized. Two C∧N ligands were employed, 1-phenylisoquinoline (piq) and its cyano-substituted analogue 1-phenylisoquinoline-4-carbonitrile (piqCN), which both result in red phosphorescence in cyclometalated platinum complexes. These were paired with three (Ar)acNac ligands that are sterically differentiated via the N-aryl group, which is phenyl in the unsubstituted analogue (Ph)acNac and 2,6-dimethylphenyl or 2,6-diisopropylphenyl in the sterically encumbered analogues. An in-depth photophysical analysis of all compounds was performed and compared to the related compounds with the acetylacetonate (acac) ancillary ligand. While quantum yields are modest in the unsubstituted (Ph)acNac complexes, steric bulk on the β-ketoiminate has a pronounced effect on the excited-state dynamics and can lead to photoluminescence quantum yields of more than 0.50 in both solution and transparent polymer films, with the photoluminescence λmax ∼ 630 nm. We show that both steric effects on the electron-rich β-ketoiminate ancillary ligands and the cyano substituent on the cyclometalating ligand play a role in achieving high-efficiency phosphorescence in the red region.
Collapse
Affiliation(s)
- Sungwon Yoon
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Thomas S Teets
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
3
|
Ren J, He T, Lu H, Wang H, Shao T, Wang Z, Zhang Y, Gull S, Chi Y, Zhong YW, Chen Y, Long G. Tuning the circularly polarized phosphorescence of platinum(II) complexes through a chiral cation strategy. MATERIALS HORIZONS 2024. [PMID: 39315763 DOI: 10.1039/d4mh01105h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Circularly polarized phosphorescent (CPP) materials, especially chiral platinum(II) complexes, which combine the advantages of both circularly polarized luminescence (CPL) and phosphorescence, show broad potential applications in chiral optoelectronic devices. Developing CPP emitters with both excellent chiroptical properties and high yield is urgently needed. Here, a chiral cation strategy is employed to construct the CPP Pt(II) complexes R/S-ABA·[Pt(ppy)Cl2] and R/S-MBA·[Pt(ppy)Cl2] through a simple one-step reaction with almost 100% yield. The circular dichroism and CPL spectra confirm that the chirality was successfully transferred to the [Pt(ppy)Cl2]- anion. The luminescence asymmetry factors (glum) are +1.4/-1.8 × 10-3 for R/S-ABA·[Pt(ppy)Cl2] and +4.4/-2.8 × 10-3 for R/S-MBA·[Pt(ppy)Cl2]. The stronger chiroptical property of R/S-MBA·[Pt(ppy)Cl2] is attributed to the enhanced chiral structural deformation and better matched electric and magnetic transition dipole moments. This chiral cation strategy is confirmed to efficiently construct CPP Pt(II) complexes, which will accelerate the development of CPP emitters towards commercialization.
Collapse
Affiliation(s)
- Jiajia Ren
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Tengfei He
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
- The Centre of Nanoscale Science and Technology and State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Hebin Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Tianyin Shao
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Zhaoyu Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yunxin Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Sehrish Gull
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yun Chi
- Department of Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yu-Wu Zhong
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yongsheng Chen
- The Centre of Nanoscale Science and Technology and State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Renewable Energy Conversion and Storage Center (RECAST), Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
4
|
Birara S, Saini S, Majumder M, Tiwari SP, Metre RK. A solution-processable benzothiazole-substituted formazanate zinc(II) complex designed for a robust resistive memory device. Dalton Trans 2024; 53:15338-15349. [PMID: 39225166 DOI: 10.1039/d4dt01640h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A novel mononuclear bis(formazanate)zinc complex (1) based on a redox-active 1-(benzothiazol-2-yl)-5-(2-benzoyl-4-chlorophenyl)-3-phenyl formazan ligand has been synthesized and characterized. Complex 1 was prepared by reacting one equivalent of Zn(OCOCH3)·2H2O with two equivalents of the corresponding formazan derivative. X-ray crystallography was employed to ascertain the solid-state structure of compound 1, and the analysis revealed a distorted octahedral geometry for the complex where the symmetrical ligands exhibit a preference for coordinating with the zinc center in the 'open' form, generating five-membered chelate rings. Moreover, cyclic voltammetry analysis reveals that complex 1 exhibits the capacity for electrochemical reduction as well as oxidation, resulting in the formation of radical anionic (L2Zn-) and dianionic (L2Zn2-) states as well as the oxidation state of 1. Additionally, the developed solution-processable complex 1 was employed as the fundamental building material for resistive switching memory applications. The [FTO/ZnIIL2(1)]/Ag RRAM device demonstrates exceptional resistive memory switching properties, with a substantial ION/IOFF ratio (103), low operational VSET and VRESET (0.9 V and -0.75 V) voltages, excellent endurance stability (100 cycles), and decent retention time (more than 2000 seconds). The findings presented in this study underscore the importance of redox-active formazanate metal complexes for creating promising memory storage devices.
Collapse
Affiliation(s)
- Sunita Birara
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Shalu Saini
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Moumita Majumder
- Department of Chemistry, School of Science and Environmental Studies, Dr Vishwanath Karad MIT World Peace University, Pune 411038, Maharashtra, India.
| | - Shree Prakash Tiwari
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| | - Ramesh K Metre
- Department of Chemistry, Indian Institute of Technology Jodhpur, Rajasthan-342030, India.
| |
Collapse
|
5
|
Lei X, Jiang Y, Zeng Q, Dou Y, Zhang H, Ni J, Zhuo Y, Wang W, Ai Y, Li Y. A visible-light regulated luminescent switch based on a spiropyran-derived Pt(II) complex for advanced anti-counterfeiting materials. Chem Commun (Camb) 2024; 60:9360-9363. [PMID: 39072686 DOI: 10.1039/d4cc02576h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A dual optical switch regulated by visible light has been developed through an integrated strategy, including luminescent Pt(II) and photochromic spiropyran (SP) as a triplet-sensitizer and photo-regulator building block, respectively. An efficient Förster resonance energy transfer (FRET) process is achieved, along with apparent and emissive color changes under visible light irradiation and temperature stimuli, which was utilized to develop advanced anti-counterfeiting materials.
Collapse
Affiliation(s)
- Xin Lei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Ying Jiang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Qingguo Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yuncan Dou
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Haokun Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Jiatao Ni
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yinuo Zhuo
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Wei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yeye Ai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.
| |
Collapse
|
6
|
Xu Y, Leung MY, Yan L, Chen Z, Li P, Cheng YH, Chan MHY, Yam VWW. Synthesis, Characterization, and Resistive Memory Behaviors of Highly Strained Cyclometalated Platinum(II) Nanohoops. J Am Chem Soc 2024; 146:13226-13235. [PMID: 38700957 DOI: 10.1021/jacs.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Strained carbon nanohoops exhibit attractive photophysical properties due to their unique π-conjugated structure. However, incorporation of such nanohoops into the pincer ligand of metal complexes has rarely been explored. Herein, a new family of highly strained cyclometalated platinum(II) nanohoops has been synthesized and characterized. Strain-promoted C-H bond activation has been observed during the metal coordination process, and Hückel-Möbius topology and random-columnar packing in the solid state are found. Transient absorption spectroscopy revealed the size-dependent excited state properties of the nanohoops. Moreover, the nanohoops have been successfully employed as active materials in the fabrication of solution-processable resistive memory devices, including the use of the smallest platinum(II) nanohoop for the fabrication of a binary memory, with low switching threshold voltages of ca. 1.5 V, high ON/OFF current ratios, and good stability. These results demonstrate that strain incorporation into the structure can be an effective strategy to fundamentally fine-tune the reactivity, optoelectronic, and resistive memory properties.
Collapse
Affiliation(s)
- Youzhi Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ming-Yi Leung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Liangliang Yan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ziyong Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Panpan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Yat-Hin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
7
|
Lin X, Zhou P, Gao Y, Li T, Chen X, Li H, Jiang R, Chen Z, Zheng H. Implementation of Thermal-Triggered Binary-Ternary Switchable Memory Performance in Zn/polysulfide/organic Complex-Based Memorizers by Finely Modulating the S 62- Relaxation. Inorg Chem 2024; 63:775-783. [PMID: 38134353 DOI: 10.1021/acs.inorgchem.3c03787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Polysulfide-based multilevel memorizers are promising as novel memorizers, in which the occurrence of Sn2- relaxation is key for their multilevel memory. However, the effects of crystal packing and the side group of organic ligands on Sn2- relaxation are still ambiguous. In this work, ionic [Zn(S6)2·Zn2(Bipy)2SO4 (1), Zn(S6)2·Zn(Pmbipy)3 (2)] and neutral [ZnS6(Ombipy) (3), ZnS6(Phen)2 (4)] Zn/polysulfide/organic complexes with different packing modes and structures of organic ligands have been synthesized and were fabricated as memory devices. In both ionic and neutral Zn complexes, the S62- relaxation will be blocked by steric hindrances due to the packing of counter-cations and hydrogen-bond restrictions. Consequently, only the binary memory performances can be seen in FTO/1/Ag, FTO/2/Ag, and FTO/4/Ag, which originate from the more condensed packing of conjugated ligands upon electrical stimulus. Interestingly, FTO/3/Ag illustrates the unique thermally triggered reversible binary-ternary switchable memory performance. In detail, after introducing a methyl group on the 6'-position of bipyridine in ZnS6(Ombipy) (3), the ring-to-chain relaxation of S62- anions at room temperature will be inhibited, but it can happen at a higher temperature of 120 °C, which has been verified by elongated S-S lengths and the strengthened C-H···S hydrogen bond upon heating. The rules drawn in this work will provide a useful guide for the design of stimulus-responsive memorizers that can be applied in special industries such as automobile, oil, and gas industries.
Collapse
Affiliation(s)
- Xiaoli Lin
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Panke Zhou
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yiqun Gao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Tao Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Haohong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Rong Jiang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhirong Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Huidong Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
8
|
Poveda D, Vivancos Á, Bautista D, González-Herrero P. Luminescent Platinum(II) Complexes with Terdentate N∧C∧C Ligands. Inorg Chem 2023; 62:20987-21002. [PMID: 38051299 PMCID: PMC10751801 DOI: 10.1021/acs.inorgchem.3c02399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
The synthesis, structure, and luminescence of Pt(II) complexes of the type [Pt(N∧C∧C)(L)] are reported, where N∧C∧C is a terdentate ligand resulting from the cycloplatination of 2-(3,5-diphenoxyphenyl)pyridine or 2-(4,4″-dimethyl-[1,1':3',1″-terphenyl]-5'-yl)pyridine, and L represents a monodentate ancillary ligand, which can be γ-picoline, 4-pyridinecarboxaldehyde, PPh3, n-butyl or 2,6-dimethylphenyl isocyanide, CO, or the N-heterocyclic carbenes 1-butyl-3-methylimidazol-2-ylidene or 4-butyl-3-methyl-1-phenyl-1H-1,2,3-triazol-5-ylidene. Derivatives bearing CO, isocyanides, or carbenes showed the highest stabilities in solution, whereas the pyridine and PPh3 derivatives establish ligand-exchange equilibria in acetonitrile. Different supramolecular structures are observed in the solid state, which largely depend on the nature of the ancillary ligand. Isocyanides and CO favor π interactions between the aromatic rings, metallophilic Pt···Pt contacts, or a combination of both. In contrast, pyridine ligands may lead to bimolecular assemblies driven by C-H···O, C-H···Pt, or C-H/π hydrogen bonds. Luminescence was examined in fluid solution, poly(methyl methacrylate) matrices, and the solid state at 298 K, and in 2-methyltetrahydrofuran glasses at 77 K. The majority of derivatives show highly efficient emissions from 3ILCT/MLCT or 3ILCT/MLCT/LLCT excited states of monomeric species. The formation of excimers and different types of emissive aggregates are demonstrated, which lead to red-shifted emissions of different origins and characteristics depending on the involved noncovalent interactions.
Collapse
Affiliation(s)
- Dionisio Poveda
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Ángela Vivancos
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| | - Delia Bautista
- Área
Científica y Técnica de Investigación, Universidad de Murcia, Campus de Espinardo, 21, 30100 Murcia, Spain
| | - Pablo González-Herrero
- Departamento
de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 19, 30100 Murcia, Spain
| |
Collapse
|
9
|
Ogawa T, Wenger OS. Nickel(II) Analogues of Phosphorescent Platinum(II) Complexes with Picosecond Excited-State Decay. Angew Chem Int Ed Engl 2023; 62:e202312851. [PMID: 37732725 DOI: 10.1002/anie.202312851] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Square-planar NiII complexes are interesting as cheaper and more sustainable alternatives to PtII luminophores widely used in lighting and photocatalysis. We investigated the excited-state behavior of two NiII complexes, which are isostructural with two luminescent PtII complexes. The initially excited singlet metal-to-ligand charge transfer (1 MLCT) excited states in the NiII complexes decay to metal-centered (3 MC) excited states within less than 1 picosecond, followed by non-radiative relaxation of the 3 MC states to the electronic ground state within 9-21 ps. This contrasts with the population of an emissive triplet ligand-centered (3 LC) excited state upon excitation of the PtII analogues. Structural distortions of the NiII complexes are responsible for this discrepant behavior and lead to dark 3 MC states far lower in energy than the luminescent 3 LC states of PtII compounds. Our findings suggest that if these structural distortions could be restricted by more rigid coordination environments and stronger ligand fields, the excited-state relaxation in four-coordinate NiII complexes could be decelerated such that luminescent 3 LC or 3 MLCT excited states become accessible. These insights are relevant to make NiII fit for photophysical and photochemical applications that relied on PtII until now.
Collapse
Affiliation(s)
- Tomohiro Ogawa
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
- Graduate School of Science and Engineering, University of Toyama, Toyama, 930-8555, Japan
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
10
|
Paderina A, Slavova S, Petrovskii S, Grachova E. Alkynylphosphonium Pt(II) Complexes: Synthesis, Characterization, and Features of Photophysical Properties in Solution and in the Solid State. Inorg Chem 2023; 62:18056-18068. [PMID: 37886882 DOI: 10.1021/acs.inorgchem.3c02209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A series of heteroleptic bis-alkynyl-diimine mononuclear Pt(II) complexes with alkynylphosphonium and di-tert-butyl-2,2'-bipyridine (dtbpy) ligands have been prepared and characterized by spectroscopic methods and single-crystal XRD. The Pt(II) complexes obtained in the present study demonstrate triplet emission in solution, which originates from 3MLCT/3LC states where the nature of the π-conjugated linker in the alkynylphosphonium ligand manages the contributions of each transition, and this conclusion is supported by DFT calculations. Additionally, the presence of the phosphonium group connected to alkynyl through the π-conjugated linker enhances nonlinear optical properties of the Pt(II) complexes increasing two-photon absorption cross section up to 400 GM. In the solid state, the Pt(II) complexes demonstrate emission that is attributed to 3MMLCT transitions due to the presence of Pt-Pt metallophilic interactions, and the reversible assembly and disassembly of these interactions by grinding and solvent treatment are responsible for the mechanochromic luminescence. It has been experimentally shown that stimuli-responsive emission of the Pt(II) complexes is the result of a "monomer/dimer" transformation; this conclusion is confirmed by DFT calculations for discrete complexes and different dimers with or without Pt-Pt interactions.
Collapse
Affiliation(s)
- Aleksandra Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| | - Sofia Slavova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislav Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr 26, St. Petersburg 198504, Russia
| |
Collapse
|
11
|
Kim Y, Kim J, Lee JH, Moon H, Noh GH, Hwang H, Lee J, Park JH, Kim Y, Park MH. Highly emissive 4-carbazole-appended salen-indium complex: the effect of strong donor-acceptor interaction. Dalton Trans 2023; 52:13379-13386. [PMID: 37675649 DOI: 10.1039/d3dt02129g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we report our findings on 4-carbazole (CBZ)-appended salen-based indium complexes, CBZIn1 and CBZIn2, which feature diimine bridges exhibiting different electron-accepting properties. Notably, CBZIn2 exhibited a significantly higher photoluminescence quantum efficiency (PLQY, ΦPL) in toluene than CBZIn1, with a value over 15 times greater (ΦPL = 57.7% for CBZIn2; ΦPL = 3.7% for CBZIn1). In particular, in the rigid state of THF at 77 K, CBZIn2 exhibited a near-unity PLQY of 98.2%. Even in the PMMA film, CBZIn2 maintained a high level of PLQY (ΦPL = 70.2%). These results can be attributed to the highly efficient radiative decay process based on intramolecular charge-transfer (ICT) transition between the moderately twisted CBZ, characterized by its conformational rigidity and the 1,2-dicyanoethylene-bridged salen, which exhibits a strong electron-accepting ability. Furthermore, these findings are supported by theoretical calculations.
Collapse
Affiliation(s)
- Yoseph Kim
- Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Jaehoon Kim
- Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
- Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ji Hye Lee
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyeongkwon Moon
- Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Ga Hee Noh
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Junseong Lee
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jun Hui Park
- Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Youngjo Kim
- Department of Chemistry and BK21+ Program Research Team, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| | - Myung Hwan Park
- Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
12
|
Zhou PK, Lin XL, Chee MY, Lew WS, Zeng T, Li HH, Chen X, Chen ZR, Zheng HD. Switching the memory behaviour from binary to ternary by triggering S 62- relaxation in polysulfide-bearing zinc-organic complex molecular memories. MATERIALS HORIZONS 2023. [PMID: 37070656 DOI: 10.1039/d3mh00037k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The use of crystalline metal-organic complexes with definite structures as multilevel memories can enable explicit structure-property correlations, which is significant for designing the next generation of memories. Here, four Zn-polysulfide complexes with different degrees of conjugation have been fabricated as memory devices. ZnS6(L)2-based memories (L = pyridine and 3-methylpyridine) can exhibit only bipolar binary memory performances, but ZnS6(L)-based memories (L = 2,2'-bipyridine and 1,10-phenanthroline) illustrate non-volatile ternary memory performances with high ON2/ON1/OFF ratios (104.22/102.27/1 and 104.85/102.58/1) and ternary yields (74% and 78%). Their ON1 states stem from the packing adjustments of organic ligands upon the injection of carriers, and the ON2 states are a result of the ring-to-chain relaxation of S62- anions. The lower conjugated degrees in ZnS6(L)2 result in less compact packing; consequently, the adjacent S62- rings are too long to trigger the S62- relaxation. The deep structure-property correlation in this work provides a new strategy for implementing multilevel memory by triggering polysulfide relaxation based on the conjugated degree regulation of organic ligands.
Collapse
Affiliation(s)
- Pan-Ke Zhou
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Xiao-Li Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Mun Yin Chee
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Wen Siang Lew
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Tao Zeng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
| | - Hao-Hong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Xiong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Zhi-Rong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian 350108, China.
| | - Hui-Dong Zheng
- Fujian Engineering Research Centre of Advanced Manufacturing Technology for Fine Chemicals, College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
13
|
Photoluminescent nickel(II) carbene complexes with ligand-to-ligand charge-transfer excited states. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
14
|
Lázaro A, Bosque R, Ward JS, Rissanen K, Crespo M, Rodríguez L. Toward Near-Infrared Emission in Pt(II)-Cyclometallated Compounds: From Excimers' Formation to Aggregation-Induced Emission. Inorg Chem 2023; 62:2000-2012. [PMID: 36696563 PMCID: PMC9906741 DOI: 10.1021/acs.inorgchem.2c03490] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Two series of Pt(II)-cyclometallated compounds containing N^C^N tridentate and alkynyl-chromophore ligands have been synthesized and structurally characterized. The N^C^N ligands differ on the presence of R1 = H or F in the central aromatic ring, while six different chromophores have been introduced to the alkynyl moiety. Single-crystal X-ray structures for some of the compounds reveal the presence of weak intermolecular contacts responsible for the formation of some dimers or aggregates. The photophysical characterization shows the presence of two emission bands in solution assigned to the 3π-π* transition from the N^C^N ligands mixed with 3MLCT/3ILCT transitions (higher energy band) in deaerated samples. The formation of excimers has also been identified as a broad band at longer wavelengths [near-infrared (NIR) emission] that becomes the main emission band for compounds containing phenanthrene as the chromophore. NIR emission behavior has also been explored using acetonitrile/water mixtures, and the presence of aggregates that emit at ca. 650 nm has also been detected.
Collapse
Affiliation(s)
- Ariadna Lázaro
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain,Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Ramon Bosque
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain
| | - Jas S. Ward
- Department
of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- Department
of Chemistry, University of Jyvaskyla, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Margarita Crespo
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain,Institut
de Biomedicina de la Universitat de Barcelona (IBUB), 08028 Barcelona, Spain
| | - Laura Rodríguez
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica, Universitat
de Barcelona, Martí i Franquès 1-11, E-08028 Barcelona, Spain,Institut
de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, 08028 Barcelona, Spain,
| |
Collapse
|
15
|
Sadeghian M, Gómez de Segura D, Golbon Haghighi M, Safari N, Lalinde E, Moreno MT. Luminescent Anionic Cyclometalated Organoplatinum (II) Complexes with Terminal and Bridging Cyanide Ligand: Structural and Photophysical Properties. Inorg Chem 2023; 62:1513-1529. [PMID: 36651903 PMCID: PMC9890487 DOI: 10.1021/acs.inorgchem.2c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present the synthesis and characterization of two series of mononuclear heteroleptic anionic cycloplatinated(II) complexes featuring terminal cyanide ligand Q+[Pt(C^N)(p-MeC6H4)(CN)]- [C^N = benzoquinolate (bzq), Q+ = K+ 1 and NBu4+ 4; 2-phenylpyridinate (ppy), Q+ = K+ 2 and NBu4+ 5 and 2-(2,4- difluorophenyl)pyridinate (dfppy), Q+ = K+ 3 and NBu4+ 6] and a series of symmetrical binuclear complexes (NBu4)[Pt2(C^N)2(p-MeC6H4)2(μ-CN)] (C^N = bzq 7, ppy 8, dfppy 9). Compounds 5, 6, and 7-9 were further determined by single-crystal X-ray diffraction. There are no apparent intermolecular Pt···Pt interactions owing to the presence of bulky NBu4+ counterion. Slow crystallization of K[Pt(ppy)(p-MeC6H4)(CN)] 2 in acetone/hexane evolves with formation of yellow crystals, which were identified by single-crystal X-ray diffraction methods as the salt complex {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}[Pt(ppy)(p-MeC6H4)(μ-CN)Pt(ppy)(p-MeC6H4)]·2acetone (10), featuring the binuclear anionic unit 8- neutralized by an hybrid inorganic-organometallic coordination polymer {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}+. The photophysical properties of all compounds were recorded in powder, polystyrene film, and solution states with a quantum yield up to 21% for 9 in the solid state. All complexes displayed bright emission in rigid media, and for the interpretation of their absorption and emission properties, density functional theory (DFT) and time-dependent DFT calculations were applied.
Collapse
Affiliation(s)
- Mina Sadeghian
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran,Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - David Gómez de Segura
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | | | - Nasser Safari
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | - Elena Lalinde
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| | - M. Teresa Moreno
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| |
Collapse
|
16
|
Shen Y, Kong X, Yang F, Bian HD, Cheng G, Cook TR, Zhang Y. Deep Blue Phosphorescence from Platinum Complexes Featuring Cyclometalated N-Pyridyl Carbazole Ligands with Monocarborane Clusters (CB 11H 12-). Inorg Chem 2022; 61:16707-16717. [PMID: 36205461 DOI: 10.1021/acs.inorgchem.2c02467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The utilization of deep blue phosphorescent materials in high-performance displays and solid-state lighting requires high quantum efficiencies and color purities. Here, we describe the preparation and luminescent properties of novel platinum triplet emitters featuring cyclometalated N-pyridyl-carbazole ligands functionalized with closo-monocarborane clusters [CB11H12]-. All reported complexes were fully characterized by using standard small molecule techniques (UV-vis, cyclic voltammetry, nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HRMS)), and their solid-state structures were elucidated by X-ray diffraction. These platinum phosphors emit in the blue region of the visible wavelength spectrum in both the solid and solution states. Complex 4a exhibits the highest luminous efficiency at λem = 439 nm with a photoluminescent quantum yield (PLQY) of 60% by dispersing in a PMMA matrix. Electrochemical and computational studies of complexes 4a and 4b revealed that the blue phosphorescence originates mainly from intraligand 3π → π* (3ILCT) transitions with relatively small 3MLCT mixing. A deep-blue OLED containing 4a as the light-emitting dopant was successfully fabricated using a solution-processed method, and the device exhibited blue photoluminescence with CIE coordinates of (0.17, 0.15) and a maximum external quantum efficiency (EQEmax) value of 6.2%. This article represents the pioneering study of a deep blue PhOLED using a Pt complex bearing a closo-monocarborane anion substituent, providing a new avenue into the preparation of novel triplet emitters based on boron-rich cluster anions.
Collapse
Affiliation(s)
- Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Xiangjun Kong
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Fengjie Yang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - He-Dong Bian
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| | - Gang Cheng
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Timothy R Cook
- Department of Chemistry, University at Buffalo, The State University of New York, 856 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, No. 158, Daxue West Road, Nanning, Guangxi 530006, China
| |
Collapse
|
17
|
Li Y, Pan Y, Zhang C, Shi Z, Ma C, Ling S, Teng M, Zhang Q, Jiang Y, Zhao R, Zhang Q. Molecular-Shape-Controlled Binary to Ternary Resistive Random-Access Memory Switching of N-Containing Heteroaromatic Semiconductors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44676-44684. [PMID: 36128726 DOI: 10.1021/acsami.2c11960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In organic resistive random-access memory (ReRAM) devices, deeply understanding how to control the performance of π-conjugated semiconductors through molecular-shape-engineering is important and highly desirable. Herein, we design a family of N-containing heteroaromatic semiconductors with molecular shapes moving from mono-branched 1Q to di-branched 2Q and tri-branched 3Q. We find that this molecular-shape engineering can induce reliable binary to ternary ReRAM switching, affording a highly enhanced device yield that satisfies the practical requirement. The density functional theory calculation and experimental evidence suggest that the increased multiple paired electroactive nitrogen sites from mono-branched 1Q to tri-branched 3Q are responsible for the multilevel resistance switching, offering stable bidentate coordination with the active metal atoms. This study sheds light on the prospect of N-containing heteroaromatic semiconductors for promising ultrahigh-density data-storage ReRAM application.
Collapse
Affiliation(s)
- Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yelong Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Zhiming Shi
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Chunlan Ma
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Songtao Ling
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Min Teng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qijian Zhang
- School of Materials Engineering, Changshu Institute of Technology, Changshu, Jiangsu 215500, China
| | - Yucheng Jiang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Run Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
18
|
Yam VWW, Cheng YH. Stimuli-Responsive and Switchable Platinum(II) Complexes and Their Applications in Memory Storage. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
19
|
Moutier F, Schiller J, Lecourt C, Khalil AM, Delmas V, Calvez G, Costuas K, Lescop C. Impact of Intermolecular Non‐Covalent Interactions in a Cu
I
8
Pd
II
1
Discrete Assembly: Conformers’ Geometries and Stimuli‐Sensitive Luminescence Properties. Chemistry 2022; 28:e202104497. [DOI: 10.1002/chem.202104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Florent Moutier
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Jana Schiller
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Constance Lecourt
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | | | - Vincent Delmas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Guillaume Calvez
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Karine Costuas
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| | - Christophe Lescop
- Université Rennes INSA Rennes, CNRS, ISCR – UMR6226 35000 Rennes France
| |
Collapse
|
20
|
Lian H, Cheng X, Hao H, Han J, Lau MT, Li Z, Zhou Z, Dong Q, Wong WY. Metal-containing organic compounds for memory and data storage applications. Chem Soc Rev 2022; 51:1926-1982. [PMID: 35083990 DOI: 10.1039/d0cs00569j] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the upcoming trend of Big Data era, some new types of memory technologies have emerged as substitutes for the traditional Si-based semiconductor memory devices, which are encountering severe scaling down technical obstacles. In particular, the resistance random access memory (RRAM) and magnetic random access memory (MRAM) hold great promise for the in-memory computing, which are regarded as the optimal strategy and pathway to solve the von Neumann bottleneck by high-throughput in situ data processing. As far as the active materials in RRAM and MRAM are concerned, organic semiconducting materials have shown increasing application perspectives in memory devices due to their rich structural diversity and solution processability. With the introduction of metal elements into the backbone of molecules, some new properties and phenomena will emerge accordingly. Consequently, the RRAM and MRAM devices based on metal-containing organic compounds (including the small molecular metal complexes, metallopolymers, metal-organic frameworks (MOFs) and organic-inorganic-hybrid perovskites (OIHPs)) have been widely explored and attracted intense attention. In this review, we highlight the fundamentals of RRAM and MRAM, as well as the research progress of the applications of metal-containing organic compounds in both RRAM and MRAM. Finally, we discuss the challenges and future directions for the research of organic RRAM and MRAM.
Collapse
Affiliation(s)
- Hong Lian
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Xiaozhe Cheng
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Haotian Hao
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Jinba Han
- MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Mei-Tung Lau
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zikang Li
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| | - Zhi Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China.
| | - Qingchen Dong
- MOE Key Laboratory of Advanced Display and System Applications, Shanghai University, 149 Yanchang Road, Jingan District, Shanghai 200072, China.,School of Mechanical & Electronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai 200444, China. .,MOE Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, 79 Yingze West Street, Taiyuan, 030024, China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China. .,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
21
|
Ju P, Huang Q, Zhang R, Chen JL, Zhao F, Liu SJ, Wen HR. A tricolor-switchable stimuli-responsive luminescent binuclear Cu( i) complex with switchable NH⋯O interactions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00359g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Blue-green-yellow tricolor luminescence conversion is attributed to the loss and recovery of CH2Cl2 solvent molecules and the destruction and restoration of the orderly packing array caused by the breaking and rebuilding of NH⋯O hydrogen bonds.
Collapse
Affiliation(s)
- Peng Ju
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Qin Huang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Rui Zhang
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - Jing-Lin Chen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P.R. China
| | - Feng Zhao
- School of Chemistry and Chemical Engineering, Jiangxi Science and Technology Normal University, Nanchang 330013, P.R. China
| | - Sui-Jun Liu
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| | - He-Rui Wen
- Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Department of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, P.R. China
| |
Collapse
|
22
|
Kashina MV, Luzyanin KV, Katlenok E, Novikov AS, Kinzhalov MA. Experimental and Computational Tuning of Metalla-N-Heterocyclic Carbenes at Palladium(II) and Platinum(II) Centers. Dalton Trans 2022; 51:6718-6734. [DOI: 10.1039/d2dt00252c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Palladium(II) and platinum(II) complexes featuring metalla-N-heterocyclic carbenes (7–12) were synthesised via metal-mediated coupling between equimolar cis-[MCl2(CNR)2] (R = 2,6-Me2C6H3 (Xyl), 2,4,6-Me3C6H3 (Mes)] and 2-aminopyridine or 2-aminopyrazine. Thiocyanate complexes 13–18 with...
Collapse
|
23
|
Kwak SW, Mubarok H, Lee JH, Hwang H, Lee KM, Lee MH, Park MH. Highly red-emissive salen–indium complexes: impact of 4-amino-substitution on the photophysical properties. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01337h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-NR2-appended salen–indium complexes were prepared via a one-pot synthetic pathway. The complexes exhibited narrow-bandwidth red emissions with high photoluminescence quantum yields that are the highest among the reported salen-based luminophores.
Collapse
Affiliation(s)
- Sang Woo Kwak
- Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Hanif Mubarok
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Ji Hye Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Min Hyung Lee
- Department of Chemistry, University of Ulsan, Ulsan 44610, Republic of Korea
| | - Myung Hwan Park
- Department of Chemistry Education, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
24
|
Zhu S, Huang X, Han X, Liu S. Recognition and Luminescence Properties of N^C^N Pt(II) Complexes with Macrocyclic Host Cucurbit[10]uril. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a22020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Li B, Li Y, Chan MHY, Yam VWW. Phosphorescent Cyclometalated Platinum(II) Enantiomers with Circularly Polarized Luminescence Properties and Their Assembly Behaviors. J Am Chem Soc 2021; 143:21676-21684. [PMID: 34907777 DOI: 10.1021/jacs.1c10943] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Platinum(II) complexes as supramolecular luminescent materials have received considerable attention due to their unique planar structures and fascinating photophysical properties. However, the molecular design of platinum(II) complexes with impressive circularly polarized luminescence properties still remains challenging and rarely explored. Herein, we reported a series of cyclometalated platinum(II) complexes with benzaldehyde and its derived imine-containing alkynyl ligands to investigate their phosphorescent, chiroptical, and self-assembly behaviors. An isodesmic growth mechanism is found for their temperature-dependent self-assembly process. The chiral sense of the enantiomers can be transferred from the chiral alkynyl ligands to the cyclometalated platinum(II) dipyridylbenzene N^C^N chromophore and further amplified through supramolecular assembly via intermolecular noncovalent interactions. Notably, distinctive phosphorescent properties and nanostructured morphologies have been found for enantiomers 4R and 4S. Their intriguing self-assembled nanostructures and phosphorescence behaviors are supported by crystal structure determination, 1H NMR, emission, and UV-vis absorption spectroscopy, scanning electron microscopy, and X-ray powder diffraction studies.
Collapse
Affiliation(s)
- Baoning Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Yongguang Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Michael Ho-Yeung Chan
- State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| | - Vivian Wing-Wah Yam
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China.,State Key Laboratory of Synthetic Chemistry, Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, People's Republic of China
| |
Collapse
|
26
|
Malmberg R, Venkatesan K. Recent Advances in the Development of Blue and Deep‐Blue Emitting Gold(I) and Gold(III) Molecular Systems. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Robert Malmberg
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre Macquarie University Sydney NSW 2109 Australia
| | - Koushik Venkatesan
- Department of Molecular Sciences, MQ Photonics Research Centre and MQ Sustainable Energy Research Centre Macquarie University Sydney NSW 2109 Australia
| |
Collapse
|
27
|
Poh WC, Au-Yeung HL, Chan AKW, Hong EYH, Cheng YH, Leung MY, Lai SL, Low KH, Yam VWW. Cyclometalated Platinum(II) Complexes with Donor-Acceptor-Containing Bidentate Ligands and Their Application Studies as Organic Resistive Memories. Chem Asian J 2021; 16:3669-3676. [PMID: 34569719 DOI: 10.1002/asia.202100897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Indexed: 11/10/2022]
Abstract
A series of heteroleptic cyclometalated platinum(II) complexes, [Pt(C^N)(O^O)], (1-10) with various donors and acceptors has been synthesized and characterized by 1 H NMR spectroscopy, elemental analyses, infrared spectroscopy and mass spectrometry. The X-ray structure of 2 has also been determined. The electrochemical and photophysical properties of the platinum(II) complexes were studied. These experimental results have been supported by computational studies. Furthermore, two of the complexes have been employed as the active material in the fabrication of resistive memory devices, exhibiting stable binary memory performance with low operating voltage, high ON/OFF ratio and long retention time.
Collapse
Affiliation(s)
- Wei Church Poh
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho-Leung Au-Yeung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Kam-Hung Low
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
28
|
Zhuang Y, Wang Y, Deng Y, Li F, Chen X, Liu S, Tong Y, Zhao Q. Memristors Based on an Iridium(III) Complex Containing Viologen for Advanced Synaptic Bionics. Inorg Chem 2021; 60:13021-13028. [PMID: 34376047 DOI: 10.1021/acs.inorgchem.1c01439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Memristors with nonvolatile memory properties are expected to open the era of neuromorphic computing. However, it remains a huge challenge to develop memristors with high uniformity, high stability, and low power consumption for advanced synaptic bionics. Herein, an electroactive iridium(III) complex Ir-vio was designed and synthesized by incorporating a viologen moiety into its N∧N ligand. Complex Ir-vio showed multiple redox states and high sensitivity to an electrical stimulus. Importantly, two-terminal memristors with Ag/Ir-vio/W structure were successfully fabricated by the solution-processable method, which exhibited multilevel storage characteristics with a low switching threshold voltage of 0.5 V and high ON1/ON2/ON3/OFF current ratio of 105/103/102/1 at a low reading bias of 0.05 V. Moreover, the memristors can mimic synaptic plasticity, indicating that they can act as artificial synapses to construct brain-inspired neural networks. The memristive mechanisms can be ascribed to the interconversion among different charge-transfer and redox states under various electrical stimulus. To the best of our knowledge, this work is the first experimental demonstration of memristors based on iridium(III) complexes, opening a new era for the development of synaptic bionic devices based on organometallic compounds.
Collapse
Affiliation(s)
- Yanling Zhuang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yu Wang
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yongjing Deng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Feiyang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Xintong Chen
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Yi Tong
- College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China.,College of Electronic and Optical Engineering & College of Microelectronics, Institute of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications, Nanjing 210023, Jiangsu, P. R. China
| |
Collapse
|
29
|
Barman BK, Khatua M, Goswami B, Samanta S, Vijayaraghavan RK. Irreversible Resistive State Switching in Devices with a Homoleptic Cobalt(II) Complex Active Layer. Chem Asian J 2021; 16:1545-1552. [PMID: 33871144 DOI: 10.1002/asia.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/12/2021] [Indexed: 02/02/2023]
Abstract
Molecules with bi-stable electronic transport behaviour have been in upfront research topics of the molecular semiconductor devices in the past few decades due to the use of such materials in resistive data storage devices. Transition metal complexes (TMC) are expected to be potential candidates in regard to the tunable and manifold redox behaviour expecting multiple bulk transport states. Finding alternate mechanisms in such devices with TMC as the active layer materials would revoke the multifaceted approach to the functional gain. We have succeeded in demonstrating write once-read many (WORM) type of resistive memory device using a homoleptic Cobalt(II) (Co(II)) complex with large on/off current ratio ensuring the easy readout process at lower voltage. The advantage of this device was the turn on voltage was found to be the low (<2.7 V) operational voltage and the success ratio of the devices were more than 83%. The durability of the stored data was found to be more than 35,000 seconds which ensures the stability of the bistable state in the fabricated devices. Such ambient stable, solution processable devices are important for the large-scale printable devices. The manuscript describes the preparation, optical and electrochemical characterisation of the metal complex used along with a detailed mechanistic investigations and electrical characterisation of memory device obtained from a stable cobalt complex.
Collapse
Affiliation(s)
- Biswajit K Barman
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Manas Khatua
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Bappaditya Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| | - Subhas Samanta
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu, 181221, India
| | - Ratheesh K Vijayaraghavan
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, West Bengal, India
| |
Collapse
|
30
|
Lee S, Lee Y, Kim K, Heo S, Jeong DY, Kim S, Cho J, Kim C, You Y. Twist to Boost: Circumventing Quantum Yield and Dissymmetry Factor Trade-Off in Circularly Polarized Luminescence. Inorg Chem 2021; 60:7738-7752. [PMID: 33760606 DOI: 10.1021/acs.inorgchem.1c00070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Circularly polarized luminescence (CPL) enables promising applications in asymmetric photonics. However, the performances of CPL molecules do not yet meet the requirements of these applications. The shortcoming originates from the trade-off in CPL between the photoluminescence quantum yield (PLQY) and the photoluminescence dissymmetry factor (gPL). In this study, we developed a molecular strategy to circumvent this trade-off. Our approach takes advantage of the strong propensity of [Pt(N^C^N)Cl], where the N^C^N ligand is 1-(2-oxazoline)-3-(2-pyridyl)phenylate, to form face-to-face stacks. We introduced chiral substituents, including (S)-methyl, (R)- and (S)-isopropyl, and (S)-indanyl groups, into the ligand framework. This asymmetric control induces torsional displacements that give homohelical stacks of the Pt(II) complexes. X-ray single-crystal structure analyses for the (S)-isopropyl Pt(II) complex reveal the formation of a homohelical dimer with a Pt···Pt distance of 3.48 Å, which is less than the sum of the van der Waals radii of Pt. This helical stack elicits the metal-metal-to-ligand charge-transfer (MMLCT) transition that exhibits strong chiroptical activity due to the electric transition moment making an acute angle to the magnetic transition moment. The PLQY and gPL values of the MMLCT phosphorescence emission of the (S)-isopropyl Pt(II) complex are 0.49 and 8.4 × 10-4, which are improved by factors of ca. 6 and 4, respectively, relative to the values of the unimolecular emission (PLQY, 0.078; gPL, 2.4 × 10-4). Our photophysical measurements for the systematically controlled Pt(II) complexes reveal that the CPL amplifications depend on the chiral substituent. Our investigations also indicate that excimers are not responsible for the enhanced chiroptical activity. To demonstrate the effectiveness of our approach, organic electroluminescence devices were fabricated. The MMLCT emission devices were found to exhibit simultaneous enhancements in the external quantum efficiency (EQE, 9.7%) and the electroluminescence dissymmetry factor (gEL, 1.2 × 10-4) over the unimolecular emission devices (EQE, 5.8%; gEL, 0.3 × 10-4). These results demonstrate the usefulness of using the chiroptically active MMLCT emission for achieving an amplified CPL.
Collapse
Affiliation(s)
- Sumin Lee
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yongmoon Lee
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungmin Kim
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea
| | - Seunga Heo
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Dong Yeun Jeong
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sangsub Kim
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, DGIST, Daegu 42988, Republic of Korea.,Department of Chemistry, UNIST, Ulsan 44919, Republic of Korea
| | - Changsoon Kim
- Graduate School of Convergence Science and Technology, and Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science, and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
31
|
Martínez-Junquera M, Lalinde E, Moreno MT, Alfaro-Arnedo E, López IP, Larráyoz IM, Pichel JG. Luminescent cyclometalated platinum(ii) complexes with acyclic diaminocarbene ligands: structural, photophysical and biological properties. Dalton Trans 2021; 50:4539-4554. [PMID: 33729268 DOI: 10.1039/d1dt00480h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Four new cyclometalated Pt(ii) complexes bearing acyclic diaminocarbene (ADC) ligands, [Pt(C^N)Cl{C(NHXyl)(NHR)}] [C^N = 2,6-difluorophenylpyridine (dfppy), phenylquinoline (pq); R = Pr 3a, 4a, CH2Ph 3b, 4b], were prepared by the nucleophilic attack on the isocyanide [Pt(C^N)Cl(CNXyl)] (C^N = dfppy 1, pq 2) by the corresponding amine RNH2 (R = Pr, CH2Ph). Complexes 3 show in their 1H NMR spectra in CDCl3 a notable concentration dependence, with a clear variation of the δH (NHXyl) signal, suggesting an assembling process implying donor-acceptor NHXylCl bonding, also supported by 1D-PGSE (Pulse Field Gradient Spin Echo) and 2D-DOSY (Diffusion Ordered Spectroscopy) NMR experiments in solution and X-ray diffraction studies. The intermolecular interactions in compounds 3a and 3b were studied by using Hirshfeld surface analysis and Non-Covalent Interaction (NCI) methods on their X-ray structures. Their photophysical properties were investigated by absorption and emission spectroscopies and also by TD-DFT calculations performed on 3a and 4b. These complexes show green (3) or orange (4) phosphorescence, attributed to a mixed 3IL/3MLCT excited state. The carbene ligand does not affect the emission maxima but it produces an increase of the quantum yields in relation to the isocyanide in the precursors. In fluid solutions, the emission is not concentration-dependent, but the complexes may show aggregation induced emission as detailed for complexes 3a and 4a. In addition, cytotoxicity studies in the human cell lines A549 (lung carcinoma) and HeLa (cervix carcinoma) showed good activity for these complexes and 3a, 3b and 4a exhibit a strong effect on DNA electrophoretic mobility. To the best of our knowledge, compounds 3 and 4 represent the first examples of cycloplatinated complexes bearing acyclic diamino carbenes with antiproliferative properties.
Collapse
Affiliation(s)
- Mónica Martínez-Junquera
- Departamento de Química-Centro de Síntesis Química de La Rioja, (CISQ), Universidad de La Rioja, 26006, Logroño, Spain.
| | | | | | | | | | | | | |
Collapse
|
32
|
Katkova SA, Eliseev II, Mikherdov AS, Sokolova EV, Starova GL, Kinzhalov MA. Cyclometalated Platinum(II) Complexes with Nitrile and Isocyanide Ligands: Synthesis, Structure, and Photophysical Properties. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Li Y, Qian Q, Ling S, Fan T, Zhang C, Zhu X, Zhang Q, Zhang Y, Zhang J, Yu S, Yao J, Ma C. A benzothiadiazole-containing π-conjugated small molecule as promising element for nonvolatile multilevel resistive memory device. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2020.121850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
34
|
Puttock EV, Sturala J, Kistemaker JCM, Williams JAG. Platinum(II) Complexes of Tridentate ‐Coordinating Ligands Based on Imides, Amides, and Hydrazides: Synthesis and Luminescence Properties. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emma V. Puttock
- Department of Chemistry Durham University DH1 3LE, U.K. Durham
| | - Jiri Sturala
- Department of Inorganic Chemistry University of Chemistry and Technology Prague Technicka 5 166 28 Prague 6 Czech Republic
| | - Jos C. M. Kistemaker
- Centre for Organic Photonics and Electronics The School of Chemistry and Molecular Biosciences University of Queensland 4072 Queensland Australia
| | | |
Collapse
|
35
|
Wong CL, Cheng YH, Poon CT, Yam VWW. Synthesis, Photophysical, Photochromic, and Photomodulated Resistive Memory Studies of Dithienylethene-Containing Copper(I) Diimine Complexes. Inorg Chem 2020; 59:14785-14795. [PMID: 32914626 DOI: 10.1021/acs.inorgchem.0c02089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dithienylethene-containing copper(I) diimine complexes have been synthesized and structurally characterized. Systematic studies on their photophysics, electrochemistry, and photochromism have been carried out. The photoinduced color changes of the copper(I) complexes have been achieved by photoexcitation into the metal-to-ligand charge-transfer (MLCT) absorption bands, indicating the photosensitization of light-induced cyclization by the 3MLCT excited state. In addition, by an increase in either the steric bulkiness around the copper(I) center or the structural rigidity of the complexes, the quantum efficiencies of photoluminescence and photocyclization can be effectively enhanced because of suppression of the flattening distortion of the complexes at the MLCT excited state. Furthermore, one of the complexes has been employed as an active component in the fabrication of solution-processed resistive memory devices. Notable lowering of the switching threshold voltage of the binary memory devices has been realized through photocyclization of the dithienylethene-containing copper(I) system.
Collapse
Affiliation(s)
- Cheok-Lam Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yat-Hin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Ting Poon
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
36
|
Expósito JE, Aullón G, Bardají M, Miguel JA, Espinet P. Fluorescent perylenylpyridine complexes: an experimental and theoretical study. Dalton Trans 2020; 49:13326-13338. [PMID: 32944721 DOI: 10.1039/d0dt02494e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The perylene derivative 2-(3-perylenyl)-4-methylpyridine (HPerPy) was prepared and used to synthesize [Ag(HPerPy)(PPh3)(OClO3)], with the perylene ligand bonded to the metal centre only by the pyridine nitrogen. The treatment of HPerPy with [Pd(OAc)2] in methanol or acetic acid led to acetate bridged dimers (μ-OOCCH3)2[Pd(PerPy)]2, six-membered or five-membered cycled at the perylenyl fragment. Substitution reactions afforded mononuclear compounds [Pd(PerPy)(acac)] (six-member or five-member cycled) and [Pd(PerPy)(S2COMe)] (six-member or five-member cycled). The reaction of HPerPy with a platinum(ii) fragment led to a five-membered cyclometallated Pt(ii) complex [Pt(PerPy)(acac)]. The oxidative addition with MeI gave the corresponding cyclometallated Pt(iv) compound [Pt(PerPy)(acac)MeI]. X-ray single crystal studies of compounds [Ag(HPerPy)(PPh3)(OClO3)], (μ-OOCCH3)2[Pd(PerPy)]2-five-membered, [Pd(PerPy)(acac)]-six-membered, [Pd(PerPy)(S2COMe)]-five-membered, [Pt(PerPy)(acac)]-five-membered, and [Pt(PerPy)(acac)MeI]-five-membered confirmed the proposed structures. The UV-Vis spectra show one intense absorption with vibronic coupling in the visible region with maxima in the range of 448-519 nm. DFT calculations were carried out for the absorption spectra of the HPerPy molecule and representative complexes [M(PerPy)(acac)] (M: Pd, Pt; five and six-membered isomers) and [Pt(PerPy)(acac)MeI], showing that the lowest energy most intense transition in the complexes corresponds to the HOMO → LUMO transition in the perylene moiety, although affected by the metallacycle size and the metal nature. All the compounds are fluorescent in solution, due to the perylene fragment. The emission spectra display maxima in the range of 468-549 nm, with quantum yields from 1.1 to 82%. The attenuation of the intensity of fluorescence by the presence of heavy atoms and the formation of metallacycles has been experimentally determined and sequenced.
Collapse
Affiliation(s)
- J Emilio Expósito
- IU CINQUIMA/Química Inorgánica, Facultad de Ciencias, Universidad de Valladolid, 47071 Valladolid, Spain.
| | | | | | | | | |
Collapse
|
37
|
Shakirova JR, Hendi Z, Zhukovsky DD, Sokolov VV, Jamali S, Pavlovskiy VV, Porsev VV, Evarestov RA, Tunik SP. NIR emitting platinum pincer complexes based on the N^N^C ligand containing {benz[4,5]imidazo[1,2-a]pyrazin} aromatic system; synthesis, characterization and photophysical study. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
38
|
Yu F, Sheng Y, Wu D, Qin K, Li H, Xie G, Xue Q, Sun Z, Lu Z, Ma H, Hang XC. Blue-Phosphorescent Pt(II) Complexes of Tetradentate Pyridyl–Carbolinyl Ligands: Synthesis, Structure, Photophysics, and Electroluminescence. Inorg Chem 2020; 59:14493-14500. [DOI: 10.1021/acs.inorgchem.0c02244] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Feiling Yu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yongjian Sheng
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Dandan Wu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Ke Qin
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hongbo Li
- Yanshan Branch of Beijing Research Institute of Chemical Industry, Sinopec, Beijing 102500, China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qin Xue
- Department of Physical Science and Technology, Central China Normal University, Wuhan 430079, China
| | - Zhengyi Sun
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenzhong Lu
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
39
|
Li WJ, Hu Z, Xu L, Wang XQ, Wang W, Yin GQ, Zhang DY, Sun Z, Li X, Sun H, Yang HB. Rotaxane-Branched Dendrimers with Enhanced Photosensitization. J Am Chem Soc 2020; 142:16748-16756. [PMID: 32869633 DOI: 10.1021/jacs.0c07292] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
During the past few decades, fabrication of functional rotaxane-branched dendrimers has become one of the most attractive yet challenging topics within supramolecular chemistry and materials science. Herein, we present the successful fabrication of a family of new rotaxane-branched dendrimers containing up to 21 platinum atoms and 42 photosensitizer moieties through an efficient and controllable divergent approach. Notably, the photosensitization efficiencies of these rotaxane-branched dendrimers gradually increased with the increase of dendrimer generation. For example, third-generation rotaxane-branched dendrimer PG3 revealed 13.3-fold higher 1O2 generation efficiency than its corresponding monomer AN. The enhanced 1O2 generation efficiency was attributed to the enhancement of intersystem crossing (ISC) through the simple and efficient incorporation of multiple heavy atoms and photosensitizer moieties on the axles and wheels of the rotaxane units, respectively, which has been validated by UV-visible and fluorescence techniques, time-dependent density functional theory calculations, photolysis model reactions, and apparent activation energy calculations. Therefore, we develop a new promising platform of rotaxane-branched dendrimers for the preparation of effective photosensitizers.
Collapse
Affiliation(s)
- Wei-Jian Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Zhubin Hu
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Dan-Yang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| | - Zhenrong Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P.R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, School of Physics and Electronic Science, East China Normal University, 500 Dongchuan Road, Shanghai 200241, P.R. China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes & Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P.R. China
| |
Collapse
|
40
|
Li G, Zheng J, Zhao X, Fleetham T, Yang YF, Wang Q, Zhan F, Zhang W, Fang K, Zhang Q, She Y. Tuning the Excited State of Tetradentate Pd(II) Complexes for Highly Efficient Deep-Blue Phosphorescent Materials. Inorg Chem 2020; 59:13502-13516. [DOI: 10.1021/acs.inorgchem.0c01907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Jianbing Zheng
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Xiangdong Zhao
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Tyler Fleetham
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Qunmin Wang
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Feng Zhan
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Wenyue Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Kun Fang
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| | - Qisheng Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry−Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, P. R. China
| |
Collapse
|
41
|
Qiu Y, Feng Y, Zhao Q, Wang H, Guo Y, Qiu D. White light emission from a green cyclometalated platinum(ii) terpyridylphenylacetylide upon titration with Zn(ii) and Eu(iii ). Dalton Trans 2020; 49:11163-11169. [PMID: 32747881 DOI: 10.1039/d0dt02336a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The cyclometalated Pt(ii) acetylide derivative with a 1,3-bis(N-octyl-benzimidazol-2-yl)benzene (N^C^N) ligand and a free terpyridine (TPY) receptor has been successfully synthesized and characterized. X-ray crystallography shows its inefficient conjugation degree between the [(N^C^N)Pt] and TPY planes. This bifunctional complex shows an enhanced 1MLCT/LLCT absorption band (ε = 3.30 × 104 dm3 mol-1 cm-1) centered at λmax = 365 nm, and the well-resolved vibronic-structured 3MLCT/LLCT emission bands (Φ = 0.08, τ = 3.43 μs) in the range of ca. 475-700 nm. Consecutive titrations show that added Zn2+ and Eu(HFA)3 bond to its free TPY receptor with 1 : 2 and 1 : 1 stoichiometry to form the heterotrinuclear Pt-Zn-Pt (Ka = 3.48 × 104 mol-1 dm3) and heterodinuclear Pt-Eu (Ka = 1.73 × 104 mol-1 dm3) complexes, respectively. A sensitizing effect of Zn2+ on the TPY unit, and the incomplete d → f energy transfer from the [(N^C^N)Pt(ii)] antenna donor to the Eu(iii) center with maximum efficiency of 51.8% are observed. Using an in situ mixed titration strategy, the R/G/B emission triads consisted of red [(TPY)Eu(HFA)3] and green [(N^C^N)Pt(ii)] dual phosphorescence and blue [(TPY)Zn(TPY)] fluorescence, which can be well balanced to realize the white-light-emission with CIE coordinates (x = 0.36, y = 0.36) by precisely controlling the molar ratio (9 : 1 : 2) of the parent complexes, Eu(HFA)3 and Zn(ClO4)2.
Collapse
Affiliation(s)
- Yuqing Qiu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou City, Henan Province 450001, P. R. China
| | - Yuquan Feng
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang City, Henan Province 473061, P. R. China.
| | - Qian Zhao
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang City, Henan Province 473061, P. R. China.
| | - Hongwei Wang
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang City, Henan Province 473061, P. R. China.
| | - Yingchen Guo
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang City, Henan Province 473061, P. R. China.
| | - Dongfang Qiu
- College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang City, Henan Province 473061, P. R. China.
| |
Collapse
|
42
|
Yam VWW, Chan AKW, Hong EYH. Charge-transfer processes in metal complexes enable luminescence and memory functions. Nat Rev Chem 2020. [DOI: 10.1038/s41570-020-0199-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
43
|
Wong CL, Ng M, Hong EYH, Wong YC, Chan MY, Yam VWW. Photoresponsive Dithienylethene-Containing Tris(8-hydroxyquinolinato)aluminum(III) Complexes with Photocontrollable Electron-Transporting Properties for Solution-Processable Optical and Organic Resistive Memory Devices. J Am Chem Soc 2020; 142:12193-12206. [DOI: 10.1021/jacs.0c03057] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Cheok-Lam Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Maggie Ng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Eugene Yau-Hin Hong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yi-Chun Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mei-Yee Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
44
|
Wong YS, Tang MC, Ng M, Yam VWW. Toward the Design of Phosphorescent Emitters of Cyclometalated Earth-Abundant Nickel(II) and Their Supramolecular Study. J Am Chem Soc 2020; 142:7638-7646. [DOI: 10.1021/jacs.0c02172] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yip-Sang Wong
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Man-Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
45
|
Kritchenkov IS, Zhukovsky DD, Mohamed A, Korzhikov-Vlakh VA, Tennikova TB, Lavrentieva A, Scheper T, Pavlovskiy VV, Porsev VV, Evarestov RA, Tunik SP. Functionalized Pt(II) and Ir(III) NIR Emitters and Their Covalent Conjugates with Polymer-Based Nanocarriers. Bioconjug Chem 2020; 31:1327-1343. [PMID: 32223218 DOI: 10.1021/acs.bioconjchem.0c00020] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two NIR-emitting platinum [Pt(N^N^C)(phosphine)] and iridium [Ir(N^C)2(N^N)]+ complexes containing reactive succinimide groups were synthesized and characterized with spectroscopic methods (N^N^C, 1-phenyl-3-(pyridin-2-yl)benzo[4,5]imidazo[1,2-a]pyrazine, N^C, 6-(2-benzothienyl)phenanthridine, phosphine-3-(diphenylphosphaneyl)propanoic acid N-hydroxysuccinimide ether, and N^N, 4-oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)butanoic acid N-hydroxysuccinimide ether). Their photophysics were carefully studied and analyzed using time-dependent density functional theory calculations. These complexes were used to prepare luminescent micro- and nanoparticles with the "core-shell" morphology, where the core consisted of biodegradable polymers of different hydrophobicity, namely, poly(d,l-lactic acid), poly(ε-caprolactone), and poly(ω-pentadecalactone), whereas the shell was formed by covalent conjugation with poly(l-lysine) covalently labeled with the platinum and iridium emitters. The surface of the species was further modified with heparin to reverse their charge from positive to negative values. The microparticles' size determined with dynamic laser scanning varies considerably from 720 to 1480 nm, but the nanoparticles' diameter falls in a rather narrow range, 210-230 nm. The species with a poly(l-lysine) shell display a high positive (>30 mV) zeta-potential that makes them essentially stable in aqueous media. Inversion of the surface charge to a negative value with the heparin cover did not deteriorate the species' stability. The iridium- and platinum-containing particles displayed emissions the spectral patterns of which were essentially similar to those of unconjugated complexes, which indicate retention of the chromophore nature upon binding to the polymer and further immobilization onto polyester micro- and nanoparticles for drug delivery. The obtained particles were tested to determine their ability to penetrate into different cells types: cancer cells, stem cells, and fibroblasts. It was found that all types of particles could effectively penetrate into all cells types under investigation. Nanoparticles were shown to penetrate into the cells more effectively than microparticles. However, positively charged nanoparticles covered with poly(l-lysine) seem to interact with negatively charged proteins in the medium and enter the inner part of the cells less effectively than nanoparticles covered with poly(l-lysine)/heparin. In the case of microparticles, the species with positive zeta-potentials were more readily up-taken by the cells than those with negative values.
Collapse
Affiliation(s)
- Ilya S Kritchenkov
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Daniil D Zhukovsky
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Abdelrahman Mohamed
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia.,Faculty of Science, Chemistry Department, Beni-Suef University, 62511 Beni-Suef, Egypt
| | | | - Tatiana B Tennikova
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | | | - Thomas Scheper
- Institute of Technical Chemistry, Leibniz University, 30167 Hannover, Germany
| | - Vladimir V Pavlovskiy
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Vitaly V Porsev
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Robert A Evarestov
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| | - Sergey P Tunik
- Institute of Chemistry, Saint-Petersburg State University, Saint-Petersburg 198504, Russia
| |
Collapse
|
46
|
Xu X, Jerca VV, Hoogenboom R. Self‐Healing Metallo‐Supramolecular Hydrogel Based on Specific Ni
2+
Coordination Interactions of Poly(ethylene glycol) with Bistriazole Pyridine Ligands in the Main Chain. Macromol Rapid Commun 2020; 41:e1900457. [DOI: 10.1002/marc.201900457] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/08/2019] [Indexed: 12/19/2022]
Affiliation(s)
- Xiaowen Xu
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281‐S4 B‐9000 Ghent Belgium
| | - Valentin Victor Jerca
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281‐S4 B‐9000 Ghent Belgium
- Centre of Organic Chemistry “Costin D. Nenitzescu” Romanian Academy Spl. Independentei 202B 060023 Bucharest Romania
| | - Richard Hoogenboom
- Supramolecular Chemistry GroupCentre of Macromolecular Chemistry (CMaC)Department of Organic and Macromolecular ChemistryGhent University Krijgslaan 281‐S4 B‐9000 Ghent Belgium
| |
Collapse
|
47
|
Leung MY, Tang MC, Cheung WL, Lai SL, Ng M, Chan MY, Wing-Wah Yam V. Thermally Stimulated Delayed Phosphorescence (TSDP)-Based Gold(III) Complexes of Tridentate Pyrazine-Containing Pincer Ligand with Wide Emission Color Tunability and Their Application in Organic Light-Emitting Devices. J Am Chem Soc 2020; 142:2448-2459. [DOI: 10.1021/jacs.9b12136] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Ming-Yi Leung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Man-Chung Tang
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wai-Lung Cheung
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Shiu-Lun Lai
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Maggie Ng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Mei-Yee Chan
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
48
|
Li G, Zhu D, Wang X, Su Z, Bryce MR. Dinuclear metal complexes: multifunctional properties and applications. Chem Soc Rev 2020; 49:765-838. [DOI: 10.1039/c8cs00660a] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dinuclear metal complexes have enabled breakthroughs in OLEDs, photocatalytic water splitting and CO2reduction, DSPEC, chemosensors, biosensors, PDT and smart materials.
Collapse
Affiliation(s)
- Guangfu Li
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Dongxia Zhu
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Xinlong Wang
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
| | - Zhongmin Su
- Department of Chemistry
- Northeast Normal University
- Changchun
- P. R. China
- School of Chemistry and Environmental Engineering
| | | |
Collapse
|
49
|
Gabr MT, Pigge FC. Expanding the Toolbox for Label-Free Enzyme Assays: A Dinuclear Platinum(II) Complex/DNA Ensemble with Switchable Near-IR Emission. Molecules 2019; 24:E4390. [PMID: 31805648 PMCID: PMC6930566 DOI: 10.3390/molecules24234390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022] Open
Abstract
Switchable luminescent bioprobes whose emission can be turned on as a function of specific enzymatic activity are emerging as important tools in chemical biology. We report a promising platform for the development of label-free and continuous enzymatic assays in high-throughput mode based on the reversible solvent-induced self-assembly of a neutral dinuclear Pt(II) complex. To demonstrate the utility of this strategy, the switchable luminescence of a dinuclear Pt(II) complex was utilized in developing an experimentally simple, fast (10 min), low cost, and label-free turn-on luminescence assay for the endonuclease enzyme DNAse I. The complex displays a near-IR (NIR) aggregation-induced emission at 785 nm in aqueous solution that is completely quenched upon binding to G-quadruplex DNA from the human c-myc oncogene. Luminescence is restored upon DNA degradation elicited by exposure to DNAse I. Correlation between near-IR luminescence intensity and DNAse I concentration in human serum samples allows for fast and label-free detection of DNAse I down to 0.002 U/mL. The Pt(II) complex/DNA assembly is also effective for identification of DNAse I inhibitors, and assays can be performed in multiwell plates compatible with high-throughput screening. The combination of sensitivity, speed, convenience, and cost render this method superior to all other reported luminescence-based DNAse I assays. The versatile response of the Pt(II) complex to DNA structures promises broad potential applications in developing real-time and label-free assays for other nucleases as well as enzymes that regulate DNA topology.
Collapse
|
50
|
Ryu CH, Kwak SW, Lee HW, Lee JH, Hwang H, Kim M, Chung Y, Kim Y, Park MH, Lee KM. Carbazole-Appended Salen–Indium Conjugate Systems: Synthesis and Enhanced Luminescence Efficiency. Inorg Chem 2019; 58:12358-12364. [DOI: 10.1021/acs.inorgchem.9b01948] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chan Hee Ryu
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | | | | | - Ji Hye Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Hyonseok Hwang
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | | | | | | | | | - Kang Mun Lee
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| |
Collapse
|