1
|
Pérez-Alonso C, Lasala F, Rodríguez-Pérez L, Delgado R, Rojo J, Ramos-Soriano J. Glycan-Silica Nanoparticles as Effective Inhibitors for Blocking Virus Infection. ACS APPLIED MATERIALS & INTERFACES 2025; 17:10292-10304. [PMID: 39908032 PMCID: PMC11881045 DOI: 10.1021/acsami.4c15918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Small solid silica nanoparticles (SiNPs) have been used for multivalent carbohydrate presentation in DC-/L-SIGN-mediated viral infection models. Glycosylated SiNPs (glycoSiNPs) were fully characterized by different experimental techniques, including NMR, DLS, TGA, FTIR, and XPS, which confirmed their chemical structures. As a proof-of-concept, the capacity of glycoSiNPs to interact with Concanavalin A (ConA), a model lectin, using DLS binding experiments and UV-vis turbidimetry assays was analyzed. Their antiviral activity was assessed in a cellular assay using an artificial Ebola virus, demonstrating the potent inhibition of DC-SIGN-mediated infection. Notably, glycoSiNPs functionalized with a trivalent Manα1,2Man glycodendron exhibited the strongest inhibitory activity, with an IC50 of 135 ng/mL and a 170-fold lower efficiency in blocking L-SIGN-mediated viral infection. These findings suggest that glycoSiNPs present a promising approach for developing antiviral agents that selectively target the DC-SIGN pathway over the L-SIGN one.
Collapse
Affiliation(s)
- Carmen Pérez-Alonso
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Fátima Lasala
- Laboratorio
de Microbiología Molecular Instituto de Investigación
Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Laura Rodríguez-Pérez
- Departamento
de Química Orgánica, Facultad
de Química, Universidad Complutense, 28040 Madrid, Spain
| | - Rafael Delgado
- Laboratorio
de Microbiología Molecular Instituto de Investigación
Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Javier Rojo
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| | - Javier Ramos-Soriano
- Glycosystems
Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC − Universidad de Sevilla, Av. Américo
Vespucio 49, Seville 41092, Spain
| |
Collapse
|
2
|
Singh K, Mandal T, Pandey UP, Singh V. Emergence of Fluorescent Glycodots for Biomedical Applications. ACS Biomater Sci Eng 2025; 11:742-773. [PMID: 39876593 DOI: 10.1021/acsbiomaterials.4c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Carbohydrate-functionalized quantum dots exhibit excellent physical characteristics and enhance the steric interaction with biological cells and tissues. Glycoconjugation of quantum dots promotes aqueous solubility, stability, and reduced immunogenicity. Carbohydrate-protein interactions are involved in various vital processes and provide insight into cellular recognition, cell-to-cell communication, pathogenicity, antigen-antibody recognition, and enzymatic action. Quantum dots are fluorescent materials with rich quantum mechanical and unique optical properties, making them valuable for biomedical applications. Recent advancements in quantum dot materials as biomedical tools have led to the development of carbohydrate-conjugated glyco-functionalized quantum dots. These innovations promise application as nanocarriers, imaging agents, fluorescent probes, and theranostics. This review provides an overview of glyco nanotechnology, emphasizing carbohydrate-conjugated metal-, silicon-, and carbon-based quantum dots as glyco dots and their potential biomedical uses. We hope that this study will address the gap in this field and provide a more precise understanding of the subject.
Collapse
Affiliation(s)
- Kartikey Singh
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Tuhin Mandal
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Umesh Pratap Pandey
- National Centre for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Vikram Singh
- Environment Emission and CRM Section, CSIR-Central Institute of Mining and Fuel Research Dhanbad, Jharkhand, 828108, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research Lucknow, Uttar Pradesh, 226001, India
| |
Collapse
|
3
|
Delaunay C, Pollastri S, Thépaut M, Cavazzoli G, Belvisi L, Bouchikri C, Labiod N, Lasala F, Gimeno A, Franconetti A, Jiménez-Barbero J, Ardá A, Delgado R, Bernardi A, Fieschi F. Unprecedented selectivity for homologous lectin targets: differential targeting of the viral receptors L-SIGN and DC-SIGN. Chem Sci 2024:d4sc02980a. [PMID: 39246372 PMCID: PMC11376147 DOI: 10.1039/d4sc02980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024] Open
Abstract
DC-SIGN (CD209) and L-SIGN (CD209L) are two C-type lectin receptors (CLRs) that facilitate SARS-CoV-2 infections as viral co-receptors. SARS-CoV-2 manipulates both DC-SIGN and L-SIGN for enhanced infection, leading to interest in developing receptor antagonists. Despite their structural similarity (82% sequence identity), they function differently. DC-SIGN, found in dendritic cells, shapes the immune response by recognizing pathogen-associated carbohydrate patterns. In contrast, L-SIGN, expressed in airway epithelial endothelial cells, is not directly involved in immunity. COVID-19's primary threat is the hyperactivation of the immune system, potentially reinforced if DC-SIGN engages with exogenous ligands. Therefore, L-SIGN, co-localized with ACE2-expressing cells in the respiratory tract, is a more suitable target for anti-adhesion therapy. However, designing a selective ligand for L-SIGN is challenging due to the high sequence identity of the Carbohydrate Recognition Domains (CRDs) of the two lectins. We here present Man84, a mannose ring modified with a methylene guanidine triazole at position 2. It binds L-SIGN with a K D of 12.7μM ± 1 μM (ITC) and is the first known L-SIGN selective ligand, showing 50-fold selectivity over DC-SIGN (SPR). The X-ray structure of the L-SIGN CRD/Man84 complex reveals the guanidinium group's role in achieving steric and electrostatic complementarity with L-SIGN. This allows us to trace the source of selectivity to a single amino acid difference between the two CRDs. NMR analysis confirms the binding mode in solution, highlighting Man84's conformational selection upon complex formation. Dimeric versions of Man84 achieve additional selectivity and avidity in the low nanomolar range. These compounds selectively inhibit L-SIGN dependent trans-infection by SARS-CoV-2 and Ebola virus. Man84 and its dimeric constructs display the best affinity and avidity reported to date for low-valency glycomimetics targeting CLRs. They are promising tools for competing with SARS-CoV-2 anchoring in the respiratory tract and have potential for other medical applications.
Collapse
Affiliation(s)
- Clara Delaunay
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Sara Pollastri
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Michel Thépaut
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Gianluca Cavazzoli
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Laura Belvisi
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Clémentine Bouchikri
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
| | - Nuria Labiod
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
| | - Fatima Lasala
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
| | - Ana Gimeno
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Antonio Franconetti
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
| | - Jesús Jiménez-Barbero
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias 28029 Madrid Spain
| | - Ana Ardá
- Chemical Glycobiology Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA) 48160 Derio Bizkaia Spain
- Ikerbasque, Basque Foundation for Science Bilbao Spain
| | - Rafael Delgado
- Instituto de Investigacion Hospital Universitario 12 de Octubre, Universidad Complutense, School of Medicine Madrid Spain
- School of Medicine, Universidad Complutense Madrid Spain
| | - Anna Bernardi
- Università degli Studi di Milano, Dipartimento di Chimica via Golgi 19 Milano Italy
| | - Franck Fieschi
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale Grenoble France
- Institut Universitaire de France (IUF) Paris France
| |
Collapse
|
4
|
Ning X, Budhadev D, Pollastri S, Nehlmeier I, Kempf A, Manfield I, Turnbull WB, Pöhlmann S, Bernardi A, Li X, Guo Y, Zhou D. Polyvalent Glycomimetic-Gold Nanoparticles Revealing Critical Roles of Glycan Display on Multivalent Lectin-Glycan Interaction Biophysics and Antiviral Properties. JACS AU 2024; 4:3295-3309. [PMID: 39211605 PMCID: PMC11350578 DOI: 10.1021/jacsau.4c00610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology, making them attractive therapeutic targets. Unfortunately, the structural and biophysical mechanisms of several key MLGIs remain poorly understood, limiting our ability to design spatially matched glycoconjugates as potential therapeutics against specific MLGIs. We have recently demonstrated that natural oligomannose-coated nanoparticles are powerful probes for MLGIs. They can provide not only quantitative affinity and binding thermodynamic data but also key structural information (e.g, binding site orientation and mode) useful for designing glycoconjugate therapeutics against specific MLGIs. Despite success, how designing parameters (e.g., glycan type, density, and scaffold size) control their MLGI biophysical and antiviral properties remains to be elucidated. A synthetic pseudodimannose (psDiMan) ligand has been shown to selectively bind to a dendritic cell surface tetrameric lectin, DC-SIGN, over some other multimeric lectins sharing monovalent mannose specificity but having distinct cellular functions. Herein, we display psDiMan polyvalently onto gold nanoparticles (GNPs) of varying sizes (e.g., ∼5 and ∼13 nm, denoted as G5- and G13 psDiMan hereafter) to probe how the scaffold size and glycan display control their MLGI properties with DC-SIGN and the closely related lectin DC-SIGNR. We show that G5/13 psDiMan binds strongly to DC-SIGN, with sub-nM K ds, with affinity being enhanced with increasing scaffold size, whereas they show apparently no or only weak binding to DC-SIGNR. Interestingly, there is a minimal, GNP-size-dependent, glycan density threshold for forming strong binding with DC-SIGN. By combining temperature-dependent affinity and Van't Hoff analyses, we have developed a new GNP fluorescence quenching assay for MLGI thermodynamics, revealing that DC-SIGN-Gx-psDiMan binding is enthalpy-driven, with a standard binding ΔH 0 of ∼ -95 kJ mol-1, which is ∼4-fold that of the monovalent binding and is comparable to that measured by isothermal titration calorimetry. We further reveal that the enhanced DC-SIGN affinity with Gx-psDiMan with increasing GNP scaffold size is due to reduced binding entropy penalty and not due to enhanced favorable binding enthalpy. We further show that DC-SIGN binds tetravalently to a single Gx-psDiMan, irrespective of the GNP size, whereas DC-SIGNR binding is dependent on GNP size, with no apparent binding with G5, and weak cross-linking with G13. Finally, we show that Gx-psDiMans potently inhibit DC-SIGN-dependent augmentation of cellular entry of Ebola pseudoviruses with sub-nM EC50 values, whereas they exhibit no significant (for G5) or weak (for G13) inhibition against DC-SIGNR-augmented viral entry, consistent to their MLGI properties with DC-SIGNR in solution. These results have established Gx-psDiMan as a versatile new tool for probing MLGI affinity, selectivity, and thermodynamics, as well as GNP-glycan antiviral properties.
Collapse
Affiliation(s)
- Xinyu Ning
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sara Pollastri
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Kempf
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
| | - Iain Manfield
- School
of Molecular and Cellular Biology and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W. Bruce Turnbull
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center—Leibniz
Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, University of
Göttingen, 37073 Göttingen, Germany
| | - Anna Bernardi
- Dipartimento
di Chimica, Universita′ Degli Studi
di Milano, via Golgi 19, Milano 20133, Italy
| | - Xin Li
- Building
One, Granta Centre, G ranta Park, Sphere
Fluidics Ltd, Great Abington, Cambridge CB21 6AL, United Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
5
|
Basaran R, Budhadev D, Kempf A, Nehlmeier I, Hondow N, Pöhlmann S, Guo Y, Zhou D. Probing scaffold size effects on multivalent lectin-glycan binding affinity, thermodynamics and antiviral properties using polyvalent glycan-gold nanoparticles. NANOSCALE 2024; 16:13962-13978. [PMID: 38984502 DOI: 10.1039/d4nr00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are pivotal for viral infections and immune regulation. Their structural and biophysical data are thus highly valuable, not only for understanding their basic mechanisms but also for designing potent glycoconjugate therapeutics against target MLGIs. However, such information for some important MGLIs remains poorly understood, greatly limiting research progress. We have recently developed densely glycosylated nanoparticles, e.g., ∼4 nm quantum dots (QDs) or ∼5 nm gold nanoparticles (GNPs), as mechanistic probes for MLGIs. Using two important model lectin viral receptors, DC-SIGN and DC-SIGNR, we have shown that these probes can not only offer sensitive fluorescence assays for quantifying MLGI affinities, but also reveal key structural information (e.g., binding site orientation and binding mode) useful for MLGI targeting. However, the small sizes of the previous scaffolds may not be optimal for maximising MLGI affinity and targeting specificity. Herein, using α-manno-α-1,2-biose (DiMan) functionalised GNP (GNP-DiMan) probes, we have systematically studied how GNP scaffold size (e.g., 5, 13, and 27 nm) and glycan density (e.g., 100, 75, 50 and 25%) determine their MLGI affinities, thermodynamics, and antiviral properties. We have developed a new GNP fluorescence quenching assay format to minimise the possible interference of GNP's strong inner filter effect in MLGI affinity quantification, revealing that increasing the GNP size is highly beneficial for enhancing MLGI affinity. We have further determined the MLGI thermodynamics by combining temperature-dependent affinity and Van't Hoff analyses, revealing that GNP-DiMan-DC-SIGN/R binding is enthalpy driven with favourable binding Gibbs free energy changes (ΔG°) being enhanced with increasing GNP size. Finally, we show that increasing the GNP size significantly enhances their antiviral potency. Notably, the DiMan coated 27 nm GNP potently and robustly blocks both DC-SIGN and DC-SIGNR mediated pseudo-Ebola virus cellular entry with an EC50 of ∼23 and ∼49 pM, respectively, making it the most potent glycoconjugate inhibitor against DC-SIGN/R-mediated Ebola cellular infections. Our results have established GNP-glycans as a new tool for quantifying MLGI biophysical parameters and revealed that increasing the GNP scaffold size significantly enhances their MLGI affinities and antiviral potencies.
Collapse
Affiliation(s)
- Rahman Basaran
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Darshita Budhadev
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Amy Kempf
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, UK
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Centre - Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty of Biology and Psychology, Georg-August-University Göttingen, 37073 Göttingen, Germany
| | - Yuan Guo
- School of Food Science and Nutrition, and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
6
|
Gupta J, Vaid PK, Priyadarshini E, Rajamani P. Nano-bio convergence unveiled: Systematic review on quantum dots-protein interaction, their implications, and applications. Biophys Chem 2024; 310:107238. [PMID: 38733645 DOI: 10.1016/j.bpc.2024.107238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024]
Abstract
Quantum dots (QDs) are semiconductor nanocrystals (2-10 nm) with unique optical and electronic properties due to quantum confinement effects. They offer high photostability, narrow emission spectra, broad absorption spectrum, and high quantum yields, making them versatile in various applications. Due to their highly reactive surfaces, QDs can conjugate with biomolecules while being used, produced, or unintentionally released into the environment. This systematic review delves into intricate relationship between QDs and proteins, examining their interactions that influence their physicochemical properties, enzymatic activity, ligand binding affinity, and stability. The research utilized electronic databases like PubMed, WOS, and Proquest, along with manual reviews from 2013 to 2023 using relevant keywords, to identify suitable literature. After screening titles and abstracts, only articles meeting inclusion criteria were selected for full text readings. This systematic review of 395 articles identifies 125 articles meeting the inclusion criteria, categorized into five overarching themes, encompassing various mechanisms of QDs and proteins interactions, including adsorption to covalent binding, contingent on physicochemical properties of QDs. Through a meticulous analysis of existing literature, it unravels intricate nature of interaction, significant influence on nanomaterials and biological entities, and potential for synergistic applications harnessing both specific and nonspecific interactions across various fields.
Collapse
Affiliation(s)
- Jagriti Gupta
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Pradeep Kumar Vaid
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
7
|
Lefèbre J, Falk T, Ning Y, Rademacher C. Secondary Sites of the C-type Lectin-Like Fold. Chemistry 2024; 30:e202400660. [PMID: 38527187 DOI: 10.1002/chem.202400660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
C-type lectins are a large superfamily of proteins involved in a multitude of biological processes. In particular, their involvement in immunity and homeostasis has rendered them attractive targets for diverse therapeutic interventions. They share a characteristic C-type lectin-like domain whose adaptability enables them to bind a broad spectrum of ligands beyond the originally defined canonical Ca2+-dependent carbohydrate binding. Together with variable domain architecture and high-level conformational plasticity, this enables C-type lectins to meet diverse functional demands. Secondary sites provide another layer of regulation and are often intricately linked to functional diversity. Located remote from the canonical primary binding site, secondary sites can accommodate ligands with other physicochemical properties and alter protein dynamics, thus enhancing selectivity and enabling fine-tuning of the biological response. In this review, we outline the structural determinants allowing C-type lectins to perform a large variety of tasks and to accommodate the ligands associated with it. Using the six well-characterized Ca2+-dependent and Ca2+-independent C-type lectin receptors DC-SIGN, langerin, MGL, dectin-1, CLEC-2 and NKG2D as examples, we focus on the characteristics of non-canonical interactions and secondary sites and their potential use in drug discovery endeavors.
Collapse
Affiliation(s)
- Jonathan Lefèbre
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Torben Falk
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Yunzhan Ning
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport, Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Microbiology, Immunology and Genetics, University of Vienna, Max F. Perutz Labs, Vienna, Austria
| |
Collapse
|
8
|
Basaran R, Ning X, Budhadev D, Hondow N, Guo Y, Zhou D. Probing the pH-dependency of DC-SIGN/R multivalent lectin-glycan interactions using polyvalent glycan-gold nanoparticles. NANOSCALE ADVANCES 2024; 6:2198-2208. [PMID: 38633047 PMCID: PMC11019501 DOI: 10.1039/d3na01013a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/04/2024] [Indexed: 04/19/2024]
Abstract
The dendritic cell tetrameric lectin, DC-SIGN, and its closely related endothelial cell lectin, DC-SIGNR (collectively abbreviated as DC-SIGN/R) play a key role in the binding and transmission of deadly viruses, including Ebola, HIV, HCV, and SARS-CoV-2. Their virus binding/release processes involve a gradually acidifying environment following the natural intracellular trafficking pathways. Therefore, understanding DC-SIGN/R's pH-dependent binding properties with glycan ligands is of great importance. We have recently developed densely glycosylated gold nanoparticles (glycan-GNPs) as a powerful new tool for probing DC-SIGN/R multivalent lectin-glycan interaction (MLGI) mechanisms. They can provide not only quantitative MLGI affinities but also important structural information, such as binding site orientation and binding modes. Herein, we further employ the glycan-GNP probes to investigate the pH dependency of DC-SIGN/R MLGI properties. We find that DC-SIGN/R MLGIs exhibit distinct pH dependence over the normal physiological (7.4) to lysosomal (∼4.6) pH range. DC-SIGN binds glycan-GNPs strongly and stably from pH 7.4 to ∼5.8, but the binding is weakened significantly as pH decreases to ≤5.4 and may be fully dissociated at pH 4.6. This behaviour is fully consistent with DC-SIGN's role as an endocytic recycling receptor. In contrast, DC-SIGNR's affinity with glycan-GNPs is enhanced with the decreasing pH from 7.4 to 5.4, peaking at pH 5.4, and then reduced as pH is further lowered. Interestingly, both DC-SIGN/R binding with glycan-GNPs are found to be partially reversible in a pH-dependent manner.
Collapse
Affiliation(s)
- Rahman Basaran
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Xinyu Ning
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Darshita Budhadev
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds Leeds LS2 9JT UK
| | - Yuan Guo
- School of Food Science and Nutrition, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| | - Dejian Zhou
- School of Chemistry, Astbury Centre for Structural Molecular Biology, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
9
|
Ealla KKR, Kumari N, Chintalapani S, Uppu S, Sahu V, Veeraraghavan VP, Ramani P, Govindool SR. Interplay between dental caries pathogens, periodontal pathogens, and sugar molecules: approaches for prevention and treatment. Arch Microbiol 2024; 206:127. [PMID: 38416201 DOI: 10.1007/s00203-024-03856-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/29/2024]
Abstract
Globally, oral diseases affect nearly 3.5 billion people, accounting for 4.6% of the healthcare expenditure. Common oral diseases include dental caries and periodontal disease, associated with biofilms formed by cariogenic pathogens. Epidemiological studies associate carbohydrates with these diseases due to the sugars metabolized by cariogenic pathogens. This review focuses on dental caries and periodontal pathogens, quorum sensing, lectin-carbohydrate interactions, and various sugar molecules. Cariogenic sugars significantly influence biofilms by enhancing pathogen adhesion, viability, and gene expressions associated with biofilm formation. Moreover, lectin-carbohydrate interactions contribute to biofilm stability. Disrupting these interactions is a potential strategy for oral disease prevention. The use of nanoparticles, such as quantum dots, provides novel insights into lectin-sugar interactions and the development of inhibitors. Additionally, nanomaterials like calcium phosphate nanoparticles neutralize acids and inhibit microbial growth. This overview emphasizes understanding the relationships between oral diseases, microbial communities, and sugars to devise preventive and therapeutic strategies against oral diseases.
Collapse
Affiliation(s)
- Kranti Kiran Reddy Ealla
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India.
- Oral and Maxillofacial Pathology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| | - Neema Kumari
- Department of Microbiology, Malla Reddy Institute of Medical Sciences, Hyderabad, Telangana, India.
| | - Srikanth Chintalapani
- Department of Periodontology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Supriya Uppu
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Vikas Sahu
- Oral and Maxillofacial Pathology, Malla Reddy Institute of Dental Sciences, Hyderabad, Telangana, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Pratibha Ramani
- Oral and Maxillofacial Pathology, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Sharaschandra Reddy Govindool
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, 240D Squire Hall, Buffalo, NY, 14214, USA
| |
Collapse
|
10
|
Budhadev D, Hooper J, Rocha C, Nehlmeier I, Kempf AM, Hoffmann M, Krüger N, Zhou D, Pöhlmann S, Guo Y. Polyvalent Nano-Lectin Potently Neutralizes SARS-CoV-2 by Targeting Glycans on the Viral Spike Protein. JACS AU 2023; 3:1755-1766. [PMID: 37388683 PMCID: PMC10302749 DOI: 10.1021/jacsau.3c00163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
Mutations in spike (S) protein epitopes allow SARS-CoV-2 variants to evade antibody responses induced by infection and/or vaccination. In contrast, mutations in glycosylation sites across SARS-CoV-2 variants are very rare, making glycans a potential robust target for developing antivirals. However, this target has not been adequately exploited for SARS-CoV-2, mostly due to intrinsically weak monovalent protein-glycan interactions. We hypothesize that polyvalent nano-lectins with flexibly linked carbohydrate recognition domains (CRDs) can adjust their relative positions and bind multivalently to S protein glycans, potentially exerting potent antiviral activity. Herein, we displayed the CRDs of DC-SIGN, a dendritic cell lectin known to bind to diverse viruses, polyvalently onto 13 nm gold nanoparticles (named G13-CRD). G13-CRD bound strongly and specifically to target glycan-coated quantum dots with sub-nM Kd. Moreover, G13-CRD neutralized particles pseudotyped with the S proteins of Wuhan Hu-1, B.1, Delta variant and Omicron subvariant BA.1 with low nM EC50. In contrast, natural tetrameric DC-SIGN and its G13 conjugate were ineffective. Further, G13-CRD potently inhibited authentic SARS-CoV-2 B.1 and BA.1, with <10 pM and <10 nM EC50, respectively. These results identify G13-CRD as the 1st polyvalent nano-lectin with broad activity against SARS-CoV-2 variants that merits further exploration as a novel approach to antiviral therapy.
Collapse
Affiliation(s)
- Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Hooper
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Cheila Rocha
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Inga Nehlmeier
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Madeleine Kempf
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Markus Hoffmann
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Nadine Krüger
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection
Biology Unit, German Primate Center −
Leibniz Institute for Primate Research, 37077 Göttingen, Germany
- Faculty
of Biology and Psychology, Georg-August-University
Göttingen, 37073 Göttingen, Germany
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
11
|
Hooper J, Budhadev D, Fernandez Ainaga DL, Hondow N, Zhou D, Guo Y. Polyvalent Glycan Functionalized Quantum Nanorods as Mechanistic Probes for Shape-Selective Multivalent Lectin-Glycan Recognition. ACS APPLIED NANO MATERIALS 2023; 6:4201-4213. [PMID: 37006911 PMCID: PMC10043877 DOI: 10.1021/acsanm.2c05247] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread in biology and hold the key to many therapeutic applications. However, the underlying structural and biophysical mechanisms for many MLGIs remain poorly understood, limiting our ability to design glycoconjugates to potently target specific MLGIs for therapeutic intervention. Glycosylated nanoparticles have emerged as a powerful biophysical probe for MLGIs, although how nanoparticle shape affects the MLGI molecular mechanisms remains largely unexplored. Herein, we have prepared fluorescent quantum nanorods (QRs), densely coated with α-1,2-manno-biose ligands (QR-DiMan), as multifunctional probes to investigate how scaffold geometry affects the MLGIs of a pair of closely related, tetrameric viral receptors, DC-SIGN and DC-SIGNR. We have previously shown that a DiMan-capped spherical quantum dot (QD-DiMan) gives weak cross-linking interactions with DC-SIGNR but strong simultaneous binding with DC-SIGN. Against the elongated QR-DiMan, DC-SIGN retains similarly strong simultaneous binding of all four binding sites with a single QR-DiMan (apparent K d ≈ 0.5 nM, ∼1.8 million-fold stronger than the corresponding monovalent binding), while DC-SIGNR gives both weak cross-linking and strong individual binding interactions, resulting in a larger binding affinity enhancement than that with QD-DiMan. S/TEM analysis of QR-DiMan-lectin assemblies reveals that DC-SIGNR's different binding modes arise from the different nanosurface curvatures of the QR scaffold. The glycan display at the spherical ends presents too high a steric barrier for DC-SIGNR to bind with all four binding sites; thus, it cross-links between two QR-DiMan to maximize binding multivalency, whereas the more planar character of the cylindrical center allows the glycans to bridge all binding sites in DC-SIGNR. This work thus establishes glycosylated QRs as a powerful biophysical probe for MLGIs not only to provide quantitative binding affinities and binding modes but also to demonstrate the specificity of multivalent lectins in discriminating different glycan displays in solution, dictated by the scaffold curvature.
Collapse
Affiliation(s)
- James Hooper
- School
of Food Science and Nutrition and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | | | - Nicole Hondow
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yuan Guo
- School
of Food Science and Nutrition and Astbury Centre for Structural Molecular
Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
12
|
Barnes DD, Kuznetsova V, Visheratina A, Purcell-Milton F, Baranov MA, Lynch DM, Martin H, Gun'ko YK, Scanlan EM. Glycosylated quantum dots as fluorometric nanoprobes for trehalase. Org Biomol Chem 2023; 21:2905-2909. [PMID: 36942668 DOI: 10.1039/d3ob00368j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Abstract
Trehalase is an important enzyme in the metabolic cascades of many organisms, catalysing the hydrolysis of the disaccharide trehalose. Herein we describe the first examples of fluorometric nanoprobes for detection of trehalase, based on trehalose-functionalised quantum dots (QDs). QDs cross-linked with trehalose form aggregates, which are released upon enzymatic cleavage of the trehalose glycosidic bond proportionally to the enzyme concentration, offering a unique and efficient approach for specific sensing of this biologically important enzyme.
Collapse
Affiliation(s)
- Danielle D Barnes
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | - Vera Kuznetsova
- School of Chemistry and CRANN, Trinity College, Pearse St, Dublin 2, Ireland
| | | | - Finn Purcell-Milton
- School of Chemistry and CRANN, Trinity College, Pearse St, Dublin 2, Ireland
| | | | - Dylan M Lynch
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | - Harlei Martin
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| | - Yurii K Gun'ko
- School of Chemistry and CRANN, Trinity College, Pearse St, Dublin 2, Ireland
| | - Eoin M Scanlan
- School of Chemistry and Trinity Biomedical Sciences Institute, Trinity College, Pearse St, Dublin 2, Ireland.
| |
Collapse
|
13
|
Mardhekar S, Subramani B, Samudra P, Srikanth P, Mahida V, Bhoge PR, Toraskar S, Abraham NM, Kikkeri R. Sulfation of Heparan and Chondroitin Sulfate Ligands Enables Cell-Specific Homing of Nanoprobes. Chemistry 2023; 29:e202202622. [PMID: 36325647 PMCID: PMC7616003 DOI: 10.1002/chem.202202622] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Demystifying the sulfation code of glycosaminoglycans (GAGs) to induce precise homing of nanoparticles in tumor cells or neurons influences the development of a potential drug- or gene-delivery system. However, GAGs, particularly heparan sulfate (HS) and chondroitin sulfate (CS), are structurally highly heterogeneous, and synthesizing well-defined HS/CS composed nanoparticles is challenging. Here, we decipher how specific sulfation patterns on HS and CS regulate receptor-mediated homing of nanoprobes in primary and secondary cells. We discovered that aggressive cancer cells such as MDA-MB-231 displayed a strong uptake of GAG-nanoprobes compared to mild or moderately aggressive cancer cells. However, there was no selectivity towards the GAG sequences, thus indicating the presence of more than one form of receptor-mediated uptake. However, U87 cells, olfactory bulb, and hippocampal primary neurons showed selective or preferential uptake of CS-E-coated nanoprobes compared to other GAG-nanoprobes. Furthermore, mechanistic studies revealed that the 4,6-O-disulfated-CS nanoprobe used the CD44 and caveolin-dependent endocytosis pathway for uptake. These results could lead to new opportunities to use GAG nanoprobes in nanomedicine.
Collapse
Grants
- SERB/F/9228/2019-2020 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- BT/PR34475/MED/15/210/2020 Department of Biotechnology, Ministry of Science and Technology, India
- SR/WOS-A/CS-72/2019 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- DST/CSRI/2017/271 Department of Science and Technology , Ministry of Science and Technology New Delhi, India
- IA/I/14/1/501306 DBT-Wellcome Trust India Alliance
- Wellcome Trust
- IA/I/14/1/501306 The Wellcome Trust DBT India Alliance
- BT/PR21934/NNT/28/1242/2017 Department of Biotechnology, Ministry of Science and Technology, India
Collapse
Affiliation(s)
- Sandhya Mardhekar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Balamurugan Subramani
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Prasanna Samudra
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Priyadharshini Srikanth
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Virendrasinh Mahida
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Preeti Ravindra Bhoge
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Suraj Toraskar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| | - Nixon M. Abraham
- Laboratory of Neural Circuits and Behaviour (LNCB), Department of Biology, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008, (India)
| | - Raghavendra Kikkeri
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune-411008 (India)
| |
Collapse
|
14
|
Martínez-Bailén M, Rojo J, Ramos-Soriano J. Multivalent glycosystems for human lectins. Chem Soc Rev 2023; 52:536-572. [PMID: 36545903 DOI: 10.1039/d2cs00736c] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human lectins are involved in a wide variety of biological processes, both physiological and pathological, which have attracted the interest of the scientific community working in the glycoscience field. Multivalent glycosystems have been employed as useful tools to understand carbohydrate-lectin binding processes as well as for biomedical applications. The review shows the different scaffolds designed for a multivalent presentation of sugars and their corresponding binding studies to lectins and in some cases, their biological activities. We summarise this research by organizing based on lectin types to highlight the progression in this active field. The paper provides an overall picture of how these contributions have furnished relevant information on this topic to help in understanding and participate in these carbohydrate-lectin interactions.
Collapse
Affiliation(s)
- Macarena Martínez-Bailén
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Rojo
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| | - Javier Ramos-Soriano
- Glycosystems Laboratory, Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, Av. Américo Vespucio 49, Seville 41092, Spain.
| |
Collapse
|
15
|
Cooper O, Waespy M, Chen D, Kelm S, Li Q, Haselhorst T, Tiralongo J. Sugar-decorated carbon dots: a novel tool for targeting immunomodulatory receptors. NANOSCALE ADVANCES 2022; 4:5355-5364. [PMID: 36540112 PMCID: PMC9729803 DOI: 10.1039/d2na00364c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Interactions between sialic acid (Sia) and sialic acid-binding immunoglobulin-like lectins (siglecs) regulate the immune system, with aberrations contributing to pathologies such as autoimmunity, infectious disease and cancer. Over the last decade, several multivalent Sia ligands have been synthesized to modulate the Sia-binding affinity of proteins/lectins. Here, we report a novel class of multivalent siglec probes through the decoration of α(2,6)-sialyllactose ligands on inherently fluorescent carbon dots (CD). We show that the preference of α(2,3)-linked Sia for siglec-1 can be altered by increasing the multivalence of Sia ligands present on the CD, and that a locally high glycan concentration can have a direct effect on linkage specificity. Additionally, micromolar (IC50 ∼ 70 μM) interaction of α(2,6)-sialyllactose-CD (6-CD) with siglec-2 (CD22) revealed it was capable of generating a significant cytotoxic effect on Burkitt's Lymphoma (BL) Daudi B cells. This phenonomen was attributed to 6-CD's ability to form trans interactions with CD22 on masked BL Daudi cells as a direct result of clustering of the Sia moiety on the CD surface. Overall, our glycoengineered carbon dots represent a novel high affinity molecular probe with multiple applications in sialoglycoscience and medicine.
Collapse
Affiliation(s)
- Oren Cooper
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| | - Mario Waespy
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen 28334 Bremen Germany
| | - Dechao Chen
- School of Engineering and Built Environment, Nathan Campus, Griffith University QLD 4111 Australia
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University of Bremen 28334 Bremen Germany
| | - Qin Li
- School of Engineering and Built Environment, Nathan Campus, Griffith University QLD 4111 Australia
- Queensland Micro- and Nanotechnology Centre, Australia, Nathan Campus, Griffith University QLD 4111 Australia
| | - Thomas Haselhorst
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| | - Joe Tiralongo
- Institute for Glycomics, Gold Coast Campus, Griffith University Queensland 4222 Australia
| |
Collapse
|
16
|
Hooper J, Liu Y, Budhadev D, Ainaga DF, Hondow N, Zhou D, Guo Y. Polyvalent Glycan Quantum Dots as a Multifunctional Tool for Revealing Thermodynamic, Kinetic, and Structural Details of Multivalent Lectin-Glycan Interactions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47385-47396. [PMID: 36194567 PMCID: PMC9614721 DOI: 10.1021/acsami.2c11111] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Multivalent lectin-glycan interactions (MLGIs) are widespread and vital for biology. Their binding biophysical and structural details are thus highly valuable, not only for the understanding of binding affinity and specificity mechanisms but also for guiding the design of multivalent therapeutics against specific MLGIs. However, effective techniques that can reveal all such details remain unavailable. We have recently developed polyvalent glycan quantum dots (glycan-QDs) as a new probe for MLGIs. Using a pair of closely related tetrameric viral-binding lectins, DC-SIGN and DC-SIGNR, as model examples, we have revealed and quantified their large affinity differences in glycan-QD binding are due to distinct binding modes: with simultaneous binding for DC-SIGN and cross-linking for DC-SIGNR. Herein, we further extend the capacity of the glycan-QD probes by investigating the correlation between binding mode and binding thermodynamics and kinetics and further probing a structural basis of their binding nature. We reveal that while both lectins' binding with glycan-QDs is enthalpy driven with similar binding enthalpy changes, DC-SIGN pays a lower binding entropy penalty, resulting in a higher affinity than DC-SIGNR. We then show that DC-SIGN binding gives a single second-order kon rate, whereas DC-SIGNR gives a rapid initial binding followed by a much slower secondary interaction. We further identify a structural element in DC-SIGN, absent in DC-SIGNR, that plays an important role in maintaining DC-SIGN's MLGI character. Its removal switches the binding from being enthalpically to entropically driven and gives mixed binding modes containing both simultaneous and cross-linking binding behavior, without markedly affecting the overall binding affinity and kinetics.
Collapse
Affiliation(s)
- James Hooper
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yuanyuan Liu
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Darshita Budhadev
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Dario Fernandez Ainaga
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicole Hondow
- School
of Chemical and Process Engineering, University
of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United
Kingdom
| | - Yuan Guo
- School
of Food Science & Nutrition and Astbury Centre for Structural
Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
17
|
Li Y, Ruan S, Guo J, He Z, Xia Q, Wu T, Wang Z, Li Z, Hu H, Jing Q, Hou X, He Y, Zhang B, Feng N, Zhang Y. B16F10 Cell Membrane-Based Nanovesicles for Melanoma Therapy Are Superior to Hyaluronic Acid-Modified Nanocarriers. Mol Pharm 2022; 19:2840-2853. [PMID: 35850109 DOI: 10.1021/acs.molpharmaceut.2c00212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Some cancer cell membrane (CCM)-derived nanovesicles show strong homing effects and are used for targeted cancer therapy. By co-constructing the B16F10 cell membrane with a PEGylated phospholipid membrane, a new nanocarrier with a composite nanocrown structure was developed, which can evade immune recognition and actively target homologous melanoma. The nanocrowns have an encapsulation efficiency of more than 90% for paclitaxel and showed no significant difference (p > 0.05) from the PEGylated phospholipid membrane vesicles. Compared with the hyaluronic acid-modified PEGylated phospholipid membrane vesicles, the biomimetic nanocrowns enhanced the escape of nanovesicles from reticuloendothelial cells in vitro and extended the circulation time in vivo; moreover, the nanocrowns showed superior melanoma-targeted drug delivery capability and improved anticancer effects of paclitaxel as demonstrated by the inhibition of B16F10 cell proliferation and induction of apoptosis by interfering with microtubule formation. In contrast, the modification of hyaluronic acid did not increase the targeting capacity or antitumor effects of the nanocrowns, confirming that the superior targeting capacity was mediated by the exposed homologous CCMs rather than by hyaluronic acid. Our results demonstrate the potential of using biomimetic nanocrowns for active melanoma-targeted therapy.
Collapse
Affiliation(s)
- Yanyan Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.,Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200050, China
| | - Shuyao Ruan
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingwen Guo
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zehui He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qing Xia
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Wu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi Wang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongmei Hu
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Jing
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuefeng Hou
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanzhi He
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Beibei Zhang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Nianping Feng
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
18
|
Saraiva AL, Vieira TN, Notário AFO, Luiz JPM, Silva CR, Goulart LR, Dantas NO, Silva ACA, Espindola FS. CdSe magic-sized quantum dots attenuate reactive oxygen species generated by neutrophils and macrophages with implications in experimental arthritis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102539. [PMID: 35183761 DOI: 10.1016/j.nano.2022.102539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/30/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The biological applicability of nanomaterials has been limited due to cytotoxicity. Studies have described the effects of nanomaterials on different tissues and cell types, but their actions on immune cells are less elucidated. This study describes unprecedented in vitro and in vivo antioxidant activities of cadmium selenide magic-sized quantum dots (CdSe MSQDs) with implications on rheumatoid arthritis. While the generation of ROS induced by nanomaterials is linked to cytotoxicity, we found that CdSe MSQDs reduced ROS production by neutrophils and macrophages following opsonized-zymosan stimuli, and we did not find cytotoxic effects. Interestingly, inherent antioxidant properties of CdSe MSQDs were confirmed through DPPH, FRAP, and ORAC assays. Furthermore, CdSe MSQDs reduced ROS levels generated by infiltrating leukocytes into joints in experimental model of rheumatoid arthritis. Briefly, we describe a novel application of CdSe MSQDs in modulating the inflammatory response in experimental rheumatoid arthritis through an unexpected antioxidant activity.
Collapse
Affiliation(s)
- André Lopes Saraiva
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Thiago Neves Vieira
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - João Paulo Mesquita Luiz
- Departamento de Farmacologia, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Cássia Regina Silva
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Luiz Ricardo Goulart
- Instituto de Biotecnologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | | | | |
Collapse
|
19
|
Brett MW, Gordon CK, Hardy J, Davis NJLK. The Rise and Future of Discrete Organic-Inorganic Hybrid Nanomaterials. ACS PHYSICAL CHEMISTRY AU 2022; 2:364-387. [PMID: 36855686 PMCID: PMC9955269 DOI: 10.1021/acsphyschemau.2c00018] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hybrid nanomaterials (HNs), the combination of organic semiconductor ligands attached to nanocrystal semiconductor quantum dots, have applications that span a range of practical fields, including biology, chemistry, medical imaging, and optoelectronics. Specifically, HNs operate as discrete, tunable systems that can perform prompt fluorescence, energy transfer, singlet fission, upconversion, and/or thermally activated delayed fluorescence. Interest in HNs has naturally grown over the years due to their tunability and broad spectrum of applications. This Review presents a brief introduction to the components of HNs, before expanding on the characterization and applications of HNs. Finally, the future of HN applications is discussed.
Collapse
|
20
|
Pollastri S, Delaunay C, Thépaut M, Fieschi F, Bernardi A. Glycomimetic ligands block the interaction of SARS-CoV-2 spike protein with C-type lectin co-receptors. Chem Commun (Camb) 2022; 58:5136-5139. [PMID: 35380569 DOI: 10.1039/d2cc00121g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The C-type lectin receptors DC-SIGN and L-SIGN bind to glycans on the SARS-CoV-2 spike glycoprotein and promote trans-infection of ACE2-expressing cells. We tested C2 triazole-modified mono- and pseudo-di-mannosides as inhibitors of DC/L-SIGN binding to a model mannosylated protein (Man-BSA) and to SARS-CoV2 spike, finding that they inhibit the interaction of both lectins with the spike glycoprotein in a Surface Plasmon Resonance (SPR) assay and are more potent than mannose by up to 36-fold (DC-SIGN) and 10-fold (L-SIGN). The molecules described here are the first known glycomimetic ligands of L-SIGN.
Collapse
Affiliation(s)
- Sara Pollastri
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, Milano, Italy.
| | - Clara Delaunay
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France.
| | - Anna Bernardi
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, Milano, Italy.
| |
Collapse
|
21
|
Thomas-Moore BA, Del Valle CA, Field RA, Marín MJ. Recent advances in nanoparticle-based targeting tactics for antibacterial photodynamic therapy. Photochem Photobiol Sci 2022; 21:1111-1131. [PMID: 35384638 PMCID: PMC9287206 DOI: 10.1007/s43630-022-00194-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/23/2022] [Indexed: 12/21/2022]
Abstract
Abstract The rise of antibacterial drug resistance means treatment options are becoming increasingly limited. We must find ways to tackle these hard-to-treat drug-resistant and biofilm infections. With the lack of new antibacterial drugs (such as antibiotics) reaching the clinics, research has switched focus to exploring alternative strategies. One such strategy is antibacterial photodynamic therapy (aPDT), a system that relies on light, oxygen, and a non-toxic dye (photosensitiser) to generate cytotoxic reactive oxygen species. This technique has already been shown capable of handling both drug-resistant and biofilm infections but has limited clinical approval to date, which is in part due to the low bioavailability and selectivity of hydrophobic photosensitisers. Nanotechnology-based techniques have the potential to address the limitations of current aPDT, as already well-documented in anti-cancer PDT. Here, we review recent advances in nanoparticle-based targeting tactics for aPDT. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Brydie A Thomas-Moore
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- Norwich Research Park Innovation Centre, Iceni Glycoscience Ltd, Colney Lane, Norwich, NR4 7GJ, UK.
| | - Carla Arnau Del Valle
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Robert A Field
- Norwich Research Park Innovation Centre, Iceni Glycoscience Ltd, Colney Lane, Norwich, NR4 7GJ, UK
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - María J Marín
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
22
|
Das R, Mukhopadhyay B. A brief insight to the role of glyconanotechnology in modern day diagnostics and therapeutics. Carbohydr Res 2021; 507:108394. [PMID: 34265516 DOI: 10.1016/j.carres.2021.108394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022]
Abstract
Carbohydrate-protein and carbohydrate-carbohydrate interactions are very important for various biological processes. Although the magnitude of these interactions is low compared to that of protein-protein interaction, the magnitude can be boosted by multivalent approach known as glycocluster effect. Nanoparticle platform is one of the best ways to present diverse glycoforms in multivalent manner and thus, the field of glyconanotechnology has emerged as an important field of research considering their potential applications in diagnostics and therapeutics. Considerable advances in the field have been achieved through development of novel techniques, use of diverse metallic and non-metallic cores for better efficacy and application of ever-increasing number of carbohydrate ligands for site-specific interaction. The present review encompasses the recent developments in the area of glyconanotechnology and their future promise as diagnostic and therapeutic tools.
Collapse
Affiliation(s)
- Rituparna Das
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| | - Balaram Mukhopadhyay
- Sweet Lab, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia, 741246, India.
| |
Collapse
|
23
|
Simone G. Surface plasmon resonance study for a reliable determination of the affinity constant of multivalent grafted beads. SOFT MATTER 2021; 17:7047-7057. [PMID: 34251388 DOI: 10.1039/d1sm00591j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, galactose-grafted beads were prepared using the main design principle of the cluster effect. Galactose was chosen as the sugar for investigation because it acts as the main building block of long glycan chains and because a simple and fast protocol is still required for its immobilization. For the analysis, the lectin, ligand of the galactose, was immobilized on a gold plasmonic substrate. After preliminary characterization of the galactose-grafted beads, the investigation of the surface plasmon surface behavior of the system was carried out, for studying the affinity constant of the multivalent beads. The results of steady-state and of the kinetics analysis evidenced a higher affinity of the galactose-grafted beads over the beadless galactose solution. For the association kinetics analysis, a Langmuir isotherm was applied to the data. The analysis of the rate of dissociation evidenced the most important differences between the two samples, based on the more difficult release of the galactose-grafted beads during washing. To confirm the influence of the glycoside cluster effect, a low-density lectin substrate was tested, and the results evidenced that the characteristic size of the molecules determines a threshold for the cluster density. The calculated detection limit and dissociation constants were 3.5 μM and 40.2 μM, respectively. Considering those results, the evaluation of the affinities toward the receptors depends on the cluster density and then, it should be designed for mimicking the biological samples.
Collapse
Affiliation(s)
- Giuseppina Simone
- The Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, People's Republic of China.
| |
Collapse
|
24
|
Hernando PJ, Dedola S, Marín MJ, Field RA. Recent Developments in the Use of Glyconanoparticles and Related Quantum Dots for the Detection of Lectins, Viruses, Bacteria and Cancer Cells. Front Chem 2021; 9:668509. [PMID: 34350156 PMCID: PMC8326456 DOI: 10.3389/fchem.2021.668509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Carbohydrate-coated nanoparticles-glyconanoparticles-are finding increased interest as tools in biomedicine. This compilation, mainly covering the past five years, comprises the use of gold, silver and ferrite (magnetic) nanoparticles, silicon-based and cadmium-based quantum dots. Applications in the detection of lectins/protein toxins, viruses and bacteria are covered, as well as advances in detection of cancer cells. The role of the carbohydrate moieties in stabilising nanoparticles and providing selectivity in bioassays is discussed, the issue of cytotoxicity encountered in some systems, especially semiconductor quantum dots, is also considered. Efforts to overcome the latter problem by using other types of nanoparticles, based on gold or silicon, are also presented.
Collapse
Affiliation(s)
- Pedro J. Hernando
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Simone Dedola
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
| | - María J. Marín
- School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Robert A. Field
- Iceni Diagnostics Ltd., Norwich Research Park Innovation Centre, Norwich, United Kingdom
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
25
|
Kim D, Rahhal N, Rademacher C. Elucidating Carbohydrate-Protein Interactions Using Nanoparticle-Based Approaches. Front Chem 2021; 9:669969. [PMID: 34046397 PMCID: PMC8144316 DOI: 10.3389/fchem.2021.669969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Carbohydrates are present on every living cell and coordinate important processes such as self/non-self discrimination. They are amongst the first molecular determinants to be encountered when cellular interactions are initiated. In particular, they resemble essential molecular fingerprints such as pathogen-, danger-, and self-associated molecular patterns guiding key decision-making in cellular immunology. Therefore, a deeper understanding of how cellular receptors of the immune system recognize incoming particles, based on their carbohydrate signature and how this information is translated into a biological response, will enable us to surgically manipulate them and holds promise for novel therapies. One approach to elucidate these early recognition events of carbohydrate interactions at cellular surfaces is the use of nanoparticles coated with defined carbohydrate structures. These particles are captured by carbohydrate receptors and initiate a cellular cytokine response. In the case of endocytic receptors, the capturing enables the engulfment of exogenous particles. Thereafter, the particles are sorted and degraded during their passage in the endolysosomal pathway. Overall, these processes are dependent on the nature of the endocytic carbohydrate receptors and consequently reflect upon the carbohydrate patterns on the exogenous particle surface. This interplay is still an under-studied subject. In this review, we summarize the application of nanoparticles as a promising tool to monitor complex carbohydrate-protein interactions in a cellular context and their application in areas of biomedicine.
Collapse
Affiliation(s)
- Dongyoon Kim
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Nowras Rahhal
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| | - Christoph Rademacher
- Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, Vienna, Austria
| |
Collapse
|
26
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
27
|
Chen CT, Salunke S, Wei TT, Tang YA, Wang YC. Fluorescent Nanohybrids from ZnS/CdSe Quantum Dots Functionalized with Triantennary, N-Hydroxy- p-(4-arylbutanamido)benzamide/Gallamide Dendrons That Act as Inhibitors of Histone Deacetylase for Lung Cancer. ACS APPLIED BIO MATERIALS 2021; 4:2475-2489. [DOI: 10.1021/acsabm.0c01438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chien-Tien Chen
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Santosh Salunke
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
- Department of Chemistry, National Tsing-Hua University, Hsinchu 30013, Taiwan
| | - Tzu-Tang Wei
- Department of Pharmacology, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yen-An Tang
- Institute of Basic Medical Sciences, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Ching Wang
- Department of Pharmacology, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
28
|
Liyanage SH, Yan M. Quantification of binding affinity of glyconanomaterials with lectins. Chem Commun (Camb) 2020; 56:13491-13505. [PMID: 33057503 PMCID: PMC7644678 DOI: 10.1039/d0cc05899h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Carbohydrate-mediated interactions are involved in many cellular activities including immune responses and infections. These interactions are relatively weak, and as such, cells employ multivalency, i.e., the presentation of multiple monovalent carbohydrate ligands within a close proximity, for cooperative binding thus drastically enhanced binding affinity. In the past two decades, the field of glyconanomaterials has emerged where nanomaterials are used as multivalent scaffolds to present multiple copies of carbohydrate ligands on the nanomaterial surface. At the core of glyconanomaterial research is the ability to control and modulate multivalency through ligand display. For the quantitative evaluation of multivalency, the binding affinity must be determined. Quantification of the binding parameters provides insights for not only the fundamental glyconanomaterial-lectin interactions, but also the rational design of effective diagnostics and therapeutics. Several methods have been developed to determine the binding affinity of glyconanomaterials with lectins, including fluorescence competitive assays in solution or on microarrays, Förster resonance energy transfer, fluorescence quenching, isothermal titration calorimetry, surface plasmon resonance spectroscopy, quartz crystal microbalance and dynamic light scattering. This Feature Article discusses each of these techniques, as well as how each technique is applied to determine the binding affinity of glyconanomaterials with lectins, and the data analysis. Although the results differed depending on the specific method used, collectively, they showed that nanomaterials as multivalent scaffolds could amplify the binding affinity of carbohydrate-lectin interactions by several orders of magnitude, the extent of which depending on the structure of the carbohydrate ligand, the ligand density, the linker length and the particle size.
Collapse
Affiliation(s)
- Sajani H Liyanage
- Department of Chemistry, University of Massachusetts Lowell, 1 University Ave., Lowell, Massachusetts 01854, USA.
| | | |
Collapse
|
29
|
Budhadev D, Poole E, Nehlmeier I, Liu Y, Hooper J, Kalverda E, Akshath US, Hondow N, Turnbull WB, Pöhlmann S, Guo Y, Zhou D. Glycan-Gold Nanoparticles as Multifunctional Probes for Multivalent Lectin-Carbohydrate Binding: Implications for Blocking Virus Infection and Nanoparticle Assembly. J Am Chem Soc 2020; 142:18022-18034. [PMID: 32935985 DOI: 10.1021/jacs.0c06793] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multivalent lectin-glycan interactions are widespread in biology and are often exploited by pathogens to bind and infect host cells. Glycoconjugates can block such interactions and thereby prevent infection. The inhibition potency strongly depends on matching the spatial arrangement between the multivalent binding partners. However, the structural details of some key lectins remain unknown and different lectins may exhibit overlapping glycan specificity. This makes it difficult to design a glycoconjugate that can potently and specifically target a particular multimeric lectin for therapeutic interventions, especially under the challenging in vivo conditions. Conventional techniques such as surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) can provide quantitative binding thermodynamics and kinetics. However, they cannot reveal key structural information, e.g., lectin's binding site orientation, binding mode, and interbinding site spacing, which are critical to design specific multivalent inhibitors. Herein we report that gold nanoparticles (GNPs) displaying a dense layer of simple glycans are powerful mechanistic probes for multivalent lectin-glycan interactions. They can not only quantify the GNP-glycan-lectin binding affinities via a new fluorescence quenching method, but also reveal drastically different affinity enhancing mechanisms between two closely related tetrameric lectins, DC-SIGN (simultaneous binding to one GNP) and DC-SIGNR (intercross-linking with multiple GNPs), via a combined hydrodynamic size and electron microscopy analysis. Moreover, a new term, potential of assembly formation (PAF), has been proposed to successfully predict the assembly outcomes based on the binding mode between GNP-glycans and lectins. Finally, the GNP-glycans can potently and completely inhibit DC-SIGN-mediated augmentation of Ebola virus glycoprotein-driven cell entry (with IC50 values down to 95 pM), but only partially block DC-SIGNR-mediated virus infection. Our results suggest that the ability of a glycoconjugate to simultaneously block all binding sites of a target lectin is key to robust inhibition of viral infection.
Collapse
Affiliation(s)
- Darshita Budhadev
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Emma Poole
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Inga Nehlmeier
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research and Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany
| | - Yuanyuan Liu
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - James Hooper
- School of Food Science & Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Elizabeth Kalverda
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Uchangi Satyaprasad Akshath
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Nicole Hondow
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - W Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center-Leibniz Institute for Primate Research and Faculty of Biology and Psychology, University of Göttingen, Göttingen 37073, Germany
| | - Yuan Guo
- School of Food Science & Nutrition and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
30
|
Wang W, Kong Y, Jiang J, Tian X, Li S, Akshath US, Tiede C, Hondow N, Yu A, Guo Y, Zhou D. Photon induced quantum yield regeneration of cap-exchanged CdSe/CdS quantum rods for ratiometric biosensing and cellular imaging. NANOSCALE 2020; 12:8647-8655. [PMID: 32147673 DOI: 10.1039/c9nr08060k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Full water-dispersion of commercial hydrophobic CdSe/CdS core/shell quantum rods (QRs) was achieved by cap-exchange using a dihydrolipoic acid zwitterion ligand at a low ligand:QR molar ratio (LQMR) of 1000. However, this process almost completely quenched the QR fluorescence, greatly limiting its potential in downstream fluorescence based applications. Fortunately, we found that the QR fluorescence could be recovered by exposure to near ultra-violet to blue light radiation (e.g. 300-450 nm). These "reborn" QRs were found to be compact, bright, and stable, and were resistant to non-specific adsorption, which make them powerful fluorescent probes in broad biomedical applications. We demonstrated their potential in two model applications: first, the QRs were conjugated with His8-tagged small antibody mimetic proteins (also known as Affimers) for the sensitive detection of target proteins via a Förster resonance energy transfer (FRET) readout strategy and second, the QR surface was functionalized with biotins for targeted imaging of cancer cells.
Collapse
Affiliation(s)
- Weili Wang
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Haab BB, Klamer Z. Advances in Tools to Determine the Glycan-Binding Specificities of Lectins and Antibodies. Mol Cell Proteomics 2020; 19:224-232. [PMID: 31848260 PMCID: PMC7000120 DOI: 10.1074/mcp.r119.001836] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/13/2019] [Indexed: 01/17/2023] Open
Abstract
Proteins that bind carbohydrate structures can serve as tools to quantify or localize specific glycans in biological specimens. Such proteins, including lectins and glycan-binding antibodies, are particularly valuable if accurate information is available about the glycans that a protein binds. Glycan arrays have been transformational for uncovering rich information about the nuances and complexities of glycan-binding specificity. A challenge, however, has been the analysis of the data. Because protein-glycan interactions are so complex, simplistic modes of analyzing the data and describing glycan-binding specificities have proven inadequate in many cases. This review surveys the methods for handling high-content data on protein-glycan interactions. We contrast the approaches that have been demonstrated and provide an overview of the resources that are available. We also give an outlook on the promising experimental technologies for generating new insights into protein-glycan interactions, as well as a perspective on the limitations that currently face the field.
Collapse
|
32
|
Yin W, Li W, Li Q, Liu Y, Liu J, Ren M, Ma Y, Zhang Z, Zhang X, Wu Y, Jiang S, Zhang XE, Cui Z. Real-time imaging of individual virion-triggered cortical actin dynamics for human immunodeficiency virus entry into resting CD4 T cells. NANOSCALE 2020; 12:115-129. [PMID: 31773115 DOI: 10.1039/c9nr07359k] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Real-time imaging of single virus particles allows the visualization of subtle dynamic events of virus-host interaction. During the human immunodeficiency virus (HIV) infection of resting CD4 T lymphocytes, overcoming cortical actin restriction is an essential step, but the dynamic process and mechanism remain to be characterized. Herein, by using quantum dot (QD) encapsulated fluorescent viral particles and single-virus tracking, we explored detailed scenarios of HIV dynamic entry and crossing the cortical actin barrier. The fine-scale temporal and spatial processes of single HIV virion interaction with the cortical actin were studied in depth during virus entry via plasma membrane fusion. Individual HIV virions modulate the subtle rearrangement of the cortical actin barrier to open a door to facilitate viral entry. The actin-binding protein, α-actinin, was found to be critical for actin dynamics during HIV entry. An α-actinin-derived peptide, actin-binding site 1 peptide (ABS1p), was developed to block HIV infection. Our findings reveal an α-actinin-mediated dynamic cortical actin rearrangement for HIV entry, and identify an antiviral target as well as a corresponding peptide inhibitor based on HIV interaction with the actin cytoskeleton.
Collapse
Affiliation(s)
- Wen Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Qin Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Yuanyuan Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ji Liu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Min Ren
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China. and University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingxin Ma
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Zhiping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Xiaowei Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, Department of Molecular and Microbiology, George Mason University, Manassas, Virginia 22030, USA
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, People's Republic of China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China.
| |
Collapse
|
33
|
Haigh JL, Williamson DJ, Poole E, Guo Y, Zhou D, Webb ME, Deuchars SA, Deuchars J, Turnbull WB. A versatile cholera toxin conjugate for neuronal targeting and tracing. Chem Commun (Camb) 2020; 56:6098-6101. [DOI: 10.1039/d0cc01085e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel azido-modified cholera toxin B-subunit has been developed for use in vivo as a neuronal tracer.
Collapse
Affiliation(s)
- Jessica L. Haigh
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
- School of Biomedical Sciences
| | - Daniel J. Williamson
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Emma Poole
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Yuan Guo
- School of Food Science and Nutrition
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Dejian Zhou
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Michael E. Webb
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Susan A. Deuchars
- School of Biomedical Sciences
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
- UK
| | - Jim Deuchars
- School of Biomedical Sciences
- Faculty of Biological Sciences
- University of Leeds
- Leeds LS2 9JT
- UK
| | - W. Bruce Turnbull
- School of Chemistry and Astbury Centre for Structural Molecular Biology
- University of Leeds
- Leeds LS2 9JT
- UK
| |
Collapse
|
34
|
Gimeno A, Valverde P, Ardá A, Jiménez-Barbero J. Glycan structures and their interactions with proteins. A NMR view. Curr Opin Struct Biol 2019; 62:22-30. [PMID: 31835069 PMCID: PMC7322516 DOI: 10.1016/j.sbi.2019.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/28/2022]
Abstract
Carbohydrate molecules are essential actors in key biological events, being involved as recognition points for cell-cell and cell-matrix interactions related to health and disease. Despite outstanding advances in cryoEM, X-ray crystallography and NMR still remain the most employed techniques to unravel their conformational features and to describe the structural details of their interactions with biomolecular receptors. Given the intrinsic flexibility of saccharides, NMR methods are of paramount importance to deduce the extent of motion around their glycosidic linkages and to explore their receptor-bound conformations. We herein present our particular view on the latest advances in NMR methodologies that are permitting to magnify their applications for deducing glycan conformation and dynamics and understanding the recognition events in which there are involved.
Collapse
Affiliation(s)
- Ana Gimeno
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Pablo Valverde
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Ana Ardá
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Bizkaia Technology Park, Building 800, 48162 Derio, Bizkaia, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Bizkaia, Spain; Department of Organic Chemistry II, University of the Basque Country, UPV/EHU, 48940 Leioa, Bizkaia, Spain
| |
Collapse
|
35
|
Huang SM, Yang F, Cai BY, He QT, Liu Q, Qu CX, Han MJ, Kong W, Jia YL, Li F, Yu X, Sun JP, Wang J. Genetically Encoded Fluorescent Amino Acid for Monitoring Protein Interactions through FRET. Anal Chem 2019; 91:14936-14942. [PMID: 31670502 DOI: 10.1021/acs.analchem.9b03305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Förster resonance energy transfer (FRET) is a well-established method for studying macromolecular interactions and conformational changes within proteins. Such a method normally uses fluorescent proteins or chemical-labeling methods which are often only accessible to surface-exposed residues and risk-disturbing target protein structures. Here, we demonstrate that the genetic incorporation of a synthetic fluorescent amino acid, L-(7-hydroxycoumarin-4-yl) ethylglycine (Cou) and natural endogenous fluorophore Tryptophan (Trp) residues of a protein could serve as an efficient FRET pair to monitor protein interactions, using the signaling transducer β-arrestin-1 as a model system. We used this technology to record the dynamic spectra in both binding and competition experiments of β-arrestin-1, the contribution of each specific phosphate in ternary complex formation, in a rapid and efficient manner. The determined Kd value for the association between the active arrestin and Fab30 is 0.68 μM in the three-component interaction system. Moreover, we were able to determine the contributions of the site 3 phospho-site and the site 6 phospho-site binding, each contributing to the high affinity ternary complex assembly as 2.7 fold and 15.5 fold, respectively, which were never determined before. These results thus highlighted the potential usage of this new method in measurement of the allosteric-induced enhanced affinity with small amount proteins and in a fast manner and in a complex system. Collectively, our newly developed Trp:Cou FRET system based on genetic expansion technology has extended the molecular toolboxes available for biochemical and structural biology studies.
Collapse
Affiliation(s)
- Shen-Ming Huang
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China.,Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Fan Yang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Bai-Yang Cai
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Qing-Tao He
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Qi Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Chang-Xiu Qu
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Ming-Jie Han
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Wei Kong
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Ying-Li Jia
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China
| | - Fahui Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| | - Xiao Yu
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Jin-Peng Sun
- Key Laboratory of Molecular Cardiovascular Science, School of Basic Medical Sciences, Ministry of Education , Peking University , 38 Xueyuan Road , Haidian District, Beijing 100191 , China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology , Shandong University School of Medicine , 44 Wenhua Xi Road , Jinan , Shandong 250012 , China
| | - Jiangyun Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing , 15 Datun Road , Chaoyang District, Beijing 100101 , China
| |
Collapse
|
36
|
Valverde P, Ardá A, Reichardt NC, Jiménez-Barbero J, Gimeno A. Glycans in drug discovery. MEDCHEMCOMM 2019; 10:1678-1691. [PMID: 31814952 PMCID: PMC6839814 DOI: 10.1039/c9md00292h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/10/2019] [Indexed: 02/06/2023]
Abstract
Glycans are key players in many biological processes. They are essential for protein folding and stability and act as recognition elements in cell-cell and cell-matrix interactions. Thus, being at the heart of medically relevant biological processes, glycans have come onto the scene and are considered hot spots for biomedical intervention. The progress in biophysical techniques allowing access to an increasing molecular and structural understanding of these processes has led to the development of effective therapeutics. Indeed, strategies aimed at designing glycomimetics able to block specific lectin-carbohydrate interactions, carbohydrate-based vaccines mimicking self- and non-self-antigens as well as the exploitation of the therapeutic potential of glycosylated antibodies are being pursued. In this mini-review the most prominent contributions concerning recurrent diseases are highlighted, including bacterial and viral infections, cancer or immune-related pathologies, which certainly show the great promise of carbohydrates in drug discovery.
Collapse
Affiliation(s)
- Pablo Valverde
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | - Ana Ardá
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| | | | - Jesús Jiménez-Barbero
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
- Ikerbasque , Basque Foundation for Science , 48013 Bilbao , Bizkaia , Spain
- Department of Organic Chemistry II , University of the Basque Country , UPV/EHU , 48940 Leioa , Bizkaia , Spain
| | - Ana Gimeno
- CIC bioGUNE , Bizkaia Technology Park, Building 800 , 48162 Derio , Bizkaia , Spain .
| |
Collapse
|
37
|
Denavit V, St‐Gelais J, Tremblay T, Giguère D. Exploring the Chemistry of Non‐sticky Sugars: Synthesis of Polyfluorinated Carbohydrate Analogues of
d
‐Allopyranose. Chemistry 2019; 25:9272-9279. [DOI: 10.1002/chem.201901346] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/16/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Vincent Denavit
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| | - Jacob St‐Gelais
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| | - Thomas Tremblay
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| | - Denis Giguère
- Département de Chimie, PROTEO, RQRMUniversité Laval 1045 Avenue de la Médecine Quebec City QC G1V 0A6 Canada
| |
Collapse
|
38
|
Lapitan LDS, Xu Y, Guo Y, Zhou D. Combining magnetic nanoparticle capture and poly-enzyme nanobead amplification for ultrasensitive detection and discrimination of DNA single nucleotide polymorphisms. NANOSCALE 2019; 11:1195-1204. [PMID: 30601516 DOI: 10.1039/c8nr07641c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The development of ultrasensitive methods for detecting specific genes and discriminating single nucleotide polymorphisms (SNPs) is important for biomedical research and clinical disease diagnosis. Herein, we report an ultrasensitive approach for label-free detection and discrimination of a full-match target-DNA from its cancer related SNPs by combining magnetic nanoparticle (MNP) capture and poly-enzyme nanobead signal amplification. It uses a MNP linked capture-DNA and a biotinylated signal-DNA to sandwich the target followed by ligation to offer high SNP discrimination: only the perfect-match target-DNA yields a covalently linked biotinylated signal-DNA on the MNP surface for subsequent binding to a neutravidin-horseradish peroxidase conjugate (NAV-HRP) for signal amplification. The use of polymer nanobeads each tagged with thousands of copies of HRPs greatly improves the signal amplification power, allowing for direct, amplification-free quantification of low aM target-DNA over 6 orders of magnitude (0.001-1000 fM). Moreover, this sensor also offers excellent discrimination between the perfect-match gene and its cancer-related SNPs and can positively detect 1 fM perfect-match target-DNA in the presence of 100 fold excess of co-existing single-base mismatch targets. Furthermore, it works robustly in clinically relevant media (e.g. 10% human serum) and gives even higher SNP discrimination than that in clean buffers. This ultrasensitive DNA sensor appears to have excellent potential for rapid detection and diagnosis of genetic diseases.
Collapse
Affiliation(s)
- Lorico D S Lapitan
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
39
|
Pramudya I, Chung H. Recent progress of glycopolymer synthesis for biomedical applications. Biomater Sci 2019; 7:4848-4872. [DOI: 10.1039/c9bm01385g] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycopolymers are an important class of biomaterials which include carbohydrate moieties in their polymer structure.
Collapse
Affiliation(s)
- Irawan Pramudya
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| | - Hoyong Chung
- Department of Chemical and Biomedical Engineering
- Florida State University
- Tallahassee
- USA
| |
Collapse
|
40
|
Sauer MM, Jakob RP, Luber T, Canonica F, Navarra G, Ernst B, Unverzagt C, Maier T, Glockshuber R. Binding of the Bacterial Adhesin FimH to Its Natural, Multivalent High-Mannose Type Glycan Targets. J Am Chem Soc 2018; 141:936-944. [PMID: 30543411 DOI: 10.1021/jacs.8b10736] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multivalent carbohydrate-lectin interactions at host-pathogen interfaces play a crucial role in the establishment of infections. Although competitive antagonists that prevent pathogen adhesion are promising antimicrobial drugs, the molecular mechanisms underlying these complex adhesion processes are still poorly understood. Here, we characterize the interactions between the fimbrial adhesin FimH from uropathogenic Escherichia coli strains and its natural high-mannose type N-glycan binding epitopes on uroepithelial glycoproteins. Crystal structures and a detailed kinetic characterization of ligand-binding and dissociation revealed that the binding pocket of FimH evolved such that it recognizes the terminal α(1-2)-, α(1-3)-, and α(1-6)-linked mannosides of natural high-mannose type N-glycans with similar affinity. We demonstrate that the 2000-fold higher affinity of the domain-separated state of FimH compared to its domain-associated state is ligand-independent and consistent with a thermodynamic cycle in which ligand-binding shifts the association equilibrium between the FimH lectin and the FimH pilin domain. Moreover, we show that a single N-glycan can bind up to three molecules of FimH, albeit with negative cooperativity, so that a molar excess of accessible N-glycans over FimH on the cell surface favors monovalent FimH binding. Our data provide pivotal insights into the adhesion properties of uropathogenic Escherichia coli strains to their target receptors and a solid basis for the development of effective FimH antagonists.
Collapse
Affiliation(s)
- Maximilian M Sauer
- Institute of Molecular Biology & Biophysics , ETH Zurich , Otto-Stern-Weg 5 , CH-8093 Zurich , Switzerland
| | - Roman P Jakob
- Biozentrum , University of Basel , Klingelbergstrasse 50/70 , CH-4056 Basel , Switzerland
| | - Thomas Luber
- Bioorganische Chemie , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Fabia Canonica
- Institute of Molecular Biology & Biophysics , ETH Zurich , Otto-Stern-Weg 5 , CH-8093 Zurich , Switzerland
| | - Giulio Navarra
- Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Beat Ernst
- Department of Pharmaceutical Sciences , University of Basel , Klingelbergstrasse 50 , CH-4056 Basel , Switzerland
| | - Carlo Unverzagt
- Bioorganische Chemie , University of Bayreuth , D-95440 Bayreuth , Germany
| | - Timm Maier
- Biozentrum , University of Basel , Klingelbergstrasse 50/70 , CH-4056 Basel , Switzerland
| | - Rudi Glockshuber
- Institute of Molecular Biology & Biophysics , ETH Zurich , Otto-Stern-Weg 5 , CH-8093 Zurich , Switzerland
| |
Collapse
|
41
|
Neal TA, Wang W, Zhiquan L, Peng R, Soni P, Xie H, Badjić JD. A Hexavalent Basket for Bottom‐Up Construction of Functional Soft Materials and Polyvalent Drugs through a “Click” Reaction. Chemistry 2018; 25:1242-1248. [PMID: 30466183 DOI: 10.1002/chem.201805246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Taylor A. Neal
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Weikun Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Lei Zhiquan
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Ruojing Peng
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Priti Soni
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Han Xie
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue 43210 Columbus Ohio USA
| |
Collapse
|
42
|
Men D, Zhou J, Li W, Wei CH, Chen YY, Zhou K, Zheng Y, Xu K, Zhang ZP, Zhang XE. Self-Assembly of Antigen Proteins into Nanowires Greatly Enhances the Binding Affinity for High-Efficiency Target Capture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41019-41025. [PMID: 30388367 DOI: 10.1021/acsami.8b12511] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
High-efficiency target capture is an essential prerequisite for sensitive immunoassays. However, the current available immunoassay approaches are subject to deficient binding affinities between predator-prey molecules that greatly restrict the target capture efficiency and immunoassay sensitivity. Herein, we present a new strategy through the self-assembly of antigen proteins into nanowires to enhance the binding affinity between an antigen and antibody. Through the genetic fusion of antigen proteins (e.g., HIV p24) with the yeast amyloid protein Sup35 self-assembly domain, specific antigen nanowires (Ag nanowires) were constructed and demonstrated a remarkable enhancement in binding affinity compared with that of the monomeric antigen molecule. The Ag nanowires were further combined with magnetic beads to form a 3D magnetic probe based on a seed-induced self-assembly strategy. Taking advantage of both the strong binding affinity and the rapid magnetic separation and enrichment capacity, the specific 3D magnetic probe achieved a 100-fold improvement in detection sensitivity within a significantly shorter period of 20 min over that of the conventional enzyme-linked immunosorbent assay method.
Collapse
Affiliation(s)
- Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Wei Li
- College of Life Sciences , Hubei University , Wuhan 430062 , China
| | - Cui-Hua Wei
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | | | - Kun Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Ying Zheng
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Ke Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai , Chinese Academy of Sciences, University of Chinese Academy of Sciences , Shanghai 200031 , China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences , Wuhan 430071 , PR China
| | - Xian-En Zhang
- National Key Laboratory of Biomacromolecules, Institute of Biophysics , Chinese Academy of Sciences , Beijing 100101 , China
| |
Collapse
|
43
|
Medve L, Achilli S, Serna S, Zuccotto F, Varga N, Thépaut M, Civera M, Vivès C, Fieschi F, Reichardt N, Bernardi A. On-Chip Screening of a Glycomimetic Library with C-Type Lectins Reveals Structural Features Responsible for Preferential Binding of Dectin-2 over DC-SIGN/R and Langerin. Chemistry 2018; 24:14448-14460. [PMID: 29975429 PMCID: PMC6220942 DOI: 10.1002/chem.201802577] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 07/03/2018] [Indexed: 12/11/2022]
Abstract
A library of mannose‐ and fucose‐based glycomimetics was synthesized and screened in a microarray format against a set of C‐type lectin receptors (CLRs) that included DC‐SIGN, DC‐SIGNR, langerin, and dectin‐2. Glycomimetic ligands able to interact with dectin‐2 were identified for the first time. Comparative analysis of binding profiles allowed their selectivity against other CLRs to be probed.
Collapse
Affiliation(s)
- Laura Medve
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Silvia Achilli
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Sonia Serna
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain
| | | | - Norbert Varga
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Michel Thépaut
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Monica Civera
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| | - Corinne Vivès
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Franck Fieschi
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale, 38000, Grenoble, France
| | - Niels Reichardt
- Glycotechnology laboratory, CIC biomaGUNE, Paseo Miramón 182, 20014, Donostia-San Sebastián, Spain.,CIBER-BBN, 20014, Donostia-San Sebastián, Spain
| | - Anna Bernardi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133, Milano, Italy
| |
Collapse
|
44
|
Palomo V, Cistrone PA, Zhan N, Palui G, Mattoussi H, Dawson PE. Efficient Assembly of Quantum Dots with Homogenous Glycans Derived from Natural N-Linked Glycoproteins. Bioconjug Chem 2018; 29:3144-3153. [PMID: 30063825 DOI: 10.1021/acs.bioconjchem.8b00477] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Coating inorganic nanoparticles with polyethylene glycol (PEG)-appended ligands, as means to preserve their physical characteristics and promote steric interactions with biological systems, including enhanced aqueous solubility and reduced immunogenicity, has been explored by several groups. Conversely, macromolecules present in the human serum and on the surface of cells are densely coated with hydrophilic glycans that act to reduce nonspecific interactions, while facilitating specific binding and interactions. In particular, N-linked glycans are abundant on the surface of most serum proteins and are composed of a branched architecture that is typically characterized by a significant level of molecular heterogeneity. Here we provide two distinct methodologies, covalent bioconjugation and self-assembly, to functionalize two types of Quantum Dots with a homogeneous, complex-type N-linked glycan terminated with a sialic acid moiety. A detailed physical and functional characterization of these glycan-coated nanoparticles has been performed. Our findings support the potential use of such fluorescent platforms to sense glycan-involved biological processes, such as lectin recognition and sialidase-mediated hydrolysis.
Collapse
Affiliation(s)
- Valle Palomo
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Philip A Cistrone
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| | - Naiqian Zhan
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Philip E Dawson
- Department of Chemistry , The Scripps Research Institute , La Jolla , California 92037 , United States
| |
Collapse
|
45
|
Gade M, Alex C, Leviatan Ben-Arye S, Monteiro JT, Yehuda S, Lepenies B, Padler-Karavani V, Kikkeri R. Microarray Analysis of Oligosaccharide-Mediated Multivalent Carbohydrate-Protein Interactions and Their Heterogeneity. Chembiochem 2018; 19:10.1002/cbic.201800037. [PMID: 29575424 PMCID: PMC6949124 DOI: 10.1002/cbic.201800037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 01/06/2023]
Abstract
Carbohydrate-protein interactions (CPIs) are involved in a wide range of biological phenomena. Hence, the characterization and presentation of carbohydrate epitopes that closely mimic the natural environment is one of the long-term goals of glycosciences. Inspired by the multivalency, heterogeneity and nature of carbohydrate ligand-mediated interactions, we constructed a combinatorial library of mannose and galactose homo- and hetero-glycodendrons to study CPIs. Microarray analysis of these glycodendrons with a wide range of biologically important plant and animal lectins revealed that oligosaccharide structures and heterogeneity interact with each other to alter binding preferences.
Collapse
Affiliation(s)
- Madhuri Gade
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| | - Catherine Alex
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| | - Shani Leviatan Ben-Arye
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - João T. Monteiro
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Bünteweg 17, 30559 Hannover (Germany)
| | - Sharon Yehuda
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - Bernd Lepenies
- University of Veterinary Medicine Hannover, Immunology Unit & Research Center for Emerging Infections and Zoonoses, Bünteweg 17, 30559 Hannover (Germany)
| | - Vered Padler-Karavani
- Tel-Aviv University, Department of Cell Research and Immunology, The George S. Wise Faculty of Life Sciences, Tel-Aviv 69978 (Israel)
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India)
| |
Collapse
|
46
|
Mishra D, Wang S, Michel S, Palui G, Zhan N, Perng W, Jin Z, Mattoussi H. Photochemical transformation of lipoic acid-based ligands: probing the effects of solvent, ligand structure, oxygen and pH. Phys Chem Chem Phys 2018; 20:3895-3902. [PMID: 29367960 DOI: 10.1039/c7cp06350d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have combined optical absorption with the Ellman's test to identify the parameters that affect the transformation of the 5-membered dithiolanes to thiols in lipoic acid (LA) and its derivatives during UV-irradiation. We found that the nature and polarity of the solvent, the structure of the ligands, acidity of the medium and oxygen can drastically affect the amount of photogenerated thiols. These findings are highly relevant to the understanding of the photochemical transformation of this biologically relevant compound, and would benefit the increasing use of LA-based ligands for the surface functionalization of various nanomaterials.
Collapse
Affiliation(s)
- Dinesh Mishra
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306-4390, USA.
| | | | | | | | | | | | | | | |
Collapse
|