1
|
Zhang F, Brancaccio V, Saal F, Deori U, Radacki K, Braunschweig H, Rajamalli P, Ravat P. Ultra-Narrowband Circularly Polarized Luminescence from Multiple 1,4-Azaborine-Embedded Helical Nanographenes. J Am Chem Soc 2024; 146:29782-29791. [PMID: 39435966 DOI: 10.1021/jacs.4c11404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
In this manuscript we present a strategy to achieve ultranarrowband circularly polarized luminescence (CPL) from multiple 1,4-azaborine-embedded helical nanographenes. The impact of number and position of boron and nitrogen atoms in the rigid core of the molecule on optical properties─including absorption and emission maxima, photoluminescence quantum yield, Stokes shift, excited singlet-triplet energy gap and full width at half-maximum (fwhm) for CPL and fluorescence─was investigated. The molecules reported here exhibits ultranarrowband fluorescence (fwhm 16-17.5 nm in toluene) and CPL (fwhm 18-19 nm in toluene). To the best of our knowledge, this is among the narrowest CPL for any organic molecule reported to date. Quantum chemical calculations, including computed CPL spectra involving vibronic contributions, provide valuable insights for future molecular design aimed at achieving narrowband CPL.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Vincenzo Brancaccio
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Fridolin Saal
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Upasana Deori
- Materials Research Centre, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Krzysztof Radacki
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| | - Pachaiyappan Rajamalli
- Materials Research Centre, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Prince Ravat
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland D-97074, Würzburg, Germany
| |
Collapse
|
2
|
Full F, Artigas A, Wiegand K, Volland D, Szkodzińska K, Coquerel Y, Nowak-Król A. Controllable 1,4-Palladium Aryl to Aryl Migration in Fused Systems─Application to the Synthesis of Azaborole Multihelicenes. J Am Chem Soc 2024; 146:29245-29254. [PMID: 39392613 DOI: 10.1021/jacs.4c12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Herein, we report the first 1,4-Pd aryl to aryl migration/Miyaura borylation tandem reaction in fused systems. The Pd shift occurred in the bay region of the dibenzo[g,p]chrysene building blocks, giving rise to a thermodynamically controlled mixture of 1,8- and 1,9-borylated compounds that allowed the preparation of regioisomeric azaborole multihelicenes from the same starting material. The outcome of this synthesis can be controlled by the choice of reaction conditions, allowing the migration process to be turned off in the absence of an acetate additive and the target multiheterohelicenes to be prepared in a regioselective manner. The target compounds show bright green fluorescence in dichloromethane with emission quantum yields (Φ) of up to 0.29, |glum| values up to 2.7 × 10-3, and green or green-yellow emission in the solid state, reaching Φ of 0.22. Single crystal X-ray diffraction analyses gave insight into their molecular structures and the packing arrangement. Evaluation of aromaticity in these multihelicenes revealed a nonaromatic character of the 2H-1,2-azaborole constituent rings.
Collapse
Affiliation(s)
- Felix Full
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Albert Artigas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona (UdG), Facultat de Ciències, C/ Maria Aurèlia Capmany, 69, Girona, Catalunya 17003, Spain
| | - Kevin Wiegand
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Daniel Volland
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Klaudia Szkodzińska
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Med, ISM2, Marseille 13397, France
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
3
|
Jin K, Xiao Z, Xie H, Shen X, Wang J, Chen X, Wang Z, Zhao Z, Yan K, Ding Y, Ding L. Tether-entangled conjugated helices. Chem Sci 2024; 15:d4sc04796f. [PMID: 39355229 PMCID: PMC11440437 DOI: 10.1039/d4sc04796f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
A new design concept, tether-entangled conjugated helices (TECHs), is introduced for helical polyaromatic molecules. TECHs consist of a linear polyaromatic ladder backbone and periodically entangling tethers with the same planar chirality. By limiting the length of tether, all tethers synchronously bend and twist the backbone with the same manner, and change it into a helical ribbon with a determinate helical chirality. The 3D helical features are customizable via modular synthesis by using two types of synthons, the planar chiral tethering unit (C 2 symmetry) and the docking unit (C 2h symmetry), and no post chiral resolution is needed. Moreover, TECHs possess persistent chiral properties due to the covalent locking of helical configuration by tethers. Concave-type and convex-type oligomeric TECHs are prepared as a proof-of-concept. Unconventional double-helix π-dimers are observed in the single crystals of concave-type TECHs. Theoretical studies indicate the smaller binding energies in double-helix π-dimers than conventional planar π-dimers. A concentration-depend emission is found for concave-type TECHs, probably due to the formation of double-helix π-dimers in the excited state. All TECHs show strong circularly polarized luminescence (CPL) with dissymmetric factors (|g lum|) generally over 10-3. Among them, the (P)-T4-tBu shows the highest |g lum| of 1.0 × 10-2 and a high CPL brightness of 316 M-1 cm-1.
Collapse
Affiliation(s)
- Ke Jin
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zuo Xiao
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Huidong Xie
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology Qinhuangdao 066004 China
| | - Jizheng Wang
- Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xiangyu Chen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences Beijing 101400 China
| | - Zhijie Wang
- Institute of Semiconductors, Chinese Academy of Sciencess Beijing 100083 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology Guangzhou 510640 China
| | - Keyou Yan
- School of Environment and Energy, South China University of Technology Guangzhou 510006 China
| | - Yong Ding
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University Beijing 102206 China
| | - Liming Ding
- Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
4
|
Lin CC, Pan ML, Li PL, Ou WT, Cheng MJ, Wu YT. Syntheses, Structural Analyses, and Properties of Condensed Arenes with Multihelicity. Org Lett 2024; 26:7847-7852. [PMID: 39248644 DOI: 10.1021/acs.orglett.4c02691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
A C1-symmetric hexapole helicene (HH) and a C3-symmetric dodecapole helicene (DH) were prepared, and their three-dimensional structures were verified by X-ray crystallography and density functional theory calculations. The molecular geometries and local helical configurations of their most stable diastereomers were correctly predicted by arranging suitable conformations of the peripheral aryl rings. Importantly, the outermost three [5]helicenes with a consistent configuration in DH were observed to increase the thermostability, enantiomerization barrier (ΔH⧧ = 40.5 kcal/mol), specific rotation ([α]24D = -4228°) and absorption dissymmetry factor (gabs = 1.35 × 10-3 at 453 nm).
Collapse
Affiliation(s)
- Chi-Chen Lin
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ming-Lun Pan
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pei-Lun Li
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Wei-Ting Ou
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yao-Ting Wu
- Department of Chemistry, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
5
|
Yao M, Jing Y, Bi H, Ke Z, Wang SR. Scorpion-Shaped Hybrid Double Helicenes via Orthogonal Alkyne Annulation Reactions. J Org Chem 2024; 89:13093-13100. [PMID: 39250176 DOI: 10.1021/acs.joc.4c01180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Scorpion-shaped hybrid double helicenes, consisting of a [5] or [6] carbohelicene and an aza[4]helicene, have been successfully constructed by orthogonal alkyne annulations via an aryl C-I bond and amido N-H bond from polyaromatic ring-fused iodoisocoumarins. In spite of the unexpected instability upon aerobic oxidation upon ambient visible light irradiation over several days, both ultraviolet-visible absorption and photoluminescence spectra along with density functional theory calculations of these helicenes have been studied, which rely heavily on the bent polyaromatic ring-fused quinolizinone conjugate skeleton. In addition, the Stokes shifts of hybrid double helicenes are generally larger than those of the structurally similar mono-carbohelicenes.
Collapse
Affiliation(s)
- Mengyu Yao
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Yaru Jing
- School of Materials Science and Engineering, PCFM Lab, Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510006, China
| | - Hongyan Bi
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, PCFM Lab, Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, Guangzhou 510006, China
| | - Sunewang R Wang
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200241, China
| |
Collapse
|
6
|
Liu Y, Yuan L, Fan Z, Yang J, Wang Y, Dou C. Boron-doped double [6]carbohelicenes: a combination of helicene and boron-doped π-systems. Chem Sci 2024; 15:12819-12826. [PMID: 39148780 PMCID: PMC11322965 DOI: 10.1039/d4sc03124e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/07/2024] [Indexed: 08/17/2024] Open
Abstract
Helicenes, featuring unique helical structures, have a long history as three-dimensional polycyclic aromatic hydrocarbons (PAHs). Incorporation of heteroatoms into helicenes may alter their electronic structures and achieve unexpected physical properties. Here, we disclose fusion of boron-doped π-systems onto helicenes as an efficient strategy to design boron-doped carbohelicenes. Two boron-doped double [6]carbohelicenes were synthesized, which possess the C58B2 and C86B2 polycyclic π-skeletons containing two [6]helicene subunits, respectively. The C86B2 molecule thus represents the largest-size helicene-based boron-doped PAH. A thorough investigation reveals that the helicene moieties and boron atoms endow the polycyclic π-systems with delocalized electronic structures, and well-tunable ground-state and excited-state photophysical properties. It is notable that the C58B2 molecule displays excited-state stimulated emission behavior and amplified spontaneous emission (ASE) properties in not only the blend films with various doped concentrations but also the pure film. To our knowledge, it is the first example of ASE-active [n]helicene (n ≥ 6), and moreover, such robust ASE performance has rarely been observed in PAHs, demonstrating the promising utility of boron-doped carbohelicenes for laser materials.
Collapse
Affiliation(s)
- Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Zengming Fan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| |
Collapse
|
7
|
Kondo Y, Tsutsui Y, Matsuo Y, Tanaka T, Seki S. Impacts of heteroatom substitution on the excited state dynamics of π-extended helicenes. NANOSCALE ADVANCES 2024:d4na00516c. [PMID: 39144158 PMCID: PMC11320297 DOI: 10.1039/d4na00516c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Benzo-annulated aza[9]helicene ([9]AH) and thia[9]helicene ([9]TH) were prepared as novel π-extended heterohelicenes. [9]TH showed a quite short fluorescence lifetime of ∼0.3 ns and intense phosphorescence at low temperature that were attributed to its larger spin-orbit coupling and faster intersystem crossing between pseudo-degenerate S1/2 and triplet states.
Collapse
Affiliation(s)
- Yuto Kondo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
- JST-PRESTO Honcho 4-1-8, Kawaguchi Saitama 332-0012 Japan
| | - Yusuke Matsuo
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Takayuki Tanaka
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
8
|
Qin L, Xie J, Wu B, Hong H, Yang S, Ma Z, Li C, Zhang G, Zhang XS, Liu K, Zhang D. Axially Chiral Nonbenzenoid Nanographene with Second Harmonic Generation Property. J Am Chem Soc 2024; 146:12206-12214. [PMID: 38637324 DOI: 10.1021/jacs.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Xie
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hong
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuangzhuang Ma
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
9
|
Gan F, Zhang G, Liang J, Shen C, Qiu H. π-Extended Diaza[7]helicenes with Dual Negatively Curved Heptagons: Extensive Synthesis and Spontaneous Resolution into Strippable Homochiral Lamellae with Helical Symmetry. Angew Chem Int Ed Engl 2024; 63:e202320076. [PMID: 38230611 DOI: 10.1002/anie.202320076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
We report a unique category of π-extended diaza[7]helicenes with double negative curvatures. This is achieved by two-fold regioselective heptagonal cyclization of the oligoarylene-carbazole precursors through either intramolecular C-H arylation or Scholl reaction. The fusion of two heptagonal rings in the helical skeleton dramatically increases the intramolecular strain and forces the two terminal carbazole moieties to stack in a compressed fashion. The presence of the deformable negatively curved heptagonal rings endows the resulting diaza[7]helicenes with dynamic chiral skeletons, aggregation-induced emission feature and relatively low racemization barrier of ca. 25.6 kcal mol-1 . Further π-extension on the carbazole moieties subsequently leads to a more sophisticated C2 -symmetric homochiral triple helicene. Notably, these π-extended diaza[7]helicenes show structure-dependent stacking upon crystallization, switching from heterochiral packing to intra-layer homochiral stacking. Interestingly, the C2 -symmetric triple helicene molecules spontaneously resolve into a homochiral lamellar structure with 31 helix symmetry. Upon ultrasonication in a nonsolvent, the crystals can be readily exfoliated into large-area ultrathin nanosheets with height of ca. 4.4 nm corresponding to two layers of stacked triple helicene molecules and relatively thicker nanosheets constituted by even-numbered molecular lamellae. Moreover, regular hexagonal thin platelets with size larger than 30 μm can be readily fabricated by flash aggregation.
Collapse
Affiliation(s)
- Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
10
|
Artigas A, Ferdi N, Rémond M, Rigoulet F, Vanthuyne N, Hagebaum-Reignier D, Carissan Y, Naubron JV, Giorgi M, Favereau L, Coquerel Y. Conformational, Structural, and Chiroptical Properties of an Overcrowded Triply Fused Carbo[7]helicene. J Org Chem 2024; 89:498-504. [PMID: 38133568 DOI: 10.1021/acs.joc.3c02239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Recently, the synthesis of the racemate of an overcrowded triply fused carbo[7]helicene of formula C66H36 with three carbo[7]helicenes fused within a central six-membered ring was described. This molecule was found to embed an extremely contorted central six-membered ring and two negative curvatures. We report herein the resolution of the corresponding enantiomers and their conformational, structural, photophysical, and chiroptical properties. The racemization of the triply fused carbo[7]helicene was determined to proceed at a rate of krac = 8.06 × 10-4 s-1 at 175 °C in ortho-dichlorobenzene, corresponding to a barrier to enantiomerization ΔGenant‡ = 140.4 kJ·mol-1, a value significantly lower than for pristine carbo[7]helicene. Interestingly, the crystalline structures of the racemic and enantiopure materials show some differences regarding the molecular geometry, with an increased negative curvature in the latter cases. This unusual curved delocalized π-conjugated system afforded notably green fluorescence at room temperature and far-red phosphorescence at low temperature. Finally, electronic circular dichroism and circularly polarized luminescence responses of the enantiopure compounds have been measured and showed very close absorption and emission dissymmetry factors, gabs and glum, respectively, of ca. 2.6 × 10-3, indicating a similar chiral rigid geometry for both ground and excited states.
Collapse
Affiliation(s)
- Albert Artigas
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Nawal Ferdi
- Aix Marseille Université, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | - Maxime Rémond
- Univ Rennes, CNRS, ISCR-UMR 6226, F-35000 Marseille, France
| | - Florian Rigoulet
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | | | - Yannick Carissan
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| | - Jean-Valère Naubron
- Aix Marseille Université, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | - Michel Giorgi
- Aix Marseille Université, CNRS, Centrale Méditerranée, FSCM, 13397 Marseille, France
| | | | - Yoann Coquerel
- Aix Marseille Université, CNRS, Centrale Méditerranée, ISM2, 13397 Marseille, France
| |
Collapse
|
11
|
Freixas VM, Oldani N, Tretiak S, Fernandez-Alberti S. Twisting Aromaticity and Photoinduced Dynamics in Hexapole Helicenes. J Phys Chem Lett 2023; 14:10145-10150. [PMID: 37924328 DOI: 10.1021/acs.jpclett.3c02628] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
Curved aromatic molecules are attractive electronic materials, where an additional internal strain uniquely modifies their structure, aromaticity, dynamics, and optical properties. Helicenes are examples of such twisted conjugated systems. Herein, we analyze the photoinduced dynamics in different stereoisomers of a hexapole helicene by using nonadiabatic excited-state molecular dynamics simulations. We explore how changes in symmetry and structural distortion modulate the intramolecular energy redistribution. We find that distinct helical assembly leads to different rigid distorted structures that in turn impact the nonradiative energy relaxation and ultimately formation of the self-trapped exciton. Subsequently, the value of the twisting angles relative to the central triphenylene core structure controls the global molecular aromaticity and electronic localization during the internal conversion process. Our work sheds light on how the future synthesis of novel curved aromatic compounds can be directed to attain specific desired electronic properties through the modulation of their twisted aromaticity.
Collapse
Affiliation(s)
- Victor M Freixas
- Department of Chemistry and Physics and Astronomy, University of California, Irvine, California 92697-2025, United States
| | - Nicolas Oldani
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET, B1876BXD Bernal, Argentina
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | | |
Collapse
|
12
|
Duan Y, Chen M, Hayashi H, Yamada H, Liu X, Zhang L. Buckybowl and its chiral hybrids featuring eight-membered rings and helicene units. Chem Sci 2023; 14:10420-10428. [PMID: 37800001 PMCID: PMC10548505 DOI: 10.1039/d3sc00658a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 10/07/2023] Open
Abstract
Here we report the synthesis of a novel buckybowl (7) with a high bowl-to-bowl inversion barrier (ΔG‡ = 38 kcal mol-1), which renders the rate of inversion slow enough at room temperature to establish two chiral polycyclic aromatic hydrocarbons (PAHs). By strategic fusion of eight-membered rings to the rim of 7, the chiral hybrids 8 and 9 are synthesized and display helicity and positive and negative curvature, allowing the enantiomers to be configurationally stable and their chiroptical properties are thoroughly examined. Computational and experimental studies reveal the enantiomerization mechanisms for the chiral hybrids and demonstrate that the eight-membered ring strongly affects the conformational stability. Because of its static and doubly curved conformation, 9 shows a high binding affinity towards C60. The OFET performance of 7-9 could be tuned and the hybrids show ambipolar characteristics. Notably, the 9·C60 cocrystal exhibits well-balanced ambipolar performance with electron and hole mobilities of up to 0.19 and 0.11 cm2 V-1 s-1, respectively. This is the first demonstration of a chiral curved PAH and its complex with C60 for organic devices. Our work presents new insight into buckybowl-based design of PAHs with configurational stability and intriguing optoelectronic properties.
Collapse
Affiliation(s)
- Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
13
|
Feng X, Wang X, Redshaw C, Tang BZ. Aggregation behaviour of pyrene-based luminescent materials, from molecular design and optical properties to application. Chem Soc Rev 2023; 52:6715-6753. [PMID: 37694728 DOI: 10.1039/d3cs00251a] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Molecular aggregates are self-assembled from multiple molecules via weak intermolecular interactions, and new chemical and physical properties can emerge compared to their individual molecule. With the development of aggregate science, much research has focused on the study of the luminescence behaviour of aggregates rather than single molecules. Pyrene as a classical fluorophore has attracted great attention due to its diverse luminescence behavior depending on the solution state, molecular packing pattern as well as morphology, resulting in wide potential applications. For example, pyrene prefers to emit monomer emission in dilute solution but tends to form a dimer via π-π stacking in the aggregation state, resulting in red-shifted emission with quenched fluorescence and quantum yield. Over the past two decades, much effort has been devoted to developing novel pyrene-based fluorescent molecules and determining the luminescence mechanism for potential applications. Since the concept of "aggregation-induced emission (AIE)" was proposed by Tang et al. in 2001, aggregate science has been established, and the aggregated luminescence behaviour of pyrene-based materials has been extensively investigated. New pyrene-based emitters have been designed and synthesized not only to investigate the relationships between the molecular structure and properties and advanced applications but also to examine the effect of the aggregate morphology on their optical and electronic properties. Indeed, new aggregated pyrene-based molecules have emerged with unique properties, such as circularly polarized luminescence, excellent fluorescence and phosphorescence and electroluminescence, ultra-high mobility, etc. These properties are independent of their molecular constituents and allow for a number of cutting-edge technological applications, such as chemosensors, organic light-emitting diodes, organic field effect transistors, organic solar cells, Li-batteries, etc. Reviews published to-date have mainly concentrated on summarizing the molecular design and multi-functional applications of pyrene-based fluorophores, whereas the aggregation behaviour of pyrene-based luminescent materials has received very little attention. The majority of the multi-functional applications of pyrene molecules are not only closely related to their molecular structures, but also to the packing model they adopt in the aggregated state. In this review, we will summarize the intriguing optoelectronic properties of pyrene-based luminescent materials boosted by aggregation behaviour, and systematically establish the relationship between the molecular structure, aggregation states, and optoelectronic properties. This review will provide a new perspective for understanding the luminescence and electronic transition mechanism of pyrene-based materials and will facilitate further development of pyrene chemistry.
Collapse
Affiliation(s)
- Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull, Yorkshire HU6 7RX, UK.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
14
|
Artigas A, Rigoulet F, Giorgi M, Hagebaum-Reignier D, Carissan Y, Coquerel Y. Overcrowded Triply Fused Carbo[7]helicene. J Am Chem Soc 2023. [PMID: 37428944 DOI: 10.1021/jacs.3c05415] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
This paper presents the synthesis and comprehensive analysis of a highly contorted and doubly negatively curved multihelicene compound, composed of three carbo[7]helicene units fused within a central six-membered ring. The synthesis of this compound involved a [2 + 2 + 2] cycloaddition reaction of 13,14-picyne, employing a Ni(0) catalyst, which exhibited superior performance compared to conventional Pd(0) catalysts. The evaluation of aromaticity in this triple carbo[7]helicene, utilizing magnetic and electronic criteria, led to noteworthy insights challenging the limitations of Clar's model of aromaticity.
Collapse
Affiliation(s)
- Albert Artigas
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| | - Florian Rigoulet
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| | - Michel Giorgi
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, 13397 Marseille, France
| | | | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, ISM2, 13397 Marseille, France
| |
Collapse
|
15
|
Jana K, Sarkar D, Jaiswal P, Moorthy JN. Synthesis and Excited-State Properties of Donor-Acceptor Azahelical Coumarins. J Org Chem 2023. [PMID: 37114852 DOI: 10.1021/acs.joc.2c02810] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
A set of three donor-acceptor azahelical coumarins (DA-AHCs), namely, H-AHC, Me-AHC, and Ph-AHC, were rationally designed and synthesized, and their excited-state properties were comprehensively investigated. All three DA-AHCs are shown to display very high fluorosolvatochromic shifts as a result of significant intramolecular charge transfer in their excited states. The para-quinoidal forms of the latter apparently contribute predominantly to large dipole moments in their excited states. By virtue of the fact that these helical systems structurally incorporate a highly fluorescent coumarin dye, they exhibit high quantum yields in both solution and solid states. Indeed, their emission behaviors in the crystalline media are shown to be remarkably correlated with their respective crystal packings. Incisive analyses demonstrate (i) strengthening of hydrogen bonding in the excited state promotes quenching (H-AHC), (ii) efficient crystal packing promotes high emission (Me-AHC) by precluding deactivations via vibrational motions, and (iii) loose crystal packing contributes to excited-state deactivation to account for low quantum yields of emission (Ph-AHC).
Collapse
Affiliation(s)
- Kanyashree Jana
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Debarghya Sarkar
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Preeti Jaiswal
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
| | - Jarugu Narasimha Moorthy
- Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Trivandrum 695551, India
| |
Collapse
|
16
|
Katoono R, Tanioka T. A Dualistic Arrangement of a Chiral [1]Rotaxane Based on the Assembly of Two Rings and Two Rods. J Org Chem 2023; 88:4606-4618. [PMID: 36972424 DOI: 10.1021/acs.joc.3c00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
We demonstrate the synthesis and chiroptical properties of doubled molecules of a chiral [1]rotaxane, based on the assembly of an achiral ring of a phenylacetylene macrocycle (6PAM) and a p-phenylene ethynylene rod. Two molecules of [1]rotaxane constituted the doubled molecule through the ring fusion of 6PAMs to a 10PAM, which assured stationary occupation relative to each optically active unit. The absorption properties of the 10PAM-based doubled molecule and 6PAM-based original unit were consistently characterized by the independent existence of m-phenylene ethynylene ring(s) and p-phenylene ethynylene rod(s). Thus, molar circular dichroism (CD) was directly compared between the doubled molecule (n = 2) and the original unit (n = 1) to show that molar CD was increased more than expected by an increase in the number of units, or by an increase in absorbance. Due to the invariance of the configuration and the relative occupation of two units arranged adjacent to each other in 10PAM, one more comparison was available with an isomeric molecule of two rings and two rods in a threaded-and-unthreaded form. The additional arrangement of an optically inactive unit in an unthreaded form also led to an increase in molar CD, compared to that of the original chiral unit in a threaded form.
Collapse
Affiliation(s)
- Ryo Katoono
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Takumi Tanioka
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
17
|
Abstract
ConspectusUnderstanding and harnessing the properties of nanoscale molecular entities are considered as new frontiers in basic chemistry. In this regard, synthetic nanographene with atomic precision has attracted much attention recently. For instance, taking advantage of the marvelous bonding capability of carbon, flat, curved, ribbon-type, or cone-shaped nanographenes have been prepared in highly controllable and elegant manner, allowing one to explore fascinating molecular architectures with intriguing optical, electrochemical, and magnetic characteristics. This stands in stark contrast to other carbon-rich nanomaterials, such as graphite oxides or carbon quantum dots, which preclude thorough investigations because of complicate structural defects. Undoubtedly, synthetic nanographene contributes strongly to modern aromatic chemistry and represents a vibrant field that may deliver transforming functional materials crucial for optoelectronics, nanotechnologies, and biomedicine.Nonetheless, in many cases, synthesis and characterization of nanographene compounds are highly demanding. Low solubility, high molecular strain, undesired selectivity, as well as incomplete or excessive C-C bond formation are common impediments, that require formidable efforts to control the molecular geometry, to modulate the edge structure, to achieve accurate doping, or to push the upper size boundary. These endeavors are indispensable for establishing structure-property relationships, and lay down foundation for exploring synthetic nanographenes at a high level of sophistications.In this Account, we summarize our contributions to this field by presenting a series of helical synthetic nanographenes, such as hexapole [7]helicene (H7H), nitrogen-doped H7H, hexapole [9]helicene (H9H), superhelicene, and supertwistacene. This kind of giant synthetic nanographene reaches the size domain of carbon quantum dots, albeit has precise atomic structure. It provides a unique platform to study aromatic chemistry and chirality at the nanoscale. We discuss synthetic methods and point out, in particular, the strengths and pitfalls of Scholl oxidation, which are expected to be valuable for making synthetic nanographenes in general. In addition, we illustrate their exciting electrochemical and photophysical performance, which include, but are not limited to, reversible multielectron redox chemistry, record high panchromatic absorption, impressive photothermal behavior, and extremely strong Cotton effect. These unusual characteristics are convincingly traced back to their three-dimensional conjugated architectures, highlighting the critical roles of π-electron delocalization, heteroatom-doping, substitution, and molecular symmetry in determining nanographenes' properties and functions. Lastly, we put forward our understanding on the challenges and opportunities that lies ahead and hope this Account will inspire ever more ambitious achievements from this attractive area of research.
Collapse
Affiliation(s)
- Yanpeng Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiaobing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
18
|
Li JK, Chen XY, Zhao WL, Guo YL, Zhang Y, Wang XC, Sue ACH, Cao XY, Li M, Chen CF, Wang XY. Synthesis of Highly Luminescent Chiral Nanographene. Angew Chem Int Ed Engl 2023; 62:e202215367. [PMID: 36428269 DOI: 10.1002/anie.202215367] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Chiral nanographenes with both high fluorescence quantum yields (ΦF ) and large dissymmetry factors (glum ) are essential to the development of circularly polarized luminescence (CPL) materials. However, most studies have been focused on the improvement of glum , whereas how to design highly emissive chiral nanographenes is still unclear. In this work, we propose a new design strategy to achieve chiral nanographenes with high ΦF by helical π-extension of strongly luminescent chromophores while maintaining the frontier molecular orbital (FMO) distribution pattern. Chiral nanographene with perylene as the core and two dibenzo[6]helicene fragments as the wings has been synthesized, which exhibits a record high ΦF of 93 % among the reported chiral nanographenes and excellent CPL brightness (BCPL ) of 32 M-1 cm-1 .
Collapse
Affiliation(s)
- Ji-Kun Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xing-Yu Chen
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Wen-Long Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yun-Long Guo
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Yi Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Xin-Chang Wang
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Andrew C-H Sue
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Xiao-Yu Cao
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 300071, Tianjin, China.,State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, 510640, Guangzhou, China
| |
Collapse
|
19
|
Liu G, Liu Y, Zhao C, Li Y, Wang Z, Tian H. Stereoselective Chiral Molecular Carbon Imides Featuring 12-Fold [5]helicenes Around Four Cores. Angew Chem Int Ed Engl 2023; 62:e202214769. [PMID: 36357324 DOI: 10.1002/anie.202214769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/12/2022]
Abstract
Despite the great progress in research on molecular carbons containing multiple helicenes around one core, realizing the stereoselectivity of carbons containing multiple helicenes around more cores is still a great challenge. Herein, molecular carbon C204 featuring 12-fold [5]helicenes around four cores was successfully constructed by using nine perylene diimide (PDI) units, and exhibits good solubility and stability. Despite 256 possible stereoisomers caused by the 12-fold [5]helicenes, we only obtained one pair of enantiomers with D3 symmetry. There are four possible pairs of enantiomers with D3 symmetry, namely 7A, 7B, 7C and 7D. Theoretical and experimental results verify that the obtained structure belongs to 7C, which has the lowest energy. The enantiomers can also be separated by chiral HPLC. These results suggest that choosing PDIs as building blocks can not only improve the solubility and stability but also realize the stereoselectivity and chirality of molecular carbons.
Collapse
Affiliation(s)
- Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan Li
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
20
|
Kiel GR, Bergman HM, Samkian AE, Schuster NJ, Handford RC, Rothenberger AJ, Gomez-Bombarelli R, Nuckolls C, Tilley TD. Expanded [23]-Helicene with Exceptional Chiroptical Properties via an Iterative Ring-Fusion Strategy. J Am Chem Soc 2022; 144:23421-23427. [PMID: 36525313 DOI: 10.1021/jacs.2c09555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Expanded helicenes are an emerging class of helical nanocarbons composed of alternating linear and angularly fused rings, which give rise to an internal cavity and a large diameter. The latter is expected to impart exceptional chiroptical properties, but low enantiomerization free energy barriers (ΔG‡e) have largely precluded experimental interrogation of this prediction. Here, we report the syntheses of expanded helicenes containing 15, 19, and 23 rings on the inner helical circuit, using two iterations of an Ir-catalyzed, site-selective [2 + 2 + 2] reaction. This series of compounds displays a linear relationship between the number of rings and ΔG‡e. The expanded [23]-helicene, which is 7 rings longer than any known single carbohelicene and among the longest known all-carbon ladder oligomers, exhibits a ΔG‡e that is high enough (29.2 ± 0.1 kcal/mol at 100 °C in o-DCB) to halt enantiomerization at ambient temperature. This enabled the isolation of enantiopure samples displaying circular dichroism dissymmetry factors of ±0.056 at 428 nm, which are ≥1.7× larger than values for previously reported classical and expanded helicenes. Computational investigations suggest that this improved performance is the result of both the increased diameter and length of the [23]-helicene, providing guiding design principles for high dissymmetry molecular materials.
Collapse
Affiliation(s)
- Gavin R Kiel
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Harrison M Bergman
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Adrian E Samkian
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Nathaniel J Schuster
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Rex C Handford
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - August J Rothenberger
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Rafael Gomez-Bombarelli
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - T Don Tilley
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
21
|
Müllen K, Scherf U. Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Klaus Müllen
- Max Planck Institute for Polymer Research Ackermannweg 10 D‐50128 Mainz Germany
| | - Ullrich Scherf
- Department of Chemistry, Macromolecular Chemistry Group (BUWmakro), and Wuppertal Institute for Smart Materials & Systems (CM@S) University of Wuppertal Gauss‐Str. 20 D‐42119 Wuppertal Germany
| |
Collapse
|
22
|
Niu W, Ma J, Feng X. Precise Structural Regulation and Band-Gap Engineering of Curved Graphene Nanoribbons. Acc Chem Res 2022; 55:3322-3333. [PMID: 36378659 DOI: 10.1021/acs.accounts.2c00550] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Graphene nanoribbons (GNRs)─quasi-one-dimensional graphene cutouts─have drawn growing attention as promising candidates for next-generation electronic and spintronic materials. Theoretical and experimental studies have demonstrated that the electronic and magnetic properties of GNRs critically depend on their widths and edge topologies. Thus, the preparation of structurally defined GNRs is highly desirable not only for their fundamental physicochemical studies but also for their future technological development in carbon-based nanoelectronics. In the past decade, significant efforts have been made to construct a wide variety of GNRs with well-defined widths and edge structures via bottom-up synthesis. In addition to extensively studied planar GNRs consisting of armchair, zigzag, or gulf edges, curved GNRs (cGNRs) bearing cove ([4]helicene unit) or fjord ([5]helicene unit) regions along the ribbon edges have received increasing interest after we presented the first attempt to synthesize the fully cove-edged GNRs in 2015. Profiting from their novel edge topologies, cGNRs usually exhibit an unprecedented narrow band gap and high carrier transport mobility in comparison to the planar GNRs with similar widths. Moreover, cGNRs with particular out-of-plane-distorted structures are expected to provide further opportunities in nonlinear optics and asymmetric catalysis. However, the synthesis of cGNRs bearing cove or fjord edges remains underdeveloped due to the absence of efficient synthetic strategies/methods and suitable molecular precursor design.In this Account, we present the recent advances in the bottom-up synthesis and characterization of structurally defined cGNRs containing cove or fjord edges, mainly from our research group. First, the synthetic strategies toward cGNRs bearing cove edges are described, including the design of molecular monomers and polymer precursors as well as the corresponding polymerization methods, such as Ullmann coupling, Yamamoto coupling, A2B2-type Diels-Alder polymerization, followed by Scholl-type cyclodehydrogenation. The synthesis of typical model compounds is also described to support the understanding of the related cGNRs. In addition, the synthesis of cGNRs containing fjord edges from other research groups via the regioselective Scholl reaction, Hopf cyclization or regioselective photochemical cyclodehydrochlorination approach is presented. Second, we discuss the optoelectronic properties of the as-synthesized cGNRs and reveal the design principle to obtain cGNRs with high charge carrier mobilities. Finally, the challenges and prospects in the design and synthesis of cGNRs are offered. We anticipate that this Account will further stimulate the development of cGNRs through a collaborative effort between different disciplines.
Collapse
Affiliation(s)
- Wenhui Niu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062 Dresden, Germany.,Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
23
|
A superhelicene-like structure bearing an eight-membered ring at the joint. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Zhou Y, Ma C, Luo D, Hu L, Zhang X, Dong X, Xiong Y. Synthesis of aryl [5]helicenes through Suzuki-Miyaura reaction and their optical properties. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Synthesis, spectral characterization and fluorescence study of functional [5]Helicene derivatives: Experimental and theoretical investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Wu YF, Ying SW, Liao SD, Zhang L, Du JJ, Chen BW, Tian HR, Xie FF, Xu H, Deng SL, Zhang Q, Xie SY, Zheng LS. Sulfur-Doped Quintuple [9]Helicene with Azacorannulene as Core. Angew Chem Int Ed Engl 2022; 61:e202204334. [PMID: 35698274 DOI: 10.1002/anie.202204334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Indexed: 12/15/2022]
Abstract
Herein, a hetero(S,N)-quintuple [9]helicene (SNQ9H) molecule with an azacorannulene core was synthesized, currently representing the highest hetero-helicene reported in the field of multiple [n]helicenes. X-ray crystallography indicated that SNQ9H includes not only a propeller-shaped conformer SNQ9H-1, but also an unforeseen quasi-propeller-shaped conformer SNQ9H-2. Different conformers were observed for the first time in multiple [n≥9]helicenes, likely owing to the doping of heteroatomic sulfurs in the helical skeletons. Remarkably, the ratio of SNQ9H-1 to SNQ9H-2 can be regulated in situ by the reaction temperature. Experimental studies on the photophysical and redox properties of SNQ9H and theoretical calculations clearly demonstrated that the electronic structures of SNQ9H depend on their molecular conformations. The strategy of introducing heteroatomic sulfurs into the helical skeleton may be useful in constructing various conformers of higher multiple [n]helicenes in the future.
Collapse
Affiliation(s)
- Yin-Fu Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Si-Wei Ying
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Song-Di Liao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Ling Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Jun-Jie Du
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Bin-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Han-Rui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Fang-Fang Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Han Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Shun-Liu Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
27
|
Gu Y, Qiu Z, Müllen K. Nanographenes and Graphene Nanoribbons as Multitalents of Present and Future Materials Science. J Am Chem Soc 2022; 144:11499-11524. [PMID: 35671225 PMCID: PMC9264366 DOI: 10.1021/jacs.2c02491] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.
Collapse
Affiliation(s)
- Yanwei Gu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Zijie Qiu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute
for Physical Chemistry , Johannes Gutenberg
University Mainz, Duesbergweg
10-14, 55128 Mainz, Germany
| |
Collapse
|
28
|
Gulevskaya AV, Tonkoglazova DI. Alkyne‐based syntheses of carbo‐ and heterohelicenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Zhang Q, Wu YF, Ying SW, Liao SD, Zhang L, Du JJ, Chen BW, Tian HR, Xie FF, Xu H, Deng SL, Xie SY, Zheng LS. Sulfur‐Doped Quintuple [9]helicene with Azacorannulene as Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qianyan Zhang
- Xiamen University College of Chemistry and Chemical Engineering Simin South Road 422, Xiamen, China 361005 Xiamen CHINA
| | - Yin-Fu Wu
- Xiamen University chemistry department CHINA
| | - Si-Wei Ying
- Xiamen University chemistry department CHINA
| | | | - Ling Zhang
- Xiamen University chemistry department CHINA
| | - Jun-Jie Du
- Xiamen University chemistry department CHINA
| | | | | | | | - Han Xu
- Xiamen University chemistry department CHINA
| | | | - Su-Yuan Xie
- Xiamen University chemistry department CHINA
| | | |
Collapse
|
30
|
Shi H, Xiong B, Chen Y, Lin C, Gu J, Zhu Y, Wang J. A fan-shaped synthetic chiral nanographene. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Balahoju SA, Maurya YK, Chmielewski PJ, Lis T, Kondratowicz M, Cybińska J, Stępień M. Helicity Modulation in NIR-Absorbing Porphyrin-Ryleneimides. Angew Chem Int Ed Engl 2022; 61:e202200781. [PMID: 35130373 PMCID: PMC9303407 DOI: 10.1002/anie.202200781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/17/2022]
Abstract
Peripheral substitution of a π-extended porphyrin with bulky groups produces a curved chromophore with four helical stereogenic units. The curvature and stereochemistry of such porphyrins can be controlled by varying the substituents, coordinated metal ions, and apical ligands. In particular, when the achiral saddle-shaped free bases are treated with large metal ions, i.e., CdII or HgII , the resulting complexes convert to chiral propeller-like configurations. X-ray diffraction analyses show that apical coordination of a water molecule is sufficient to induce a notable bowl-like distortion of the cadmium complex, which however retains its chiral structure. For phenyl- and tolyl-substituted derivatives, the conversion is thermodynamically controlled, whereas complexes bearing bulky 4-(tert-butyl)phenyl groups transform into their chiral forms upon heating. In the latter case, the chiral Hg porphyrin was converted into the corresponding free base and other metal complexes without any loss of configurational purity, ultimately providing access to stable, enantiopure porphyrin propellers.
Collapse
Affiliation(s)
| | - Yogesh Kumar Maurya
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | | | - Tadeusz Lis
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| | | | - Joanna Cybińska
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
- (PORT) Polski Ośrodek Rozwoju Technologiiul. Stabłowicka 14754-066WrocławPoland
| | - Marcin Stępień
- Wydział ChemiiUniwersytet Wrocławskiul. F. Joliot-Curie 1450-383WrocławPoland
| |
Collapse
|
32
|
Chen Y, Zhou R, Liu X, Yang C, Wang T, Shi F, Zhang L. π-Expanded triple [5]helicenes bearing dibenzocoronene monoimide subunits. Chem Commun (Camb) 2022; 58:4671-4674. [PMID: 35319555 DOI: 10.1039/d2cc00957a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel π-expanded triple [5]helicenes containing three dibenzocoronene monoimide subunits have been synthesized and characterized. The helicenes exhibit low-energy conformational interconversions, as supported by NMR spectra. The single-crystal X-ray analysis reveals a C1 conformation in the solid state. Furthermore, the helicenes exhibit ambipolar transport characteristics in thin film transistors.
Collapse
Affiliation(s)
- Yan Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Ruihu Zhou
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| | - Cao Yang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Tingting Wang
- AVIC Manufacturing Technology Institute Composite Technology Center, Beijing 101300, P. R. China
| | - Fenghui Shi
- AVIC Manufacturing Technology Institute Composite Technology Center, Beijing 101300, P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China.
| |
Collapse
|
33
|
Tan J, Zhang G, Ge C, Liu J, Zhou L, Liu C, Gao X, Narita A, Zou Y, Hu Y. Electron-Deficient Contorted Polycyclic Aromatic Hydrocarbon via One-Pot Annulative π-Extension of Perylene Diimide. Org Lett 2022; 24:2414-2419. [PMID: 35302773 DOI: 10.1021/acs.orglett.2c00690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The synthesis of a class of contorted electron-deficient polycyclic aromatic hydrocarbons (PAHs) has been achieved by a one-pot bay annulation of perylene diimide involving a mild Suzuki coupling and subsequent air-mediated, ambient-light-induced photocyclization. X-ray crystallography unambiguously confirmed the contorted PAH structure bearing four imide groups. The photophysical and electronic properties of these contorted PAHs were also analyzed, showing a high fluorescence quantum yield of 86% and moderate electron mobility of 0.017 cm2 V-1 s-1.
Collapse
Affiliation(s)
- Jingyun Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Guanghui Zhang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Congwu Ge
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Long Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Xike Gao
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
34
|
Fukamizo S, Ikeda H, Tsurumaki E, Toyota S. An Alternative Synthesis of Tribenzodecacyclenes and Experimental Barrier to Propeller Inversion. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Shun Fukamizo
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Hiroshi Ikeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
- Tokyo Metropolitan College of Industrial Technology, 1-10-40 Higashi-Oi, Shinagawa-ku, Tokyo 140-0011, Japan
| | - Eiji Tsurumaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2–12–1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan
| |
Collapse
|
35
|
Mahato B, Panda AN. Effects of Heterocyclic Ring Fusion and Chain Elongation on Chiroptical Properties of Polyaza[9]helicene: A Computational Study. J Phys Chem A 2022; 126:1412-1421. [PMID: 35192355 DOI: 10.1021/acs.jpca.2c00432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present work, the effect of lateral and helical extensions on the physical and chiroptical properties of azahelicenes is reported. Starting with the experimentally reported polyaza[9]helicene (9Ha), three derivatives, two with laterally fused electron-withdrawing rings and the third with larger helical length, are designed. For the excited-state properties such as UV-vis and CD spectra, performances of different DFT functionals are evaluated by comparing the energies and characters of the excited states against the ADC(2) results. CPL properties are calculated at DFT level. Among the three designed systems, pyrazine-based 9HaP shows an improved gCPL value compared to that for parent 9Ha. However, quinoxaline-based 9HaQ is found to be the worst CPL emitter with the lowest dissymmetry factor. The helically extended derivative, 11Ha, shows good CPL results, but gCPL remains smaller than that for the parent system. The CPL results are analyzed in terms of electric dipole transition moment (EDTM) and magnetic dipole transition moment (MDTM) vectors, and angles between these two vectors.
Collapse
Affiliation(s)
- Bishwanath Mahato
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aditya N Panda
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
36
|
Balahoju SA, Maurya YK, Chmielewski PJ, Lis T, Kondratowicz M, Cybińska J, Stępień M. Helicity Modulation in NIR‐Absorbing Porphyrin‐Ryleneimides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Yogesh Kumar Maurya
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Piotr J. Chmielewski
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Tadeusz Lis
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Mateusz Kondratowicz
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| | - Joanna Cybińska
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
- (PORT) Polski Ośrodek Rozwoju Technologii ul. Stabłowicka 147 54-066 Wrocław Poland
| | - Marcin Stępień
- Wydział Chemii Uniwersytet Wrocławski ul. F. Joliot-Curie 14 50-383 Wrocław Poland
| |
Collapse
|
37
|
Soni R, Soman SS. Metal free synthesis of Coumarin containing hetero[n]helicene like molecules with TICT and AIE propertie. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rina Soni
- The Maharaja Sayajirao University of Baroda Faculty of Science Chemistry Sayajigunj 390002 Vadodara INDIA
| | - Shubhangi S Soman
- The Maharaja Sayajirao University of Baroda Faculty of Science Chemistry INDIA
| |
Collapse
|
38
|
Honda R, Takasugi M, Hirabayashi K, Nishinaga T, Shimizu T, Sugiura K. Remote Steric Effect Propagation through Naphthalene Hydrogens and/or Molecular Skeleton: Structural Determination of Brominated Product of Dinaphtho[2,1‐b:1′,2′‐d]furan. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Risa Honda
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachi-Oji Tokyo 192-0397 Japan
| | - Mizuki Takasugi
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachi-Oji Tokyo 192-0397 Japan
| | - Kazunori Hirabayashi
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachi-Oji Tokyo 192-0397 Japan
| | - Tohru Nishinaga
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachi-Oji Tokyo 192-0397 Japan
| | - Toshio Shimizu
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachi-Oji Tokyo 192-0397 Japan
| | - Ken‐ichi Sugiura
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami-Osawa, Hachi-Oji Tokyo 192-0397 Japan
| |
Collapse
|
39
|
Kise K, Ooi S, Saito H, Yorimitsu H, Osuka A, Tanaka T. Five‐Fold Symmetric Pentaindolo‐ and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Koki Kise
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Shota Ooi
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hayate Saito
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Atsuhiro Osuka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Takayuki Tanaka
- Department of Chemistry Graduate School of Science Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
40
|
Wu YF, Zhang L, Zhang Q, Xie SY, Zheng LS. Multiple [ n]helicenes with various aromatic cores. Org Chem Front 2022. [DOI: 10.1039/d2qo00988a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Usually, multiple [n]helicene molecules have a characteristic aromatic core, such as benzene, naphthalene, pyrene, perylene, hexabenzocoronene, corannulene, or azacorannulene.
Collapse
Affiliation(s)
- Yin-Fu Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Ling Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
41
|
Oda S, Kawakami B, Yamasaki Y, Matsumoto R, Yoshioka M, Fukushima D, Nakatsuka S, Hatakeyama T. One-Shot Synthesis of Expanded Heterohelicene Exhibiting Narrowband Thermally Activated Delayed Fluorescence. J Am Chem Soc 2021; 144:106-112. [PMID: 34941256 DOI: 10.1021/jacs.1c11659] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An expanded heterohelicene consisting of three BN2-embedded [4]helicene subunits (V-DABNA-Mes) has been synthesized by one-shot triple borylation. The key to success is the excessive use of boron tribromide in an autoclave. Based on the multiple resonance effect of three boron and six nitrogen atoms, V-DABNA-Mes exhibited a narrowband sky-blue thermally activated delayed fluorescence with a full width at half-maximum of 16 nm. The resonating π-extension minimized the singlet-triplet energy gap and enabled rapid reverse intersystem crossing with a rate constant of 4.4 × 105 s-1. The solution-processed organic light-emitting diode device, employed as an emitter, exhibited a narrowband emission at 480 nm with a high external quantum efficiency of 22.9%.
Collapse
Affiliation(s)
- Susumu Oda
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Bungo Kawakami
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yuki Yamasaki
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryuji Matsumoto
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294, Japan
| | - Mayu Yoshioka
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294, Japan
| | - Daisuke Fukushima
- Advanced Material Development Laboratory, Sumitomo Chemical Co., Ltd., 6 Kitahara, Tsukuba, Ibaraki 300-3294, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
42
|
Krzeszewski M, Ito H, Itami K. Infinitene: A Helically Twisted Figure-Eight [12]Circulene Topoisomer. J Am Chem Soc 2021; 144:862-871. [PMID: 34910487 DOI: 10.1021/jacs.1c10807] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
New forms of molecular nanocarbon particularly looped polyarenes adopting various topologies contribute to the fundamental science and practical applications. Here we report the synthesis of an infinity-shaped polyarene, infinitene (1) (cyclo[c.c.c.c.c.c.e.e.e.e.e.e]dodecakisbenzene), comprising consecutively fused 12-benzene rings forming an enclosed loop with a strain energy of 60.2 kcal·mol-1. Infinitene (1) represents a topoisomer of still-hypothetical [12]circulene, and its scaffold can be formally visualized as the outcome of the "stitching" of two homochiral [6]helicene subunits by both their ends. The synthetic strategy encompasses transformation of a rationally designed dithiacyclophane to cyclophadiene through the Stevens rearrangement and pyrolysis of the corresponding S,S'-bis(oxide) followed by the photocyclization. The structure of 1 is a unique hybrid of helicene and circulene with a molecular formula of C48H24, which can be regarded as an isomer for kekulene, [6,6]carbon nanobelt ([6,6]CNB), and [12]cyclacene. Infinitene (1) is a bench-stable yellow solid with green fluorescence and soluble to common organic solvents. Its figure-eight molecular structure was unambiguously confirmed by X-ray crystallography. The scaffold of 1 is significantly compressed as manifested by a remarkably shortened distance (3.152-3.192 Å) between the centroids of two π-π stacked central benzene rings and the closest C···C distance of 2.920 Å. Fundamental photophysical properties of 1 were thoroughly elucidated by UV-vis absorption and fluorescence spectroscopic studies and density functional theory calculations. Its configurational stability enabled separation of the corresponding enantiomers (P,P) and (M,M) by a chiral HPLC. Circular dichroism (CD) and circularly polarized luminescence (CPL) measurements revealed that 1 has moderate |gCD| and |gCPL| values.
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
43
|
Tsurusaki A, Kamikawa K. Multiple Helicenes Featuring Synthetic Approaches and Molecular Structures. CHEM LETT 2021. [DOI: 10.1246/cl.210409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Akihiro Tsurusaki
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
44
|
Kise K, Ooi S, Saito H, Yorimitsu H, Osuka A, Tanaka T. Five-Fold Symmetric Pentaindolo- and Pentakis(benzoindolo)Corannulenes: Unique Structural Dynamics Derived from the Combination of Helical and Bowl Inversions. Angew Chem Int Ed Engl 2021; 61:e202112589. [PMID: 34738305 DOI: 10.1002/anie.202112589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 01/13/2023]
Abstract
Peripherally π-extended corannulenes bearing quintuple azahelicene units, 10 and 11, were prepared and their dynamic behaviors were studied experimentally and theoretically. The fused corannulenes were synthesized from sym-pentabromocorannulene in three steps. X-Ray diffraction analysis for 10 displayed a conformer possessing a P(M) bowl chirality and a PPMPM (PMPMM) helical chirality, which was found to be the most stable conformer(s). Variable-temperature NMR measurements of 10 and 11 revealed that their structural isomers can be interconvertible in solution, depending on the steric congestion around the helical scaffolds. Automated search for conformers in the equilibrium and transition states by Artificial Force Induced Reaction (AFIR) method revealed their interconversion networks, including bowl-inversion and helical-inversion. This analysis indicated that the co-existing corannulene and azahelicene moieties influence the conformational dynamics, which leads to mitigation of the activation energy barriers for isomerization.
Collapse
Affiliation(s)
- Koki Kise
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shota Ooi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hayate Saito
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
45
|
Artigas A, Hagebaum-Reignier D, Carissan Y, Coquerel Y. Visualizing electron delocalization in contorted polycyclic aromatic hydrocarbons. Chem Sci 2021; 12:13092-13100. [PMID: 34745540 PMCID: PMC8513938 DOI: 10.1039/d1sc03368a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
Abstract
Electron delocalization in contorted polycyclic aromatic hydrocarbon (PAH) molecules was examined through 3D isotropic magnetic shielding (IMS) contour maps built around the molecules using pseudo-van der Waals surfaces. The resulting maps of electron delocalization provided an intuitive, yet detailed and quantitative evaluation of the aromatic, non aromatic, and antiaromatic character of the local and global conjugated cyclic circuits distributed over the molecules. An attractive pictural feature of the 3D IMS contour maps is that they are reminiscent of the Clar π-sextet model of aromaticity. The difference in delocalization patterns between the two faces of the electron circuits in contorted PAHs was clearly visualized. For π-extended contorted PAHs, some splits of the π system resulted in recognizable patterns typical of smaller PAHs. The differences between the delocalization patterns of diastereomeric chiral PAHs could also be visualized. Mapping IMS on pseudo-van der Waals surfaces around contorted PAHs allowed visualization of their superimposed preferred circuits for electron delocalization and hence their local and global aromaticity patterns.
Collapse
Affiliation(s)
- Albert Artigas
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2 13397 Marseille France
| | | | - Yannick Carissan
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2 13397 Marseille France
| | - Yoann Coquerel
- Aix Marseille Université, CNRS, Centrale Marseille, ISM2 13397 Marseille France
| |
Collapse
|
46
|
Fan W, Matsuno T, Han Y, Wang X, Zhou Q, Isobe H, Wu J. Synthesis and Chiral Resolution of Twisted Carbon Nanobelts. J Am Chem Soc 2021; 143:15924-15929. [PMID: 34550688 DOI: 10.1021/jacs.1c08468] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Twisted carbon nanobelts could display persistent chirality, which is desirable for material applications, but their synthesis is very challenging. Herein, we report the successful synthesis and chiral resolution of such a kind of molecules (1-H and 1) with a figure-eight configuration. 1-H was synthesized first by macrocyclization through Suzuki coupling reaction followed by benzannulation via Bi(OTf)3-mediated cyclization reaction of vinyl ether. Oxidative dehydrogenation of 1-H gave the fully π-conjugated 1. Their twisted structures were confirmed by X-ray crystallographic analysis and calculations, and they can be resolved by chiral high-performance liquid chromatography. The isolated enantiomers showed persistent chiroptical properties according to the circular dichroism measurements, with moderate |gabs| values (0.0016 for 1-H and 0.005-0.007 for 1). Their photophysical properties were also briefly studied.
Collapse
Affiliation(s)
- Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Taisuke Matsuno
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yi Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xuhui Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qifeng Zhou
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Hiroyuki Isobe
- Department of Chemistry, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
47
|
Medel MA, Cruz CM, Miguel D, Blanco V, Morcillo SP, Campaña AG. Chiral Distorted Hexa-peri-hexabenzocoronenes Bearing a Nonagon-Embedded Carbohelicene. Angew Chem Int Ed Engl 2021; 60:22051-22056. [PMID: 34329498 PMCID: PMC8518755 DOI: 10.1002/anie.202109310] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 01/29/2023]
Abstract
A new family of chiral saddle-helix hybrid nanographenes is reported. The first hexa-peri-hexabenzocoronene (HBC) analogues bearing a nine-membered carbocycle are presented. Furthermore, for the first time, π-extended carbo[n]helicenes containing a nine-membered ring as part of the helical moiety have been synthesized. The combination of a [5]helicene moiety and a nonagon ring in a single chiral motif induces a tremendous distortion from planarity into the nanographenic structures compared to other saddle-helix hybrids such as heptagon- and octagon-containing π-extended carbo[5]helicenes. In fact, the interplanar angle of the two terminal rings reaches the largest angle (134.8°) of a carbohelicene reported to date, thus being by far the most twisted helicene yet prepared. Photophysical properties evaluation showed improved absorption dissymmetry factors (|gabs |=4.2×10-3 ) in the new family of nonagon-containing π-extended carbo[5]helicenes.
Collapse
Affiliation(s)
- Miguel A. Medel
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Carlos M. Cruz
- Department of ChemistryFaculty of ScienceUniversity of ZurichWinterthurerstrasse 1908057ZurichSwitzerland
| | - Delia Miguel
- Departamento de FisicoquímicaFacultad de Farmacia, UEQUniversidad de Granada18071GranadaSpain
| | - Victor Blanco
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Sara P. Morcillo
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| | - Araceli G. Campaña
- Departamento de Química OrgánicaUnidad de Excelencia de Química (UEQ)Facultad de CienciasUniversidad de Granada18071GranadaSpain
| |
Collapse
|
48
|
Medel MA, Cruz CM, Miguel D, Blanco V, Morcillo SP, Campaña AG. Chiral Distorted Hexa‐
peri
‐hexabenzocoronenes Bearing a Nonagon‐Embedded Carbohelicene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Miguel A. Medel
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Carlos M. Cruz
- Department of Chemistry Faculty of Science University of Zurich Winterthurerstrasse 190 8057 Zurich Switzerland
| | - Delia Miguel
- Departamento de Fisicoquímica Facultad de Farmacia, UEQ Universidad de Granada 18071 Granada Spain
| | - Victor Blanco
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Sara P. Morcillo
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| | - Araceli G. Campaña
- Departamento de Química Orgánica Unidad de Excelencia de Química (UEQ) Facultad de Ciencias Universidad de Granada 18071 Granada Spain
| |
Collapse
|
49
|
Ritts CB, Hoye TR. Sulfurane [S(IV)]-Mediated Fusion of Benzynes Leads to Helical Dibenzofurans. J Am Chem Soc 2021; 143:13501-13506. [PMID: 34424692 DOI: 10.1021/jacs.1c07187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Here we disclose a sulfurane-mediated method for the formation of dimeric dibenzofuran helicenes via the reaction between diaryl sulfoxides and hexadehydro-Diels-Alder (HDDA) derived benzynes. A variety of S-shaped and U-shaped helicenes were formed under thermal conditions. Both experimental and DFT studies support a sulfur(IV)-based coupling (aka ligand coupling) mechanism involving tetracarbo-ligated S(IV) intermediates undergoing reductive elimination to afford the helicene products. This process involves the de novo generation of five new rings in a single operation and constitutes a new method for the construction of topologically interesting, polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Casey B Ritts
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Thomas R Hoye
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
50
|
Huang S, Wen H, Tian Y, Wang P, Qin W, Yan H. Organocatalytic Enantioselective Construction of Chiral Azepine Skeleton Bearing Multiple‐Stereogenic Elements. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shengli Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Haojun Wen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Yuhong Tian
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Pengfei Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Wenling Qin
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| | - Hailong Yan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center School of Pharmaceutical Sciences Chongqing University Chongqing 401331 P. R. China
| |
Collapse
|