1
|
Ma Z, Feng Y, Yu Q, Zheng W. Gas-Controlled Self-Assembly of Metallacycle-Cored Supramolecular Star Polymer with Tunable Antibacterial Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404804. [PMID: 39040003 DOI: 10.1002/smll.202404804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Indexed: 07/24/2024]
Abstract
Herein, a three-armed amphiphilic metallacycle-cored star supramolecular polymer (Por-MOM-PDMAEMA) has been designed and synthesized via highly efficient post-assembly polymerization. This star polymer is further self-assembled into nanoparticles of different sizes depending upon the experimental conditions. The gas-controlled morphology transformation and tunable antibacterial activities of Por-MOM-PDMAEMAis systematically investigated and compared with metallacycle (MOM). The superior antibacterial activity of Por-MOM-PDMAEMA against multidrug-resistant P. aeruginosa implies that the presence of photodynamic photosensitizer (Por) and cationic polymer chain will significantly enhance antibactericidal activity, which is mainly attributed to the synergistic effect of photosensitizer and polymer chain linked in one metallacycle core. By leveraging the unique properties of metallacycle and their dynamic response to gaseous stimuli, the antibacterial properties of the Por-MOM-PDMAEMA can be finely tuned in response to gas triggers.
Collapse
Affiliation(s)
- Zhewen Ma
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yuanhao Feng
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Wei Zheng
- Interdisciplinary Materials Research Center, College of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
2
|
Feng Q, Ding R, Zhang M. Heterometallic [2]Catenane-Crosslinked Supramolecular Networks with Improved Antibacterial Activity. Chemistry 2024:e202403595. [PMID: 39443417 DOI: 10.1002/chem.202403595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
The construction of supramolecular networks with novel crosslinks is of great significance in expanding their chemical structures and exploring their advanced functions. Herein, we prepare a type of [2]catenane-cored supramolecular networks based on the crosslinking of polyethylene glycol (PEG) using a heterometallic [2]catenane unit. By adjusting the molecular weight of PEG, the solubility of the networks can be tuned and gels are formed using low molecular weight PEG. The introduction of heterometallic [2]catenane offers the networks good antibacterial properties owing to the synergistic antimicrobial activity of Pt(II) and Cu(I) ions in the [2]catenane. This study provides a simple and efficient strategy for constructing supramolecular networks with topological crosslinks as antibacterial materials, which will promote the structural design and biological applications of supramolecular networks.
Collapse
Affiliation(s)
- Qian Feng
- Rocket Force University of Engineering, Xi'an, 710025, China
| | - Rui Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Chang W, Song W, Zhang M, Yin P. Retrospective Analysis of Structure-Property Relationship of Emergent Metallo-Supramolecular Polymer Networks. Chempluschem 2024; 89:e202400270. [PMID: 38752655 DOI: 10.1002/cplu.202400270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Metallo-supramolecular polymer networks (MSPNs) are fabricated from the crosslinking of polymers by discrete supramolecular coordination complexes. Due to the availability of various coordination complexes, e. g., 2D macrocycles and 3D nanocages, the MSPNs have been recently developed with broadly tunable visco-elasticity and enriched functions inherited from the coordination complexes. The coordination complexes possess enriched topologies and unique structural relaxation dynamics, rendering them the capability to break the traditional tradeoffs of polymer systems for the design of materials with enhanced mechanical performance. The structure-property relationship studies are critical for the material-by-design of MSPNs, while the spatiotemporal investigations are desired for the exploration of dynamics information. The work summarizes recent studies on the unique ligand-exchange kinetics and the multi-level structural relaxation dynamics of MSPNs. The MSPNs' mechanical properties can be quantitatively correlated with the dynamics for understanding the structure-property relationship. This concept will not only serve to attract more researchers to engage in the study of the structure-activity relationship of MSPNs but also inspire innovative research findings pertaining to the application of MSPNs.
Collapse
Affiliation(s)
- Wei Chang
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Weihua Song
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Mingxin Zhang
- School of Marine Science and Engineering, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, 570228, P. R. China
| | - Panchao Yin
- State Key Laboratory of Luminescent Materials and Devices, South China Advanced Institute for Soft Matter Science and Technology, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
4
|
Li M, Zhu H, Adorinni S, Xue W, Heard A, Garcia AM, Kralj S, Nitschke JR, Marchesan S. Metal Ions Trigger the Gelation of Cysteine-Containing Peptide-Appended Coordination Cages. Angew Chem Int Ed Engl 2024; 63:e202406909. [PMID: 38701043 DOI: 10.1002/anie.202406909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
We report a series of coordination cages that incorporate peptide chains at their vertices, prepared through subcomponent self-assembly. Three distinct heterochiral tripeptide subcomponents were incorporated, each exhibiting an L-D-L stereoconfiguration. Through this approach, we prepared and characterized three tetrahedral metal-peptide cages that incorporate thiol and methylthio groups. The gelation of these cages was probed through the binding of additional metal ions, with the metal-peptide cages acting as junctions, owing to the presence of sulfur atoms on the peripheral peptides. Gels were obtained with cages bearing cysteine at the C-terminus. Our strategy for developing functional metal-coordinated supramolecular gels with a modular design may result in the development of materials useful for chemical separations or drug delivery.
Collapse
Affiliation(s)
- Meng Li
- Department of Environmental Science and Engineering, North China Electric Power University, 689 Huadian Road, Baoding, 071003, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Huangtianzhi Zhu
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Simone Adorinni
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Weichao Xue
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew Heard
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ana M Garcia
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department - Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Jonathan R Nitschke
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- INSTM, Unit of Trieste, 34127, Trieste, Italy
| |
Collapse
|
5
|
Zhu G, Zhang S, Lu G, Peng B, Lin C, Zhang L, Shi F, Zhang Q, Cheng M. ON-OFF Control of Marangoni Self-propulsion via A Supra-amphiphile Fuel and Switch. Angew Chem Int Ed Engl 2024; 63:e202405287. [PMID: 38712847 DOI: 10.1002/anie.202405287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
Marangoni self-propulsion refers to motion of liquid or solid driven by a surface tension gradient, and has applications in soft robots/devices, cargo delivery, self-assembly etc. However, two problems remain to be addressed for motion control (e.g., ON-OFF) with conventional surfactants as Marangoni fuel: (1) limited motion lifetime due to saturated interfacial adsorption of surfactants; (2) in- situ motion stop is difficult once Marangoni flows are triggered. Instead of covalent surfactants, supra-amphiphiles with hydrophilic and hydrophobic parts linked noncovalently, hold promise to solve these problems owing to its dynamic and reversible surface activity responsively. Here, we propose a new concept of 'supra-amphiphile fuel and switch' based on the facile synthesis of disodium-4-azobenzene-amino-1,3-benzenedisulfonate (DABS) linked by a Schiff base, which has amphiphilicity for self-propulsion, hydrolyzes timely to avoid saturated adsorption, and provides pH-responsive control over ON-OFF motion. The self-propulsion lifetime is extended by 50-fold with DABS and motion control is achieved. The mechanism is revealed with coupled interface chemistry involving two competitive processes of interfacial adsorption and hydrolysis of DABS based on both experiments and simulation. The concept of 'supra-amphiphile fuel and switch' provides an active solution to prolong and control Marangoni self-propulsive devices for the advance of intelligent material systems.
Collapse
Affiliation(s)
- Guiqiang Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Shu Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Guoxin Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Benwei Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Cuiling Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Liqun Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Qian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
6
|
Jansen-van Vuuren RD, Naficy S, Ramezani M, Cunningham M, Jessop P. CO 2-responsive gels. Chem Soc Rev 2023; 52:3470-3542. [PMID: 37128844 DOI: 10.1039/d2cs00053a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
CO2-responsive materials undergo a change in chemical or physical properties in response to the introduction or removal of CO2. The use of CO2 as a stimulus is advantageous as it is abundant, benign, inexpensive, and it does not accumulate in a system. Many CO2-responsive materials have already been explored including polymers, latexes, surfactants, and catalysts. As a sub-set of CO2-responsive polymers, the study of CO2-responsive gels (insoluble, cross-linked polymers) is a unique discipline due to the unique set of changes in the gels brought about by CO2 such as swelling or a transformed morphology. In the past 15 years, CO2-responsive gels and self-assembled gels have been investigated for a variety of emerging potential applications, reported in 90 peer-reviewed publications. The two most widely exploited properties include the control of flow (fluids) via CO2-triggered aggregation and their capacity for reversible CO2 absorption-desorption, leading to applications in Enhanced Oil Recovery (EOR) and CO2 sequestration, respectively. In this paper, we review the preparation, properties, and applications of these CO2-responsive gels, broadly classified by particle size as nanogels, microgels, aerogels, and macrogels. We have included a section on CO2-induced self-assembled gels (including poly(ionic liquid) gels).
Collapse
Affiliation(s)
- Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering, Centre for Excellence in Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, NSW 2006, Australia
| | - Maedeh Ramezani
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| | - Michael Cunningham
- Department of Engineering, Dupuis Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Philip Jessop
- Department of Chemistry, Chernoff Hall, Queen's University, Kingston, Ontario, K7K 2N1, Canada.
| |
Collapse
|
7
|
Wang Q, Wang XF, Sun WQ, Lin RL, Ye MF, Liu JX. Supramolecular Host-Guest Hydrogel Based on γ-Cyclodextrin and Carboxybenzyl Viologen Showing Reversible Photochromism and Photomodulable Fluorescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2479-2485. [PMID: 36583679 DOI: 10.1021/acsami.2c20153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Much effort has been devoted to the development of supramolecular hydrogels due to their broad applications and conveniently controllable properties. Here, we demonstrate a novel supramolecular host-guest hydrogel, which is constructed by the host γ-CD complexed with the guest 1-(4-carboxybenzyl)-4,4'-bipyridinium chloride (1+·Cl-) through the π···π interaction, hydrogen bonding, and host-guest interactions. The supramolecular hydrogel [1+@γ-CD]n exhibits reversible electron transfer photochromic behavior and photomodulable fluorescence. The excellent photochromic and fluorescence properties support the practical utility of the supramolecular hydrogel as a visual display and anti-counterfeiting material.
Collapse
Affiliation(s)
- Qin Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Xiao-Feng Wang
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Wen-Qi Sun
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Rui-Lian Lin
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| | - Ming-Fu Ye
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jing-Xin Liu
- College of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, China
| |
Collapse
|
8
|
Wang Z, Miao Y, Ou Q, Niu RX, Jiang Y, Zhang C. Full-Color-Tunable Nanohydrogels as High-Stability Intracellular Nanothermometers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55423-55430. [PMID: 36485011 DOI: 10.1021/acsami.2c18201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Full-color-tunable hydrogels with ultrahigh stability can be used in various fields, including intracellular temperature sensing. However, constructing full-color-tunable organic nanohydrogels with excellent biocompatibility and stability for intracellular temperature sensing remains a great challenge. Here, we report a full-color-tunable nanohydrogel with ultrahigh stability as an intracellular nanothermometer. Three types of temperature-sensitive polymers with red, green, and blue fluorescence were synthesized. Through easy mixing of these three polymers with regulation of the mass ratio, these polymers can be encoded to full-color-tunable fluorescent nanohydrogels, including nanohydrogels with white-light emission (NWLEs), with sizes of about 200 nm in aqueous media. Further study suggested that the as-obtained NWLEs exhibited good performance in intracellular temperature sensing because of their ultrahigh stability on their fluorescence properties and morphologies.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
- Technology Institute, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan Textile University, Wuhan430200, Hubei, China
| | - Yu Miao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Qiang Ou
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Ruo-Xin Niu
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
9
|
Li Z, Chen M, Chen Z, Zhu YL, Guo C, Wang H, Qin Y, Fang F, Wang D, Su C, He C, Yu X, Lu ZY, Li X. Non-equilibrium Nanoassemblies Constructed by Confined Coordination on a Polymer Chain. J Am Chem Soc 2022; 144:22651-22661. [PMID: 36411055 DOI: 10.1021/jacs.2c09726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Biological systems employ non-equilibrium self-assembly to create ordered nanoarchitectures with sophisticated functions. However, it is challenging to construct artificial non-equilibrium nanoassemblies due to lack of control over assembly dynamics and kinetics. Herein, we design a series of linear polymers with different side groups for further coordination-driven self-assembly based on shape-complementarity. Such a design introduces a main-chain confinement which effectively slows down the assembly process of side groups, thus allowing us to monitor the real-time evolution of lychee-like nanostructures. The function related to the non-equilibrium nature is further explored by performing photothermal conversion study. The ability to observe and capture non-equilibrium states in this supramolecular system will enhance our understanding of the thermodynamic and kinetic features as well as functions of living systems.
Collapse
Affiliation(s)
- Zhikai Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Min Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - You-Liang Zhu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Chenxing Guo
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yi Qin
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Fang Fang
- Instrumental Analysis Center, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chenliang Su
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China.,Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen, Guangdong 518055, China
| |
Collapse
|
10
|
Saha R, Sahoo J, Venkateswarulu M, De M, Mukherjee PS. Shifting the Triangle-Square Equilibrium of Self-Assembled Metallocycles by Guest Binding with Enhanced Photosensitization. Inorg Chem 2022; 61:17289-17298. [PMID: 36252183 DOI: 10.1021/acs.inorgchem.2c02920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Shifting a triangle-square equilibrium in one direction is an important problem in supramolecular self-assembly. Reaction of a benzothiadiazole-based diimidazole donor with a cis-Pt(II) acceptor yielded an equilibrium mixture of a triangle ([C18H24N10O6S1Pt1]3≡ PtMCT) and a square ([C18H24N10O6S1Pt1]4≡ PtMCS). We report here the shifting of such equilibrium toward a triangle using a guest (pyrene aldehyde, G1). While both benzothiadiazole and pyrene aldehyde can form reactive oxygen species (ROS) in organic solvents, their therapeutic use in water is restricted due to aqueous insolubility. The enhanced water solubility of the benzothiadiazole unit and G1 by macrocycle formation and host-guest complexation, respectively, enabled enhanced ROS generation by the host-guest complex (G1' ⊂ PtMCT) in water (G1' = hydrated form of G1). The guest-encapsulated metallacycle (G1' ⊂ PtMCT) has shown synergistic antibacterial activity compared to the mixture of macrocycles upon white-light irradiation due to enhanced ROS generation. The mechanism for such enhanced activity was established by measuring the oxidative stress and relative internalization of PtMCs and G1' ⊂ PtMCT.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mangili Venkateswarulu
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
11
|
Gao K, Feng Q, Zhang Z, Zhang R, Hou Y, Mu C, Li X, Zhang M. Emissive Metallacage‐Cored Polyurethanes with Self‐Healing and Shape Memory Properties. Angew Chem Int Ed Engl 2022; 61:e202209958. [DOI: 10.1002/anie.202209958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Gao
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zeyuan Zhang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Ruoqian Zhang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Chaoqun Mu
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
12
|
Gao K, Feng Q, Zhang Z, Zhang R, Hou Y, Mu C, Li X, Zhang M. Emissive Metallacage‐Cored Polyurethanes with Self‐Healing and Shape Memory Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kai Gao
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Qian Feng
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Zeyuan Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Ruoqian Zhang
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Yali Hou
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Chaoqun Mu
- Xian Jiaotong University: Xi'an Jiaotong University State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering CHINA
| | - Xiaopeng Li
- Shenzhen University College of Chemistry and Environmental Engineering CHINA
| | - Mingming Zhang
- Xi'an Jiaotong Univeristy School of Material and Science No. 28 Xianning West Road 710049 Xi'an CHINA
| |
Collapse
|
13
|
Wang L, Geng Z, Ho YYL, Zhou J, Judge N, Li Y, Wang W, Liu J, Wang Y. Block Co-PolyMOC Micelles and Structural Synergy as Composite Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30546-30556. [PMID: 35748507 DOI: 10.1021/acsami.2c06205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conventional micelles of amphiphilic block copolymers (BCPs) disassemble into individual polymer chains upon dilution to a critical concentration, which causes the premature release of the encapsulated drugs and reduces the drug's bioavailability. Here, by integrating the emerging metal-organic cage (MOC) materials with BCPs, we introduce a new type of composite micellar nanoparticles, block co-polyMOC micelles (or BCPMMs), that are self-assembled in essence yet remarkably stable against dilution. BCPMMs are fabricated via a stepwise assembly strategy that combines MOCs and BCPs in a well-defined, unimolecular core-shell structure. The synergistical interplay between the two components accounts for the particle stability: the MOC core holds BCPs firmly in place and the BCPs increase the MOC's bioavailability. When used as nanocarriers for anticancer drugs, BCPMMs showed an extended blood circulation, a favorable biodistribution, and eventually an improved treatment efficacy in vivo. Given the versatility in designing MOCs and BCPs, we envision that BCPMMs can serve as a modular platform for robust, multifunctional, and tunable nanomedicine.
Collapse
Affiliation(s)
- Lang Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Zhongmin Geng
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Qingdao Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Yannis Y L Ho
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Jiayu Zhou
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Nicola Judge
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Yafei Li
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 999077, China
- Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Jinyao Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yufeng Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| |
Collapse
|
14
|
Yang Z, Zhang N, Lei L, Yu C, Ding J, Li P, Chen J, Li M, Ling S, Zhuang X, Zhang S. Supramolecular Proton Conductors Self-Assembled by Organic Cages. JACS AU 2022; 2:819-826. [PMID: 35557762 PMCID: PMC9089675 DOI: 10.1021/jacsau.1c00556] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 06/15/2023]
Abstract
Proton conduction is vital for living systems to execute various physiological activities. The understanding of its mechanism is also essential for the development of state-of-the-art applications, including fuel-cell technology. We herein present a bottom-up strategy, that is, the self-assembly of Cage-1 and -2 with an identical chemical composition but distinct structural features to provide two different supramolecular conductors that are ideal for the mechanistic study. Cage-1 with a larger cavity size and more H-bonding anchors self-assembled into a crystalline phase with more proton hopping pathways formed by H-bonding networks, where the proton conduction proceeded via the Grotthuss mechanism. Small cavity-sized Cage-2 with less H-bonding anchors formed the crystalline phase with loose channels filled with discrete H-bonding clusters, therefore allowing for the translational diffusion of protons, that is, vehicle mechanism. As a result, the former exhibited a proton conductivity of 1.59 × 10-4 S/cm at 303 K under a relative humidity of 48%, approximately 200-fold higher compared to that of the latter. Ab initio molecular dynamics simulations revealed distinct H-bonding dynamics in Cage-1 and -2, which provided further insights into potential proton diffusion mechanisms. This work therefore provides valuable guidelines for the rational design and search of novel proton-conducting materials.
Collapse
Affiliation(s)
- Zhenyu Yang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ningjin Zhang
- Instrumental
Analysis Center, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200237, China
| | - Lei Lei
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Chunyang Yu
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Junjie Ding
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Pan Li
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jiaolong Chen
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ming Li
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Sanliang Ling
- Advanced
Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
| | - Xiaodong Zhuang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shaodong Zhang
- School
of Chemistry and Chemical Engineering, Shanghai
Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
15
|
Ma X, Yue J, Qiao B, Wang Y, Gao Y, Ren T, Tang J, Feng E, Li Z, Han X. Novel fluorescent self-assembling material with gel properties: ion recognition and energy transfer. Polym Chem 2022. [DOI: 10.1039/d2py00356b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel fabrication strategy for preparing fluorescent nanomaterials has been proposed based on supramolecular self-assembly complexes and energy transfer. Here a dual acylhydrazone-functionalized molecule (DAF) was designed and synthesized by...
Collapse
|
16
|
Liu Y, Shangguan L, Zhao B, Chen B, Shi B, Wang Y. Cross-Linked Supramolecular Polymer Networks Constructed by Pillar[5]arene-Based Host–Guest Recognition and Coordination/Oxidation of Catechol. Polym Chem 2022. [DOI: 10.1039/d2py00476c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, two cross-linked supramolecular polymers are prepared by pillar[5]arene-based molecular recognition and coordination/oxidation of catechol. In addition, two supramolecular glues are obtained at high concentrations of the cross-linked...
Collapse
|
17
|
Zhang Q, Chen F, Shen X, He T, Qiu H, Yin S, Stang PJ. Self-Healing Metallacycle-Cored Supramolecular Polymers Based on a Metal-Salen Complex Constructed by Orthogonal Metal Coordination and Host-Guest Interaction with Amino Acid Sensing. ACS Macro Lett 2021; 10:873-879. [PMID: 35549186 DOI: 10.1021/acsmacrolett.1c00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A platinum(II) metallacycle-cored supramolecular network based on a metal-salen complex was successfully constructed by two orthogonal noncovalent interactions (host-guest interactions and metal coordination interactions). The obtained metallo-supramolecular polymer could further form gels when the concentration of metallacycle 1 was 160.0 mM. This gel exhibited multiple stimuli-responsive gel-sol phase transitions under different stimuli, such as temperature, competitive guests, etc. Moreover, it exhibited good self-healing properties and could be used as a turn-off sensor for thiol-containing amino acids.
Collapse
Affiliation(s)
- Qian Zhang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Feng Chen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Xi Shen
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Tian He
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Huayu Qiu
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
- Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shouchun Yin
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
18
|
Zhu Y, Zheng W, Wang W, Yang HB. When polymerization meets coordination-driven self-assembly: metallo-supramolecular polymers based on supramolecular coordination complexes. Chem Soc Rev 2021; 50:7395-7417. [PMID: 34018496 DOI: 10.1039/d0cs00654h] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Polymers have greatly changed and are still changing the way we live ever since, and the construction of novel polymers as functional materials remains an attractive topic in polymer science and related areas. During the past few years, the marriage of discrete supramolecular coordination complexes (SCCs), including two-dimensional (2D) metallacycles and three-dimensional (3D) metallacages, and polymers gave rise to two novel types of metallo-supramolecular polymers, i.e., metallacycle/metallacage-cored star polymers (MSPs) and metallacycle/metallacage-crosslinked polymer networks (MPNs), which has attracted increasing attention and emerged as an exciting new research direction in polymer chemistry. Attributed to their well-defined and diverse topological architectures as well as the unique dynamic features of metallacycles/metallacages as cores or crosslinks, these novel polymers have shown extensive applications. In this review, aiming at providing a practical guide to this emerging area, the introduction of synthetic strategies towards MSPs and MPNs will be presented. In addition, their wide applications in areas such as functional materials, molecular sieving, drug delivery, bacterial killing and bioimaging are also discussed.
Collapse
Affiliation(s)
- Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200262, China.
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200262, China.
| | - Wei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200262, China.
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200262, China.
| |
Collapse
|
19
|
Cao X, Gao A, Hou JT, Yi T. Fluorescent supramolecular self-assembly gels and their application as sensors: A review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213792] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Ge J, Guo J, Yu X, Li Y, Ma Z. Structural Tunability on Naphthalimide-Based Dendrimer Gelators via Glaser Coupling Interaction with Tailored Gelation Solvent Polarity and Stimuli-Responsive Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2677-2682. [PMID: 33599502 DOI: 10.1021/acs.langmuir.0c03316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To date, most of the low-molecular-weight gels are found serendipitously, and modification on known gelator structures via organic synthesis is an efficient methodology to prepare gel series. However, a simple, direct, and rational modification method for a known gelator is still a challenge. Herein, we employ Glaser coupling reaction to synthesize a novel dendrimer gelator BisDEC with the (ALS2)2 structure, starting from terminal alkyne-based gelator DEC with the ALS2 structure. This structural change results in gels with distinct gelation solvents, mechanical properties, and stimuli-responsive abilities. The gelation abilities of DEC and BisDEC in nonpolar and polar solvents, respectively, have been examined and discussed by several experiments and Hansen constants. It is also shown that the BisDEC gel system shows intriguing self-healing, self-supporting, and grinding chromism properties.
Collapse
Affiliation(s)
- Junqi Ge
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Jiangbo Guo
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Xudong Yu
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Yajuan Li
- College of Science and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang 050080, China
| | - Zichuan Ma
- College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
21
|
Pu WF, Du DJ, Fan HC, Chen BW, Yuan CD, Varfolomeev MA. CO2-responsive preformed gel particles with interpenetrating networks for controlling CO2 breakthrough in tight reservoirs. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Wu GY, Liang C, Li H, Zhang X, Yao G, Zhu FF, Hu YX, Yin GQ, Zheng W, Lu Z. A multi-responsive supramolecular heparin-based biohybrid metallogel constructed by controlled self-assembly based on metal–ligand, host–guest and electrostatic interactions. Org Chem Front 2021. [DOI: 10.1039/d1qo00692d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new family of supramolecular heparin-based biohybrid metallogels with multiple stimuli-responsive behaviours was constructed through the controlled self-assembly based on three orthogonal interactions within a single system.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Hao Li
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Xianyi Zhang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Guanxin Yao
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| | - Fan-Fan Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, China
| | - Wei Zheng
- Department of Molecular and Macromolecular Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
23
|
Wu GY, Liang C, Hu YX, Wang XQ, Yin GQ, Lu Z. Hierarchical self-assembly of discrete bis-[2]pseudorotaxane metallacycle with bis-pillar[5]arene via host-guest interactions and their redox-responsive behaviors. RSC Adv 2020; 11:1187-1193. [PMID: 35423686 PMCID: PMC8693504 DOI: 10.1039/d0ra09920a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/20/2020] [Indexed: 11/21/2022] Open
Abstract
A discrete rhomboidal metallacycle R functionalized with bis-[2]pseudorotaxane of [Cu(phenanthroline)2]+ derivatives was successfully synthesized via coordination-driven self-assembly. Furthermore, the host-guest complexation of such a bis-[2]pseudorotaxane metallacycle with a bis-pillar[5]arene (bisP5) allowed for the formation of a new family of cross-linked supramolecular polymers R⊃(bisP5)2, which displayed interesting redox-responsive properties. By taking advantage of the substantial structural differences between the coordination geometries of [Cu(phenanthroline)2]+ and [Cu(phenanthroline)2]2+, the weight-average diffusion coefficients D of the supramolecular polymer were adjusted through changing the redox state of the Cu(i)/Cu(ii) complexes.
Collapse
Affiliation(s)
- Gui-Yuan Wu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Chao Liang
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| | - Yi-Xiong Hu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Xu-Qing Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Guang-Qiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663 N. Zhongshan Road Shanghai China
| | - Zhou Lu
- Anhui Province Key Laboratory of Optoelectronic Material Science and Technology, School of Physics and Electronic Information, Anhui Normal University Wuhu Anhui 241002 China
| |
Collapse
|
24
|
Li Y, Yuan X, Yu J, Fan Y, He T, Lu S, Li X, Qiu H, Yin S. Amphiphilic Rhomboidal Organoplatinum(II) Metallacycles with Encapsulated Doxorubicin for Synergistic Cancer Therapy. ACS APPLIED BIO MATERIALS 2020; 3:8061-8068. [PMID: 35019545 DOI: 10.1021/acsabm.0c01163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Synergistic therapy with nanocarriers is a promising strategy for effective cancer treatment. Here, we synthesized an amphiphilic rhomboidal metallacycle M, in which a glucose-modified pyridine ligand was used to improve water-solubility and an organoplatinum(II) receptor acted as a platinum-based anticancer agent. Moreover, because of the amphiphilic properties, M self-assembled into micelles or nanobelts at different concentrations, and a drug delivery system (DDS) was developed by encapsulating the anticancer drug doxorubicin (DOX) into the micelles. The morphology, cell uptake, cytotoxicity, internalization, and antitumor effect of the DDS were investigated. Under low intracellular pH conditions, the DDS disassembled to release the loaded DOX in situ. The designed DDS exhibited good biocompatibility, synergistic antitumor efficacy, and negligible adverse effects in a U87 tumor-bearing mice model.
Collapse
Affiliation(s)
- Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Xinchao Yuan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Jialin Yu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Yiqi Fan
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Tian He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China.,Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, P. R. China
| |
Collapse
|
25
|
Huang X, Zhang M, Ming J, Ning X, Bai S. High-Strength and High-Toughness Silk Fibroin Hydrogels: A Strategy Using Dynamic Host-Guest Interactions. ACS APPLIED BIO MATERIALS 2020; 3:7103-7112. [PMID: 35019370 DOI: 10.1021/acsabm.0c00933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Natural polymer-based hydrogels attract great attention because of their inherent biocompatibility and controllable biodegradability. However, the broad applications of these hydrogels require a combination of high mechanical strength, high toughness, fatigue resistance, as well as self-healing. The integration of this combination into one natural polymer-based hydrogel remains challenging. Here, a molecular design strategy was proposed to fabricate mechanically robust silk fibroin-based hydrogels using host-guest interactions. Silk fibroin molecules was chemically modified with cholesterol (Chol, guest) or β-cyclodextrin (β-CD, host), and host-guest interaction between Chol and β-CD moieties drove the supramolecular assemblies of hydrogels. The dissociation/reassociation behavior of host-guest complexation, serving as sacrificial bonds, endowed hydrogels with effective energy dissipation and rapid self-healing ability. The prepared silk fibroin-based hydrogels exhibited high mechanical strength, high toughness, and remarkable fatigue resistance, superior to conventional silk fibroin hydrogels. Moreover, due to reversible host-guest interactions, hydrogels achieved facile functional recovery after damage without any external stimuli. This design strategy provides an avenue to develop natural polymer-based materials with robust mechanical properties, thus broadening current hydrogel applications.
Collapse
Affiliation(s)
- Xiaowei Huang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Mengya Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jinfa Ming
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Xin Ning
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
26
|
Zheng W, Yang X, Wu G, Cheng L. Controlled Self‐Assembly of Metallacycle‐Bridged Gold Nanoparticles for Surface‐Enhanced Raman Scattering. Chemistry 2020; 26:11695-11700. [DOI: 10.1002/chem.202002248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Zheng
- Key Laboratory of Functional Molecular Solids Ministry of, Education of China Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xiao‐Lei Yang
- Key Laboratory of Functional Molecular Solids Ministry of, Education of China Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| | - Gui‐Yuan Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Lin Cheng
- Key Laboratory of Functional Molecular Solids Ministry of, Education of China Anhui Laboratory of Molecule-Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241000 P. R. China
| |
Collapse
|
27
|
Jiang S, Zheng W, Yang G, Zhu Y, Chen L, Zhou Q, Wang Y, Li Z, Yin G, Li X, Ding H, Chen G, Yang H. Construction of
Metallacycle‐Linked
Heteroarm Star Polymers
via
Orthogonal
Post‐Assembly
Polymerization and Their Intriguing
Self‐Assembly
into
Large‐Area
and Regular Nanocubes
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Shu‐Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Guang Yang
- Biomass Molecular Engineering Center, Anhui Agricultural University, Hefei Anhui 230036 China
| | - Yu Zhu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Li‐Jun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Qi‐Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Yu‐Xuan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Zhen Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | | | | | | | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University Shanghai 200433 China
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
28
|
Jeyakkumar P, Liang Y, Guo M, Lu S, Xu D, Li X, Guo B, He G, Chu D, Zhang M. Emissive Metallacycle‐Crosslinked Supramolecular Networks with Tunable Crosslinking Densities for Bacterial Imaging and Killing. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005950] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ponmani Jeyakkumar
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Yongping Liang
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 P. R. China
| | - Mengying Guo
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 P. R. China
| | - Shuai Lu
- Department of Chemistry University of South Florida Tampa FL 33620 USA
- College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaopeng Li
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Baolin Guo
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 P. R. China
| | - Gang He
- Frontier Institute of Science and Technology Xi'an Jiaotong University Xi'an 710054 P. R. China
| | - Dake Chu
- Department of Gastroenterology The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials Shaanxi International Research Center for Soft Matter School of Materials Science and Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
29
|
Jeyakkumar P, Liang Y, Guo M, Lu S, Xu D, Li X, Guo B, He G, Chu D, Zhang M. Emissive Metallacycle-Crosslinked Supramolecular Networks with Tunable Crosslinking Densities for Bacterial Imaging and Killing. Angew Chem Int Ed Engl 2020; 59:15199-15203. [PMID: 32424859 DOI: 10.1002/anie.202005950] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Indexed: 12/21/2022]
Abstract
The chemical structures and topologies of the crosslinks in supramolecular networks play a crucial role in their properties and functions. Herein, the preparation of a type of poly(N-isopropylacrylamide) (PNIPAAM)-based supramolecular networks crosslinked by emissive hexagonal metallacycles is presented. The topological connections in these networks greatly affect their properties, as evidenced by their differences in absorption, emission, lower critical solution temperature, and modulus along with the variation of crosslinking densities. The integration of PNIPAAM and metallacycles in the networks benefits them improved bioavailability, making them serve as reagents for bacterial imaging and killing. This study provides a strategy to prepare cavity-crosslinked polymer networks for antibacterial applications.
Collapse
Affiliation(s)
- Ponmani Jeyakkumar
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yongping Liang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Mengying Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Shuai Lu
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA.,College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Donghua Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710054, P. R. China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
30
|
Li ZW, Wang X, Wei LQ, Ivanović-Burmazović I, Liu GF. Subcomponent Self-Assembly of Covalent Metallacycles Templated by Catalytically Active Seven-Coordinate Transition Metal Centers. J Am Chem Soc 2020; 142:7283-7288. [PMID: 32243756 DOI: 10.1021/jacs.0c01035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coordination geometries of transition metals play vital roles in the self-assembly process of supramolecular coordination complexes. Herein, seven-coordinate 3d metal ions were applied as templates and catalytically active sites for subcomponent self-assembly that resulted in a new category of covalent metallacycles. Single-crystal structures showed that the sizes, configurations, and functionalization of covalent metallacycles could be tuned by the selection of rigid dihydrazide, transition metal ions, and prefunctionalized subcomponents, respectively. Moreover, metallacycles decorated with carboxylic groups could be employed as precursors to prepare aerogels through hierarchical self-assembly, which also exhibited high catalytic activity for cycloaddition of CO2 into cyclic carbonates.
Collapse
Affiliation(s)
- Zhi-Wei Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lian-Qiang Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ivana Ivanović-Burmazović
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Gao-Feng Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
31
|
Hu YX, Hao X, Xu L, Xie X, Xiong B, Hu Z, Sun H, Yin GQ, Li X, Peng H, Yang HB. Construction of Supramolecular Liquid-Crystalline Metallacycles for Holographic Storage of Colored Images. J Am Chem Soc 2020; 142:6285-6294. [PMID: 32160466 DOI: 10.1021/jacs.0c00698] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Design and construction of new functionalized supramolecular coordination complexes (SCCs) via coordination-driven self-assembly strategy is highly important in supramolecular chemistry and materials science. Herein, we present a family of well-defined metallacycles decorated with mesogenic forklike dendrons through the strategy of coordination-driven self-assembly. Due to the existence of mesogenic forklike dendrons, the obtained metallacycles displayed the smectic A liquid crystal phase at room temperature while their precursors exhibited the rectangular columnar liquid crystal phase. Interestingly, by taking advantage of the electrostatic interactions between the positively charged metallacycle and the negatively charged heparin, the doping of heparin induced a significant change of the liquid-crystalline behaviors of metallacycles. More importantly, the prepared liquid-crystalline metallacycles could be further applied for holographic storage of colored images. Notably, the rhomboidal metallacycle and hexagonal metallacycle gave rise to different holographic performances although they featured a similar liquid crystal phase behavior. Therefore, this research not only provides the first successful example of supramolecular liquid-crystalline metallacycles for holographic storage of colored images but also opens a new door for supramolecular liquid-crystalline metallacycles toward advanced optical applications.
Collapse
Affiliation(s)
| | - Xingtian Hao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | | | - Xiaolin Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Bijin Xiong
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | | | | | - Guang-Qiang Yin
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaopeng Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Haiyan Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | | |
Collapse
|
32
|
Li B, Zhang Y, Yan B, Xiao D, Zhou X, Dong J, Zhou Q. A self-healing supramolecular hydrogel with temperature-responsive fluorescence based on an AIE luminogen. RSC Adv 2020; 10:7118-7124. [PMID: 35493881 PMCID: PMC9049766 DOI: 10.1039/c9ra10092j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/29/2020] [Indexed: 11/22/2022] Open
Abstract
In this work, an AIE luminogen-based hydrogel with temperature-responsive fluorescence was designed and synthesized. The polymeric hydrogel consisted of a supramolecular network through coordination and ionic interactions. When the temperature was decreased, due to the motion restriction of the polyacrylic acid macromolecular segments and the enhancement in ionic interaction, the hydrogel exhibited a blue-shift in the fluorescence emission peak and increase in the fluorescence intensity, resulting in the visualization of fluorescence changes. The hydrogel network benefitted from non-covalent crosslinking and thus possessed self-healing properties at room temperature with good toughness and resiliency. Therefore, this fluorescent supramolecular hydrogel might be used as a temperature-responsive material. A supramolecular hydrogel was synthesized by using tetra(4-(pyridin-4-yl)phenyl)ethylene (TPPE) as AIE luminogen. The gel not only featured self-healing performance, but also exhibited the temperature-responsive fluorescence with thermochromism.![]()
Collapse
Affiliation(s)
- Botian Li
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Yichi Zhang
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Bo Yan
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Da Xiao
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Xue Zhou
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Junwei Dong
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| | - Qiong Zhou
- Department of Materials Science and Engineering
- China University of Petroleum-Beijing
- Beijing
- People's Republic of China
| |
Collapse
|
33
|
Wang Y, Yuan H, Li D, Xing C. CO2/NIR light dual-controlled nanoparticles for dsDNA unzipping. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
34
|
Hao X, Leng Z, Sun D, Peng F, Yasin A. Photo-regulated supramolecular star with a pillar[6]arene-coated metal–organic polyhedron (MOP) core. Chem Commun (Camb) 2020; 56:6676-6679. [DOI: 10.1039/d0cc00536c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We report a photo-regulated supramolecular star centered by a pillar[6]arene-coated metal–organic polyhedron (MOP) core.
Collapse
Affiliation(s)
- Xiang Hao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Zejian Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Dan Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Feng Peng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design
- Beijing Key Laboratory of Lignocellulosic Chemistry
- Beijing Forestry University
- Beijing 100083
- China
| | - Akram Yasin
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi 830011
- China
| |
Collapse
|
35
|
Wang Z, He X, Yong T, Miao Y, Zhang C, Zhong Tang B. Multicolor Tunable Polymeric Nanoparticle from the Tetraphenylethylene Cage for Temperature Sensing in Living Cells. J Am Chem Soc 2019; 142:512-519. [DOI: 10.1021/jacs.9b11544] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Zhen Wang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xuewen He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Tuying Yong
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Miao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chun Zhang
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Division of Life Science, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| |
Collapse
|
36
|
Yang G, Zheng W, Tao G, Wu L, Zhou QF, Kochovski Z, Ji T, Chen H, Li X, Lu Y, Ding HM, Yang HB, Chen G, Jiang M. Diversiform and Transformable Glyco-Nanostructures Constructed from Amphiphilic Supramolecular Metallocarbohydrates through Hierarchical Self-Assembly: The Balance between Metallacycles and Saccharides. ACS NANO 2019; 13:13474-13485. [PMID: 31651143 DOI: 10.1021/acsnano.9b07134] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During the past decade, self-assembly of saccharide-containing amphiphilic molecules toward bioinspired functional glycomaterials has attracted continuous attention due to their various applications in fundamental and practical areas. However, it still remains a great challenge to prepare hierarchical glycoassemblies with controllable and diversiform structures because of the complexity of saccharide structures and carbohydrate-carbohydrate interactions. Herein, through hierarchical self-assembly of modulated amphiphilic supramolecular metallocarbohydrates, we successfully prepared various well-defined glyco-nanostructures in aqueous solution, including vesicles, solid spheres, and opened vesicles depending on the molecular structures of metallocarbohydrates. More attractively, these glyco-nanostructures can further transform into other morphological structures in aqueous solutions such as worm-like micelles, tubules, and even tupanvirus-like vesicles (TVVs). It is worth mentioning that distinctive anisotropic structures including the opened vesicles (OVs) and TVVs were rarely reported in glycobased nano-objects. This intriguing diversity was mainly controlled by the subtle structural trade-off of the two major components of the amphiphiles, i.e., the saccharides and metallacycles. To further understand this precise structural control, molecular simulations provided deep physical insights on the morphology evolution and balancing of the contributions from saccharides and metallacycles. Moreover, the multivalency of glyco-nanostructures with different shapes and sizes was demonstrated by agglutination with a diversity of sugar-binding protein receptors such as the plant lectins Concanavalin A (ConA). This modular synthesis strategy provides access to systematic tuning of molecular structure and self-assembled architecture, which undoubtedly will broaden our horizons on the controllable fabrication of biomimetic glycomaterials such as biological membranes and supramolecular lectin inhibitors.
Collapse
Affiliation(s)
- Guang Yang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , Shanghai 200433 , PR China
- Biomass Molecular Engineering Center , Anhui Agricultural University , Hefei , Anhui 230036 , PR China
| | - Wei Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , PR China
| | - Guoqing Tao
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , Shanghai 200433 , PR China
| | - Libin Wu
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , Shanghai 200433 , PR China
| | - Qi-Feng Zhou
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , Shanghai 200433 , PR China
| | - Zdravko Kochovski
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , PR China
| | - Huaijun Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , Shanghai 200433 , PR China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , Tampa , Florida 33620 , United States
| | - Yan Lu
- Soft Matter and Functional Materials , Helmholtz-Zentrum Berlin für Materialien und Energie , 14109 Berlin , Germany
- Institute of Chemistry , University of Potsdam , 14467 Potsdam , Germany
| | - Hong-Ming Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology , Soochow University , Suzhou 215006 , PR China
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200062 , PR China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , Shanghai 200433 , PR China
| | - Ming Jiang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science , Fudan University , Shanghai 200433 , PR China
| |
Collapse
|
37
|
Zhang Q, Tang D, Zhang J, Ni R, Xu L, He T, Lin X, Li X, Qiu H, Yin S, Stang PJ. Self-Healing Heterometallic Supramolecular Polymers Constructed by Hierarchical Assembly of Triply Orthogonal Interactions with Tunable Photophysical Properties. J Am Chem Soc 2019; 141:17909-17917. [PMID: 31617714 DOI: 10.1021/jacs.9b09671] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Here, we present a method for the building of new bicyclic heterometallic cross-linked supramolecular polymers by hierarchical unification of three types of orthogonal noncovalent interactions, including platinum(II)-pyridine coordination-driven self-assembly, zinc-terpyridine complex, and host-guest interactions. The platinum-pyridine coordination provides the primary driving force to form discrete rhomboidal metallacycles. The assembly does not interfere with the zinc-terpyridine complexes, which link the discrete metallacycles into linear supramolecular polymers, and the conjugation length is extended upon the formation of the zinc-terpyridine complexes, which red-shifts the absorption and emission spectra. Finally, host-guest interactions via bis-ammonium salt binding to the benzo-21-crown-7 (B21C7) groups on the platinum acceptors afford the cross-linked supramolecular polymers. By continuous increase of the concentration of the supramolecular polymer to a relatively high level, supramolecular polymer gel is obtained, which exhibits self-healing properties and reversible gel-sol transitions stimulated by various external stimuli, including temperature, K+, and cyclen. Moreover, the photophysical properties of the supramolecular polymers could be effectively tuned by varying the substituents of the precursor ligands.
Collapse
Affiliation(s)
- Qian Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China.,Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| | - Danting Tang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China
| | - Jinjin Zhang
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China
| | - Ruidong Ni
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Luonan Xu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China
| | - Tian He
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China
| | - Xiongjie Lin
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China
| | - Xiaopeng Li
- Department of Chemistry , University of South Florida , 4202 East Fowler Avenue , Tampa , Florida 33620 , United States
| | - Huayu Qiu
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China
| | - Shouchun Yin
- College of Materials, Chemistry and Chemical Engineering , Hangzhou Normal University , Hangzhou 310036 , P.R. China
| | - Peter J Stang
- Department of Chemistry , University of Utah , 315 South 1400 East, Room 2020 , Salt Lake City , Utah 84112 , United States
| |
Collapse
|
38
|
Chen YY, Gong GF, Fan YQ, Zhou Q, Zhang QP, Yao H, Zhang YM, Wei TB, Lin Q. A novel AIE-based supramolecular polymer gel serves as an ultrasensitive detection and efficient separation material for multiple heavy metal ions. SOFT MATTER 2019; 15:6878-6884. [PMID: 31414697 DOI: 10.1039/c9sm01177c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, ultrasensitive stimuli-responsive materials have received extensive attention due to their high sensitivity and wide applications. Herein, we report a novel approach to design ultrasensitive responsive materials by rationally introducing the aggregation-induced emission (AIE) effect into supramolecular polymer gels. According to this approach, by rationally introducing self-assembly moieties and a fluorophore, the obtained gelator DNS can act as an AIEgen; it showed strong AIE after aggregating into the supramolecular polymer gel GDNS. More interestingly, because the aggregation of DNS led to amplification of the detective signal, the AIE-based supramolecular polymer gel GDNS could ultrasensitively detect the heavy metal ions Hg2+, Cu2+, and Fe3+ by a signal amplification mechanism; the lowest detection limits reached 10-11 M. In addition, the xerogel of GDNS could adsorb and separate Hg2+, Cu2+, and Fe3+ from aqueous solution with favourable adsorption properties, and the adsorption rates ranged from 94.70% to 99.37%. Furthermore, the gel GDNS could act as a convenient test kit for Hg2+, Cu2+, and Fe3+ as well as a smart fluorescent display material.
Collapse
Affiliation(s)
- Yan-Yan Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ji X, Chi X, Ahmed M, Long L, Sessler JL. Soft Materials Constructed Using Calix[4]pyrrole- and "Texas-Sized" Box-Based Anion Receptors. Acc Chem Res 2019; 52:1915-1927. [PMID: 31184471 DOI: 10.1021/acs.accounts.9b00187] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft materials have received considerable attention from supramolecular chemists and material scientists alike. This interest reflects the advantages provided by their soft, flexible nature and the convenience of the molecular self-assembly that underlies their preparation. Common soft supramolecular materials include polymeric gels, supramolecular polymers, nanoaggregates, and membranes. Polymeric gels are solidlike networks of cross-linked polymer chains. Supramolecular polymers contain repeat units connected through reversible non-covalent bonds. Nanoaggregates are formed as a result of hydrophobic interactions involving amphiphilic building blocks. Because of the presence of non-covalent interactions, supramolecular soft materials typically display stimuli-responsive or adaptive features. Various macrocyclic hosts, such as cyclodextrins, crown ethers, calixarenes, cucurbiturils, and pillararenes, and many classic non-covalent interactions have been harnessed to construct supramolecular soft materials. Only recently has anion binding been used as the underlying recognition motif. Anions are ubiquitous in the natural world. Their importance has inspired efforts to achieve good anion binding and to exploit anion recognition in a number of fields, including extraction, transport, sensing, and catalysis. Most of this effort has involved the use of stand-alone anion receptors. On the other hand, soft materials with anion recognition features could lead to new macromolecular systems of interest in the context of many application areas. In this Account, we summarize the latest efforts from our laboratory to prepare supramolecular soft materials, including polymeric gels, supramolecular polymers, and nanoaggregates, with bona fide anion recognition features. Two anion receptor systems, namely, calix[4]pyrroles (C4Ps) and a tetraimidazolium macrocycle known as the "Texas-sized" molecular box (TxSB), have been used for this purpose. To date, TxSB-based hydrogels have been utilized to capture anions from water and for coded information applications; C4P-based organic polymeric gels have been used to extract dianions from aqueous source phases and for the on-site detection of chloride anions. Polymers containing C4P and TxSB anion recognition subunits typically display responsive features and can be modified through application of appropriately chosen external stimuli. For instance, nanoaggregates may be formed as a result of the hydrophobic interactions of C4P- and TxSB-based amphiphiles. The resulting aggregates were found to mimic the structural evolution of organelles and could be used as effective anion and ion pair extractants. This Account summarizes progress to date while underscoring potential opportunities associated with combining anion recognition and soft materials chemistry. The hope is to stimulate further advances in broad areas, including polymer science, supramolecular chemistry, biology, materials research, and information storage.
Collapse
Affiliation(s)
- Xiaofan Ji
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Xiaodong Chi
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Mehroz Ahmed
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
| | - Lingliang Long
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jonathan L. Sessler
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712, United States
- Institute for Supramolecular and Catalytic Chemistry, Shanghai University, Shanghai 200444, China
| |
Collapse
|
40
|
Xiong R, Chen M, Cui X, Wang Q, Liu X, Geng B. Simultaneous and Reversible Triggering of the Phase Transfer and Luminescence Change of Amidine-Modified Carbon Dots by CO 2. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22851-22857. [PMID: 31198041 DOI: 10.1021/acsami.9b05421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The ability to reversibly manipulate the surface nature of luminescent nanoparticles upon external stimulation enables the development of advanced optical probes for biological sensing and data encoding. Herein, we report the synthesis of a new class of smart carbon dots (CDs) via surface modification of amine-enriched CDs with CO2-responsive groups of amidine. We present that alternative CO2 and N2 bubbling can not only lead to a reversible phase transfer of the CDs between an organic phase and an aqueous phase but also give rise to a corresponding reversible luminescence change between blue and cyan-green. We attribute these observations to changes in both the surface chemistry and the emission states of the CDs triggered by the alternative CO2/N2 introduction. We also find a similar luminescence change of the CDs upon alternative exposure to a humid vapor of CO2 and a mixture of NH3 and N2 at room temperature, allowing them to be used as a new class of optical materials for optical encoding.
Collapse
Affiliation(s)
- Rui Xiong
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Meiling Chen
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Xin Cui
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Qi Wang
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Xiaowang Liu
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| | - Baoyou Geng
- College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Centre for Nano Science and Technology , Anhui Normal University , Wuhu 241000 , P. R. China
| |
Collapse
|
41
|
Kieffer M, Garcia AM, Haynes CJE, Kralj S, Iglesias D, Nitschke JR, Marchesan S. Embedding and Positioning of Two Fe II4 L 4 Cages in Supramolecular Tripeptide Gels for Selective Chemical Segregation. Angew Chem Int Ed Engl 2019; 58:7982-7986. [PMID: 30921499 PMCID: PMC6563161 DOI: 10.1002/anie.201900429] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Indexed: 12/27/2022]
Abstract
An unreported d,l-tripeptide self-assembled into gels that embedded FeII4 L4 metal-organic cages to form materials that were characterized by TEM, EDX, Raman spectroscopy, rheometry, UV/Vis and NMR spectroscopy, and circular dichroism. The cage type and concentration modulated gel viscoelasticity, and thus the diffusion rate of molecular guests through the nanostructured matrix, as gauged by 19 F and 1 H NMR spectroscopy. When two different cages were added to spatially separated gel layers, the gel-cage composite material enabled the spatial segregation of a mixture of guests that diffused into the gel. Each cage selectively encapsulated its preferred guest during diffusion. We thus present a new strategy for using nested supramolecular interactions to enable the separation of small molecules.
Collapse
Affiliation(s)
- Marion Kieffer
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ana M. Garcia
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| | - Cally J. E. Haynes
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Slavko Kralj
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
- Materials Synthesis DepartmentJožef Stefan InstituteJamova 391000LjubljanaSlovenia
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| | | | - Silvia Marchesan
- Department of Chemical and Pharmaceutical SciencesUniversity of TriesteVia L. Giorgieri 134127TriesteItaly
| |
Collapse
|
42
|
ABA-type triblock copolymer micellar system with lower critical solution temperature-type sol-gel transition. J Colloid Interface Sci 2019; 545:220-230. [PMID: 30889413 DOI: 10.1016/j.jcis.2019.03.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 01/17/2023]
Abstract
A temperature sensitive sol-gel transition induced by the self-assembly of amphiphilic copolymers and its application in industry have been the objects of increasing study. We demonstrate here a two-step, reversible addition-fragmentation chain transfer (RAFT) polymerization of an ABA-type copolymer consisting of poly(N,N-dimethylacrylamide)-b-poly(diacetone acrylamide)-b-poly(N,N-dimethylacrylamide) (PDMAA-b-PDAAM-b-PDMAA). This copolymer can be easily dispersed in water, and this dispersion is critical for its lower critical solution temperature (LCST)-type sol-gel transition, which was monitored using dynamic light scattering (DLS), transmission electron microscopy (TEM), and rheology analysis, in addition to temperature-dependent 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). Results revealed an abnormal sphere-to-worm micellar transition of this ABA copolymer at the LCST point, which could be affected by the length of the PDAAM block (B-block), the length as well as the distribution of the PDMAA block (A-block), and the concentration of the copolymer dispersion. Thus, copolymer dispersion could be feasibly used for drug loading at a low temperature, which could then be transformed into a gel at an elevated temperature. The loading and controllable release of the model drug of paracetamol into and out of a copolymer gel was further determined. The sustained release behavior was also studied using the Rigter-Peppas model.
Collapse
|
43
|
Wang Y, Yu X, Li Y, Zhang Y, Geng L, Shen F, Ren J. Hydrogelation Landscape Engineering and a Novel Strategy To Design Radically Induced Healable and Stimuli-Responsive Hydrogels. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19605-19612. [PMID: 31062584 DOI: 10.1021/acsami.9b02592] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Herein, we report the versatile ways to prepare both low-molecular weight hydrogels and polymeric hydrogels based on various types of supramolecular interactions, starting from a simple amphiphilic terpyridine-based molecule TPYA. Notably, we report that stable terpyridine-based radicals can be generated by light or heat irradiation in polymeric hydrogels based on hydrogen bonding interactions between -COOH of PAA and the terpyridine motif of TPYA for the first time. The generation of radicals is confirmed by EPR and UV-vis experiments, and the process is accompanied by significant color changes from white to dark purple. The stable radical hydrogels prepared by the supramolecular strategy are self-healing, stretchable, and self-supporting and can be molded into different geometrical shapes. It is deduced that the generation of terpyridine-based radicals enhances the intermolecular hydrogen bonding and π-π interaction of molecules in a hydrogel matrix, which is responsible for the self-healing ability. Finally, we also show that the radical gels can selectively respond to ammonia and stretch with reversible color changes based on the reversible hydrogen-bonding interaction.
Collapse
Affiliation(s)
- Yanqiu Wang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Xudong Yu
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Yajuan Li
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Yajun Zhang
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Lijun Geng
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Fengjuan Shen
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| | - Jujie Ren
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering , Hebei University of Science and Technology , Yuhua Road 70 , Shijiazhuang 050080 , PR China
| |
Collapse
|
44
|
Kieffer M, Garcia AM, Haynes CJE, Kralj S, Iglesias D, Nitschke JR, Marchesan S. Embedding and Positioning of Two Fe
II
4
L
4
Cages in Supramolecular Tripeptide Gels for Selective Chemical Segregation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Marion Kieffer
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Ana M. Garcia
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Cally J. E. Haynes
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Slavko Kralj
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
- Materials Synthesis Department Jožef Stefan Institute Jamova 39 1000 Ljubljana Slovenia
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| | - Jonathan R. Nitschke
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences University of Trieste Via L. Giorgieri 1 34127 Trieste Italy
| |
Collapse
|
45
|
Yang X, Mao W, Liu Y, Li L, Ma D. Supramolecular Vesicles Based on Water‐Soluble 2,6‐Helic[6]arene: High Affinity Binding, Stimuli Responsiveness and Delivery of Doxorubicin to Cancer Cells. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Xuan Yang
- Department of ChemistryFudan University, 220 Handan Road Shanghai 200433 China
| | - Weipeng Mao
- Department of ChemistryFudan University, 220 Handan Road Shanghai 200433 China
| | - Yamin Liu
- Department of ChemistryFudan University, 220 Handan Road Shanghai 200433 China
| | - Libai Li
- Department of ChemistryFudan University, 220 Handan Road Shanghai 200433 China
| | - Da Ma
- Department of ChemistryFudan University, 220 Handan Road Shanghai 200433 China
| |
Collapse
|
46
|
Sun Y, Chen C, Stang PJ. Soft Materials with Diverse Suprastructures via the Self-Assembly of Metal-Organic Complexes. Acc Chem Res 2019; 52:802-817. [PMID: 30794371 DOI: 10.1021/acs.accounts.8b00663] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inspired by assemblies in the natural world, researchers have prepared diverse suprastructures with distinct spatial arrangements by artificial self-assembly, including micelles, vesicles, ribbons, films, fibers, and tubes. The field of assembly is undergoing a transition from single-component to multicomponent assembly and single-step to multistep processing. Control over the size, shape, and composition of these building blocks has enabled the formation of suprastructures with substantial structural diversity. More importantly, harnessing noncovalent interactions to create suprastructures in a controlled manner will lead to a better understanding of the formation of complex self-organized patterns. However, for the construction of multiscale self-assemblies with controllable shapes and functions, the selection of a suitable protocol remains challenging. Coordination-driven self-assembly provides a bottom-up approach to construct various metal-organic complexes (MOCs), which could be further used as building blocks with controllable shapes and sizes. Despite the tremendous progress made in the design of MOC-based supramolecular materials, most of these MOCs have dimensions of only several nanometers, and investigations of these structures rely on the characterization of their crystal structure. However, most of the functional suprastructures in living organisms have dimensions ranging from microns to centimeters and have the form of soft materials. Thus, obtaining MOC-based highly ordered materials of larger size remains a challenge. This Account focuses on our recent advances in the construction of soft suprastructure materials with MOCs. A series of functionalized MOCs was first constructed through coordination-driven self-assembly. Then, further self-assembly of the as-prepared MOCs gave rise to the formation of higher-order structures. By changing the functional groups in the acceptors and donors in the MOCs, different suprastructures, including nanospheres, nanodiamonds, nanorods, nanofibers, membranes, films, and gels, were prepared. These studies suggest that using MOCs as building blocks is a highly efficient strategy to achieve complex architectures and functional materials for the development of desired MOC-based soft materials with high precision and fidelity.
Collapse
Affiliation(s)
- Yan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Chongyi Chen
- Ningbo Key Laboratory of Specialty Polymers, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
47
|
Ai Y, Li Y, Fu HLK, Chan AKW, Yam VWW. Aggregation and Tunable Color Emission Behaviors of l-Glutamine-Derived Platinum(II) Bipyridine Complexes by Hydrogen-Bonding, π-π Stacking and Metal-Metal Interactions. Chemistry 2019; 25:5251-5258. [PMID: 30680815 DOI: 10.1002/chem.201805901] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Indexed: 12/13/2022]
Abstract
An l-glutamine-derived functional group was introduced to the bis(arylalkynyl)platinum(II) bipyridine complexes 1-4. The emission could be switched between the 3 MLCT excited state and the triplet excimeric state through solvent or temperature changes, which is attributed to the formation and disruption of hydrogen-bonding, π-π stacking, and metal-metal interactions. Different architectures with various morphologies, such as honeycomb nanostructures and nanospheres, were formed upon solvent variations, and these changes were accompanied by 1 H NMR and distinct emission changes. Additionally, yellow and red emissive metallogels were formed at room temperature due to the different aggregation behaviors introduced by the substituent groups on bipyridine. The thermoresponsive metallogel showed emission behavior with tunable colors by controlling the temperature. The negative Gibbs free-energy change (ΔG) and the large association constant for excimer formation have suggested that the molecules undergo aggregation through hydrogen-bonding, π-π, and metal-metal interactions, resulting in triplet excimeric emission.
Collapse
Affiliation(s)
- Yeye Ai
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yongguang Li
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Heidi Li-Ki Fu
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Vivian Wing-Wah Yam
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.,Institute of Molecular Functional Materials [Areas of Excellence Scheme, University Grants Committee (Hong Kong)] and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong
| |
Collapse
|
48
|
Geng L, Yu X, Li Y, Wang Y, Wu Y, Ren J, Xue F, Yi T. Instant hydrogel formation of terpyridine-based complexes triggered by DNA via non-covalent interaction. NANOSCALE 2019; 11:4044-4052. [PMID: 30768104 DOI: 10.1039/c8nr08532c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biomolecule-based hydrogels have potential use in a wide range of applications such as controlled drug release, tissue engineering, and biofabrication. Herein, driven by specific interactions between ds-DNA (double-stranded DNA) and Zn2+ based metal-complexes, we report that the use of DNA as cross-linkers can enhance interactions between self-assembling Zn2+ complexes containing terpyridine and sugar groups in the generation of bioinspired hydrogels from solutions or suspensions. The gelation process is fast and straightforward without tedious steps and happens at room temperature. Such a hydrogelation process of different Zn2+ complexes endows the visualized and selective DNA analogue discrimination. Several experiments suggest that the strong intercalation binding of Zn2+ complexes with ds-DNA results in the unzipping of ds-DNA into ss-DNA (single-stranded DNA), which further behave as linkers to enhance the intermolecular interactions of self-assembling Zn2+ complex molecules via coordination interactions. This work demonstrates an efficient and universal strategy to prepare hydrogels based on biomolecular recognition. Moreover, the DNA responsive behaviors of Zn2+ complexes are further compared with that of solutions and cells.
Collapse
Affiliation(s)
- Lijun Geng
- College of Science, and Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Bhattacharyya S, Chowdhury A, Saha R, Mukherjee PS. Multifunctional Self-Assembled Macrocycles with Enhanced Emission and Reversible Photochromic Behavior. Inorg Chem 2019; 58:3968-3981. [DOI: 10.1021/acs.inorgchem.9b00039] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Soumalya Bhattacharyya
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Aniket Chowdhury
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
50
|
Qin Y, Zhang Y, Yin G, Wang Y, Zhang C, Chen L, Tan H, Li X, Xu L, Yang H. Construction of Highly Emissive Pt(II) Metallacycles upon Irradiation. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201800577] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Yi Qin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal University, 3663 North Zhongshan Road Shanghai 200062 China
| | - Ying Zhang
- College of ChemistryBeijing Normal University Beijing 100875 China
| | - Guangqiang Yin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal University, 3663 North Zhongshan Road Shanghai 200062 China
| | - Yuxuan Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal University, 3663 North Zhongshan Road Shanghai 200062 China
| | - Changwei Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal University, 3663 North Zhongshan Road Shanghai 200062 China
| | - Lijun Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal University, 3663 North Zhongshan Road Shanghai 200062 China
| | - Hongwei Tan
- College of ChemistryBeijing Normal University Beijing 100875 China
| | - Xiaopeng Li
- Department of ChemistryUniversity of South Florida Tampa, Florida 33620 United States
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal University, 3663 North Zhongshan Road Shanghai 200062 China
| | - Haibo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular EngineeringEast China Normal University, 3663 North Zhongshan Road Shanghai 200062 China
| |
Collapse
|