1
|
Cheng P, Pu K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem Soc Rev 2024; 53:10171-10188. [PMID: 39229642 DOI: 10.1039/d4cs00335g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Optical imaging is an indispensable tool for non-invasive visualization of biomolecules in living organisms, thereby offering a sensitive approach for disease diagnosis and image-guided disease treatment. Single-lock activatable optical probes (SOPs) that specifically switch on optical signals in the presence of biomarkers-of-interest have shown both higher detection sensitivity and imaging quality as compared to conventional "always-on" optical probes. However, such SOPs can still show "false-positive" results in disease diagnosis due to non-specific biomarker expression in healthy tissues. By contrast, multi-lock activatable optical probes (MOPs) that simultaneously detect multiple biomarkers-of-interest could improve detection specificity towards certain biomolecular events or pathological conditions. In this Review, we discuss the recent advancements of enzyme-responsive MOPs, with a focus on their biomedical applications. The higher detection specificity of MOPs could in turn enhance disease diagnosis accuracy and improve treatment efficacy in image-guided disease therapy with minimal toxicity in the surrounding healthy tissues. Finally, we discuss the current challenges and suggest future applications of MOPs.
Collapse
Affiliation(s)
- Penghui Cheng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore 636921, Singapore
| |
Collapse
|
2
|
Khan TA, Stoldt S, Bossi ML, Belov VN, Hell SW. β-Galactosidase- and Photo-Activatable Fluorescent Probes for Protein Labeling and Super-Resolution STED Microscopy in Living Cells. Molecules 2024; 29:3596. [PMID: 39125001 PMCID: PMC11314211 DOI: 10.3390/molecules29153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
We report on the synthesis of two fluorescent probes which can be activated by β-Galactosidase (β-Gal) enzymes and/or light. The probes contained 2-nitro-4-oxybenzyl and 3-nitro-4-oxybenzyl fragments, with β-Gal residues linked to C-4. We performed the enzymatic and photoactivation of the probes in a cuvette and compared them, prior to the labeling of Vimentin-Halo fusion protein in live cells with overexpressed β-galactosidase. The dye fluorescence afforded the observation of enzyme activity by means of confocal and super-resolution optical microscopy based on stimulated emission depletion (STED). The tracing of enzymatic activity with the retention of activated fluorescent products inside cells was combined with super-resolution imaging as a tool for use in biomedicine and life science.
Collapse
Affiliation(s)
- Taukeer A. Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Stefan Stoldt
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Mariano L. Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120 Heidelberg, Germany;
| | - Vladimir N. Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
| | - Stefan W. Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077 Göttingen, Germany (V.N.B.)
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstrasse 29, 69120 Heidelberg, Germany;
| |
Collapse
|
3
|
Huo W, Takayama K, Miki K, Nogita K, Shao S, Suzuki A, Morimoto T, Mu H, Ohe K. AIE-ESIPT Photoluminescent Probe Based on 3-(3-Hydroxypyridin-2-yl)isoquinolin-4-ol for the Detection of Intracellular Hydrogen Peroxide. Chemistry 2024; 30:e202401451. [PMID: 38803241 DOI: 10.1002/chem.202401451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Excited-state intramolecular proton transfer (ESIPT) molecules, which feature large Stokes shifts to avoid self-absorption, play an essential role in photoluminescent bioimaging probes. Herein, we report the development of an ESIPT molecule 3-(3-hydroxypyridin-2-yl)isoquinolin-4-ol (PiQ). PiQ not only undergoes a distinct ESIPT process unlike the symmetrical 2,2'-bipyridyl-3,3'-diol but also exhibits aggregation-induced emission (AIE) characteristics. PiQ self-assembles into aggregates with an average size of 241.0±51.9 nm in aqueous solutions, leading to significantly enhanced photoluminescence. On the basis of the ESIPT and AIE characteristics of PiQ, the latter is functionalized with a hydrogen peroxide-responsive 4-pinacoratoborylbenzyl group (B) and a carboxylesterase-responsive acetyl group (A) to produce a photoluminescent probe B-PiQ-A. The potential of PiQ for applications in bioimaging and chemical sensing is underscored by its efficient detection of both endogenous and exogenous hydrogen peroxide in living cells.
Collapse
Affiliation(s)
- Wenting Huo
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kohei Takayama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kohei Nogita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Shuai Shao
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Ayako Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takashi Morimoto
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Huiying Mu
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Li JM, Liu YZ, Lv XF, Zhou DH, Zhang H, Chen YJ, Li K. Construction of a novel aminofluorene-based ratiometric near-infrared fluorescence probe for detecting carboxylesterase activity in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3641-3645. [PMID: 38812419 DOI: 10.1039/d4ay00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Herein, we constructed a novel aminofluorene-based fluorescence probe (FEN-CE) for the detection of carboxylesterase (CE) in living cells by a ratiometric near-infrared (NIR) fluorescence signal. FEN-CE with NIR emission (650 nm) could be hydrolyzed specifically by CE and transformed to FENH with the release of the self-immolative group, which exhibited a red-shifted emission peak of 680 nm. In addition, FEN-CE showed high selectivity for CE and was successfully used in the detection of CE activity in living cells through its ratiometric NIR fluorescence signals.
Collapse
Affiliation(s)
- Jun-Mei Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yan-Zhao Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Xiao-Fang Lv
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Ding-Heng Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Yu-Jin Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29, Wangjiang Road, Chengdu 610064, P. R. China.
| |
Collapse
|
5
|
Steves MA, He C, Xu K. Single-Molecule Spectroscopy and Super-Resolution Mapping of Physicochemical Parameters in Living Cells. Annu Rev Phys Chem 2024; 75:163-183. [PMID: 38360526 DOI: 10.1146/annurev-physchem-070623-034225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
By superlocalizing the positions of millions of single molecules over many camera frames, a class of super-resolution fluorescence microscopy methods known as single-molecule localization microscopy (SMLM) has revolutionized how we understand subcellular structures over the past decade. In this review, we highlight emerging studies that transcend the outstanding structural (shape) information offered by SMLM to extract and map physicochemical parameters in living mammalian cells at single-molecule and super-resolution levels. By encoding/decoding high-dimensional information-such as emission and excitation spectra, motion, polarization, fluorescence lifetime, and beyond-for every molecule, and mass accumulating these measurements for millions of molecules, such multidimensional and multifunctional super-resolution approaches open new windows into intracellular architectures and dynamics, as well as their underlying biophysical rules, far beyond the diffraction limit.
Collapse
Affiliation(s)
- Megan A Steves
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Changdong He
- Department of Chemistry, University of California, Berkeley, California, USA;
| | - Ke Xu
- Department of Chemistry, University of California, Berkeley, California, USA;
| |
Collapse
|
6
|
Jiao X, Wang Y, Zhang J, Wang X. Combination of two-photon fluorescent probes for carboxylesterase and ONOO - to visualize the transformation of nonalcoholic fatty liver to nonalcoholic steatohepatitis in liver orthotopic imaging. Talanta 2024; 270:125521. [PMID: 38091750 DOI: 10.1016/j.talanta.2023.125521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024]
Abstract
As the most common cause of liver diseases, nonalcoholic fatty liver disease (NAFLD) can be classified into nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH). While NAFL is generally benign, the transition from NAFL to NASH is a cardinal feature of the non-benign liver disease that leads to cirrhosis and cancer, which indicates that tracking the transformation of NAFL to NASH timely is significant for precision management of liver diseases. Therefore, two fluorescent probes (CNFCl and DRNO) have been developed to visualize this pathological event. α-Fluorochloroacetamide and α-ketoamide was employed as the recognition site for carboxylesterase (CE) in CNFCl and peroxynitrite (ONOO-) in DRNO, respectively. CNFCl (λem = 445 nm) and DRNO (λem = 560 nm) showed high specificity and sensitivity towards CE and ONOO- respectively. By incubating with CE/ONOO- for 0.5 h respectively, both the emission intensity of CNFCl (linear range: 0-0.2 U/mL) and DRNO (linear range: 0-17.5 μM) displayed significant enhancement. As a result, the detection limit of CNFCl and DRNO for CE and ONOO- was calculated as 4.2 mU/L and 0.05 μM respectively. More importantly, the emission spectra of CNFCl and DRNO in the presence of CE and ONOO- respectively were cross-talk free under the two-photon excitation of 720 nm. This greatly facilitated the simultaneous detection of CE and ONOO- at distinctive channel, thus ensuring the high fidelity of the detection. These two probes were combined to image the fluctuation of CE and ONOO- during the conversion of NAFL to NASH in vitro and in vivo. It was found that while CE displayed a tendency to rise and then reduce during the transition from NAFL to NASH, ONOO- increased continuously, confirming that the combined imaging by CNFCl and DRNO might visualize the transformation of NAFL to NASH. The results provide robust visual tool to decipher the relationship between the stage of NAFLD and the level of CE/ONOO-. We anticipate this study may open new avenues to distinguish NASH from NAFL, which may further promote the study of intracellular biological activities of CE and the development of NAFLD diagnostic methods.
Collapse
Affiliation(s)
- Xiaoyun Jiao
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Yucheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China
| | - Jian Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| | - Xu Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
7
|
Li K, Yang M. Activatable organic probes for in situ imaging of biomolecules. Chem Asian J 2024; 19:e202301037. [PMID: 38116891 DOI: 10.1002/asia.202301037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
Biomolecules are fundamental for various chemical and biological processes of living organisms. High-resolution in situ imaging of the dynamics and local distribution of biomolecules may facilitate better interpretation of diverse complex cell events in the biomedicine field. In different advanced imaging tools, fluorescence imaging-based activatable organic probes can be noninvasively and effortlessly internalized into cells and can be easily modified, which is essential for the in situ imaging of targets in living organisms. We here briefly summarize the existing general design strategies of activatable organic probes for retaining the fluorescence signal inside cells. We particularly describe the bioapplication of these probes for the in situ bioimaging. This review is expected to promote the development of new molecular tools for extending the application of these in situ imaging strategies to other biomolecules.
Collapse
Affiliation(s)
- Ke Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, China
| | - Minghui Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, China
| |
Collapse
|
8
|
Huang Y, Cao X, Deng Y, Ji X, Sun W, Xia S, Wan S, Zhang H, Xing R, Ding J, Ren C. An overview on recent advances of reversible fluorescent probes and their biological applications. Talanta 2024; 268:125275. [PMID: 37839322 DOI: 10.1016/j.talanta.2023.125275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/03/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
Due to the simplicity and low detection limit, fluorescent probes are widely used in both analytical sensing and optical imaging. Compared to conventional fluorescent probes, reversibility endows the reversible fluorescent probe outstanding advantages and special properties, making reversible fluorescent probes with capable of quantitative, repetitive or circulatory. Reversible fluorescent probes can also monitor the concentration dynamics of target analytes in real time, such as metal ions, proteins and enzymes, as well as intracellular redox processes, which have been widely applied in various fields. This review summarized the types and excellent properties of reversible fluorescent probes designed and developed in recent years. It also summarized the applications of reversible fluorescent probe in fluorescence imaging, biological testing, monitoring redox cycles, and proposed the remaining challenges and future development directions of the reversible fluorescent probe. This review provided comprehensive overview of reversible fluorescent probe, which may provide valuable references for the design and fabrication of the reversible fluorescent probe.
Collapse
Affiliation(s)
- Yanan Huang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xuebin Cao
- China State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo315832, Zhejiang, China; Yantai Jinghai Marine Fisheries Co., LTD, Yantai, 264000, Shandong, China
| | - Yawen Deng
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Xingyu Ji
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Weina Sun
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shiyu Xia
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Shuo Wan
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Hongxia Zhang
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China
| | - Ronglian Xing
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| | - Jun Ding
- Dalian Ocean University, Dalian, 116000, Liaoning, China
| | - Chunguang Ren
- School of Life Sciences, Yantai University, Yantai, 264005, Shandong, China.
| |
Collapse
|
9
|
Wei H, Xie M, Chen M, Jiang Q, Wang T, Xing P. Shedding light on cellular dynamics: the progress in developing photoactivated fluorophores. Analyst 2024; 149:689-699. [PMID: 38180167 DOI: 10.1039/d3an01994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Photoactivated fluorophores (PAFs) are highly effective imaging tools that exhibit a removal of caging groups upon light excitation, resulting in the restoration of their bright fluorescence. This unique property allows for precise control over the spatiotemporal aspects of small molecule substances, making them indispensable for studying protein labeling and small molecule signaling within live cells. In this comprehensive review, we explore the historical background of this field and emphasize recent advancements based on various reaction mechanisms. Additionally, we discuss the structures and applications of the PAFs. We firmly believe that the development of more novel PAFs will provide powerful tools to dynamically investigate cells and expand the applications of these techniques into new domains.
Collapse
Affiliation(s)
- Huihui Wei
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Mingli Xie
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Min Chen
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Qinhong Jiang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Tenghui Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| | - Panfei Xing
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
10
|
Luo X, Zhang C, Yue C, Jiang Y, Yang F, Xian Y. A near-infrared light-activated nanoprobe for simultaneous detection of hydrogen polysulfide and sulfur dioxide in myocardial ischemia-reperfusion injury. Chem Sci 2023; 14:14290-14301. [PMID: 38098706 PMCID: PMC10718178 DOI: 10.1039/d3sc04937j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Ischemia-reperfusion-induced cardiomyocyte mortality constitutes a prominent contributor to global morbidity and mortality. However, early diagnosis and preventive treatment of cardiac I/R injury remains a challenge. Given the close relationship between ferroptosis and I/R injury, monitoring their pathological processes holds promise for advancing early diagnosis and treatment of the disease. Herein, we report a near-infrared (NIR) light-activated dual-responsive nanoprobe (UCNP@mSiO2@SP-NP-NAP) for controllable detection of hydrogen polysulfide (H2Sn) and sulfur dioxide (SO2) during ferroptosis-related myocardial I/R injury. The nanoprobe's responsive sites could be activated by NIR and Vis light modulation, reversibly alternating for at least 5 cycles. We employed the nanoprobe to monitor the fluctuation levels of H2Sn and SO2 in H9C2 cardiomyocytes and mice, revealing that H2Sn and SO2 levels were up-regulated during I/R. The NIR light-activated dual-responsive nanoprobe could be a powerful tool for myocardial I/R injury diagnosis. Moreover, we also found that inhibiting the initiation of the ferroptosis process contributed to attenuating cardiac I/R injury, which indicated great potential for treating I/R injury.
Collapse
Affiliation(s)
- Xianzhu Luo
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Cuiling Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Chenyang Yue
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuelin Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Fei Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| | - Yuezhong Xian
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200241 China
| |
Collapse
|
11
|
Tsai CY, Chen PH, Chen AL, Wang TSA. Spatiotemporal Investigation of Intercellular Heterogeneity via Multiple Photocaged Probes. Chemistry 2023; 29:e202301067. [PMID: 37382047 DOI: 10.1002/chem.202301067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Intercellular heterogeneity occurs widely under both normal physiological environments and abnormal disease-causing conditions. Several attempts to couple spatiotemporal information to cell states in a microenvironment were performed to decipher the cause and effect of heterogeneity. Furthermore, spatiotemporal manipulation can be achieved with the use of photocaged/photoactivatable molecules. Here, we provide a platform to spatiotemporally analyze differential protein expression in neighboring cells by multiple photocaged probes coupled with homemade photomasks. We successfully established intercellular heterogeneity (photoactivable ROS trigger) and mapped the targets (directly ROS-affected cells) and bystanders (surrounding cells), which were further characterized by total proteomic and cysteinomic analysis. Different protein profiles were shown between bystanders and target cells in both total proteome and cysteinome. Our strategy should expand the toolkit of spatiotemporal mapping for elucidating intercellular heterogeneity.
Collapse
Affiliation(s)
- Chun-Yi Tsai
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Po-Hsun Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Ai-Lin Chen
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| | - Tsung-Shing Andrew Wang
- Department of Chemistry, National Taiwan University and Center for, Emerging Material and Advanced Devices, National Taiwan University, Taipei, 10617, Taiwan (R.O.C
| |
Collapse
|
12
|
Nguyen D, Yan G, Chen TY, Do LH. Variations in Intracellular Organometallic Reaction Frequency Captured by Single-Molecule Fluorescence Microscopy. Angew Chem Int Ed Engl 2023; 62:e202300467. [PMID: 37285476 PMCID: PMC10526727 DOI: 10.1002/anie.202300467] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/09/2023]
Abstract
Studies of organometallic reactions in living cells commonly rely on ensemble-averaged measurements, which can obscure the detection of reaction dynamics or location-specific behavior. This information is necessary to guide the design of bioorthogonal catalysts with improved biocompatibility, activity, and selectivity. By leveraging the high spatial and temporal resolution of single-molecule fluorescence microscopy, we have successfully captured single-molecule events promoted by Ru complexes inside live A549 human lung cells. By observing individual allylcarbamate cleavage reactions in real-time, our results revealed that they occur with greater frequency inside the mitochondria than in the non-mitochondria regions. The estimated turnover frequency of the Ru complexes was at least 3-fold higher in the former than the latter. These results suggest that organelle specificity is a critical factor to consider in intracellular catalyst design, such as in developing metallodrugs for therapeutic applications.
Collapse
Affiliation(s)
- Dat Nguyen
- Faculty of Chemical and Food Technology, Ho Chi Minh City University of Technology and Education, 1 Vo Van Ngan, Thu Duc City, Ho Chi Minh City, Vietnam
| | - Guangjie Yan
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| | - Tai-Yen Chen
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| | - Loi H Do
- Department of Chemistry, University of Houston, 4800 Calhoun Rd., TX 77004, Houston, USA
| |
Collapse
|
13
|
Guo B, Shen T, Liu Y, Jing J, Shao C, Zhang X. An endoplasmic reticulum-specific ratiometric fluorescent probe for imaging esterase in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 291:122389. [PMID: 36689909 DOI: 10.1016/j.saa.2023.122389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
Esterase is primarily distributed in the endoplasmic reticulum (ER) and often overexpressed in cancer cells. Therefore, the detection of esterase in ER is significant for monitoring the metabolic process of various esters and evaluating the efficacy of chemotherapeutic prodrugs. However, only few fluorescent probes can detect esterase in the ER due to the lack of ER-specificity. More seriously, these probes are often limited by low pearson's colocalization coefficient and one single wavelength emission. To solve those problems, an ER-specific ratiometric fluorescent probe (ER-EST) is designed for detecting esterase in living cells. The ER-EST shows a ratiometric and red-shifted emission (125 nm) from 435 to 560 nm after hydrolysis by esterase. The fluorescence intensity ratio of ER-EST displays quantitative response to the esterase activity (0-0.5 U/mL) with low detection limit of 1.8 × 10-4 U/mL. Importantly, the ER-EST with good biocompatibility and excellent ER-targeted ability was successfully employed to ratiometric image the endogenous endoplasmic reticulum esterase in living cells.
Collapse
Affiliation(s)
- Bingpeng Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, PR China
| | - Tianjiao Shen
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yifan Liu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jing Jing
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Changxiang Shao
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271099, PR China.
| | - Xiaoling Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
14
|
A Turn-On Lipid Droplet-Targeted Near-Infrared Fluorescent Probe with a Large Stokes Shift for Detection of Intracellular Carboxylesterases and Cell Viability Imaging. Molecules 2023; 28:molecules28052317. [PMID: 36903562 PMCID: PMC10005208 DOI: 10.3390/molecules28052317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023] Open
Abstract
Carboxylesterases (CEs) play important physiological roles in the human body and are involved in numerous cellular processes. Monitoring CEs activity has great potential for the rapid diagnosis of malignant tumors and multiple diseases. Herein, we developed a new phenazine-based "turn-on" fluorescent probe DBPpys by introducing 4-bromomethyl-phenyl acetate to DBPpy, which can selectively detect CEs with a low detection limit (9.38 × 10-5 U/mL) and a large Stokes shift (more than 250 nm) in vitro. In addition, DBPpys can also be converted into DBPpy by carboxylesterase in HeLa cells and localized in lipid droplets (LDs), emitting bright near-infrared fluorescence under the irradiation of white light. Moreover, we achieved the detection of cell health status by measuring the intensity of NIR fluorescence after co-incubation of DBPpys with H2O2-pretreated HeLa cells, indicating that DBPpys has great potential applications for assessing CEs activity and cellular health.
Collapse
|
15
|
Jiang G, Lou XF, Zuo S, Liu X, Ren TB, Wang L, Zhang XB, Yuan L. Tuning the Cellular Uptake and Retention of Rhodamine Dyes by Molecular Engineering for High-Contrast Imaging of Cancer Cells. Angew Chem Int Ed Engl 2023; 62:e202218613. [PMID: 36855015 DOI: 10.1002/anie.202218613] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/28/2023] [Indexed: 03/02/2023]
Abstract
Probes allowing high-contrast discrimination of cancer cells and effective retention are powerful tools for the early diagnosis and treatment of cancer. However, conventional small-molecule probes often show limited performance in both aspects. Herein, we report an ingenious molecular engineering strategy for tuning the cellular uptake and retention of rhodamine dyes. Introduction of polar aminoethyl leads to the increased brightness and reduced cellular uptake of dyes, and this change can be reversed by amino acetylation. Moreover, these modifications allow cancer cells to take up more dyes than normal cells (16-fold) through active transport. Specifically, we further improve the signal contrast (56-fold) between cancer and normal cells by constructing activatable probes and confirm that the released fluorophore can remain in cancer cells with extended time, enabling long-term and specific tumor imaging.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xiao-Feng Lou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Shan Zuo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Xixuan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lu Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, 201203, P.R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China
| |
Collapse
|
16
|
Lai Y, Zhang T, Huang L, Li W, Lin W. Monitoring cell viability in N-nitrosodiethylamine induced acute hepatitis and detection of hydrazine in solution and gas phase with Dual-function fluorescent probes. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130207. [PMID: 36332275 DOI: 10.1016/j.jhazmat.2022.130207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
The highly toxic N-nitrosodiethylamine (NDEA) and hydrazine (N2H4) caused severe environmental contamination and serious health risks. Herein, we designed the two-photon ratiometric fluorescent probe (Nap-2), emission maximum shifted from 466 nm to 571 nm, to monitor cell viability of NDEA induced acute hepatitis via esterase activity detection. Furthermore, the probe Nap-2 evaluate the hydrazine (N2H4) content in the solution and gas phase. It is worth mentioning that we used NDEA induced acute hepatitis in the mice and evaluated the negative correlation of esterase activity in the tissue cells and serum with Nap-2. The probe Nap-2 exhibited that acute hepatitis induced by NDEA decreased cell viability. Furthermore, we made convenient test papers using Nap-2 to detect N2H4 in solution and gas phase. After adding N2H4, the fluorescence color changed from blue to yellow and was visible to the naked eye. This work provides a convenient tool and method for evaluating the toxicity of NDEA induced acute hepatitis and detecting N2H4 in the environment.
Collapse
Affiliation(s)
- Youbo Lai
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Tengteng Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Wenxiu Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, PR China.
| |
Collapse
|
17
|
Gong Q, Zhang X, Li W, Guo X, Wu Q, Yu C, Jiao L, Xiao Y, Hao E. Long-Wavelength Photoconvertible Dimeric BODIPYs for Super-Resolution Single-Molecule Localization Imaging in Near-Infrared Emission. J Am Chem Soc 2022; 144:21992-21999. [PMID: 36414278 DOI: 10.1021/jacs.2c08947] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sulfoxide-bridged dimeric BODIPYs were developed as a new class of long-wavelength photoconvertible fluorophores. Upon visible-light irradiation, a sulfoxide moiety was released to generate the corresponding α,α-directly linked dimeric BODIPYs. The extrusion of SO from sulfoxides was mainly through an intramolecular fashion involving reactive triplet states. By this photoconversion, not only were more than 100 nm red shifts of absorption and emission maxima (up to 648/714 nm) achieved but also stable products with bright fluorescence were produced with high efficiency. The combination of photoactivation and red-shifted excitation/emission offered optimal contrast and eliminated the interference from biological autofluorescence. More importantly, the in situ products of these visible-light-induced reactions demonstrated ideal single-molecule fluorescence properties in the near-infrared region. Therefore, this new photoconversion could be a powerful photoactivation method achieving super-resolution single-molecule localization imaging in a living cell without using UV illumination and cell-toxic additives.
Collapse
Affiliation(s)
- Qingbao Gong
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Wanwan Li
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
18
|
Super-Resolution Microscopy and Their Applications in Food Materials: Beyond the Resolution Limits of Fluorescence Microscopy. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02883-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
19
|
Lincoln R, Bossi ML, Remmel M, D'Este E, Butkevich AN, Hell SW. A general design of caging-group-free photoactivatable fluorophores for live-cell nanoscopy. Nat Chem 2022; 14:1013-1020. [PMID: 35864152 PMCID: PMC9417988 DOI: 10.1038/s41557-022-00995-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 06/09/2022] [Indexed: 11/17/2022]
Abstract
The controlled switching of fluorophores between non-fluorescent and fluorescent states is central to every super-resolution fluorescence microscopy (nanoscopy) technique, and the exploration of radically new switching mechanisms remains critical to boosting the performance of established, as well as emerging super-resolution methods. Photoactivatable dyes offer substantial improvements to many of these techniques, but often rely on photolabile protecting groups that limit their applications. Here we describe a general method to transform 3,6-diaminoxanthones into caging-group-free photoactivatable fluorophores. These photoactivatable xanthones (PaX) assemble rapidly and cleanly into highly fluorescent, photo- and chemically stable pyronine dyes upon irradiation with light. The strategy is extendable to carbon- and silicon-bridged xanthone analogues, yielding a family of photoactivatable labels spanning much of the visible spectrum. Our results demonstrate the versatility and utility of PaX dyes in fixed and live-cell labelling for conventional microscopy, as well as the coordinate-stochastic and deterministic nanoscopies STED, PALM and MINFLUX. ![]()
The design of photoactivatable fluorophores—which are required for some super-resolution fluorescence microscopy methods—usually relies on light-sensitive protecting groups imparting lipophilicity and generating reactive by-products. Now, it has been shown that by exploiting a unique intramolecular photocyclization, bright and highly photostable fluorophores can be rapidly generated in situ from appropriately substituted 1-alkenyl-3,6-diaminoxanthone precursors.
Collapse
Affiliation(s)
- Richard Lincoln
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Mariano L Bossi
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Remmel
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alexey N Butkevich
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany. .,Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
20
|
Chen M, Wang C, Ding Z, Wang H, Wang Y, Liu Z. A Molecular Logic Gate for Developing "AND" Logic Probes and the Application in Hepatopathy Differentiation. ACS CENTRAL SCIENCE 2022; 8:837-844. [PMID: 35756368 PMCID: PMC9228555 DOI: 10.1021/acscentsci.2c00387] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 06/15/2023]
Abstract
Accurate diagnosis and therapy are challenging because most diseases lack a single biomarker that distinguishes them from other disorders. A solution would enhance targeting accuracy by using AND-gated combinations of two disease-associated stimuli. Here, we report a novel "AND" molecular logic gate, enabling a double-controlled release of intact functional molecules. Benefiting from a significant difference in intramolecular cyclization rate, cargo release occurs notably faster with the presence of both stimuli. According to this finding, several AND logic probes have been developed that respond to a broad scope of stimuli and show remarkably improved signal-to-background contrast compared to those of monoresponsive probes. In addition, an AND logic probe that is responsive to monoamine oxidase (MAO) and leucine aminopeptidase (LAP) has been constructed for hepatopathy diagnosis. It works efficiently in living cells and mouse models. Of note, this probe can successfully differentiate cirrhotic from hepatitis B by testing the blood samples from patients.
Collapse
Affiliation(s)
- Mengqi Chen
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chunhong Wang
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zexuan Ding
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao Wang
- Department
of Radiation Oncology, Peking University
Third Hospital, 49 North Garden Road, Beijing 100191, China
| | - Yu Wang
- Department
of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union
Medical College, Beijing 100730, China
| | - Zhibo Liu
- Beijing
National Laboratory for Molecular Sciences, Radiochemistry and Radiation
Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory
for Research and Evaluation of Radiopharmaceuticals, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of Ministry of Education,
College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking
University−Tsinghua University Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Han Z, Xiong J, Ren TB, Zhang XB. Recent advances in dual-target-activated fluorescent probes for biosensing and bioimaging. Chem Asian J 2022; 17:e202200387. [PMID: 35579099 DOI: 10.1002/asia.202200387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/16/2022] [Indexed: 11/08/2022]
Abstract
Fluorescent probes have been powerful tools for visualizing and quantifying multiple dynamic processes in living cells. However, the currently developed probes are often constructed by conjugation a fluorophore with a recognition moiety and given signal-output after triggering with one singly target interest. Compared with the single-target-activated fluorescent probes mentioned above, the dual-target-activated ones, triggering with one target under stimulus (such as photoirradiation, microenvironment) or another targets, have the advantages of advoiding nonspecific activation and "false positive" results in complicated environments. In recent years, many dual-target-activated fluorescent probes have been developed to detect various biologically relevant species. In view of the importance of a comprehensive understanding of dual-target- activated fluorescent probes, a thorough summary of this topic is urgently needed. However, no comprehensive and critical review on dual target activated fluorescent probes has been published recently. In this review, we focus on the dual-target-activated fluorescent probes and briefly outline their types and current state of development. In each type, the chemical structure, proposed responsive mechanism and application of probes are highlighted. At last, the challenges and prospective opportunities of every type were proposed.
Collapse
Affiliation(s)
- Zhixiang Han
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Jie Xiong
- Jiangsu University, School of the Environment and Safety Engineering, CHINA
| | - Tian-Bing Ren
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| | - Xiao-Bing Zhang
- Hunan University, College of Chemistry and Chemical Engineering, 410082, Changsha, CHINA
| |
Collapse
|
22
|
Zhukovsky D, Dar’in D, Bakulina O, Krasavin M. Preparation and Synthetic Applications of Five-to-Seven-Membered Cyclic α-Diazo Monocarbonyl Compounds. Molecules 2022; 27:2030. [PMID: 35335391 PMCID: PMC8954351 DOI: 10.3390/molecules27062030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 11/16/2022] Open
Abstract
The reactivity of cyclic α-diazo monocarbonyl compounds differs from that of their acyclic counterparts. In this review, we summarize the current literature available on the synthesis and synthetic applications of three major classes of cyclic α-diazo monocarbonyl compounds: α-diazo ketones, α-diazo lactones and α-diazo lactams.
Collapse
Affiliation(s)
- Daniil Zhukovsky
- Research & Development Department, BratskChemSyntez LLC, PharmaSyntez Company, 5A/1 Kommunalnaya St., 665717 Bratsk, Russia;
| | - Dmitry Dar’in
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Olga Bakulina
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
| | - Mikhail Krasavin
- Institute of Chemistry, Saint Petersburg State University, 199034 Saint Petersburg, Russia;
- Immanuel Kant Baltic Federal University, 236041 Kaliningrad, Russia
| |
Collapse
|
23
|
Paganini C, Hettich B, Kopp MR, Eördögh A, Capasso Palmiero U, Adamo G, Touzet N, Manno M, Bongiovanni A, Rivera‐Fuentes P, Leroux J, Arosio P. Rapid Characterization and Quantification of Extracellular Vesicles by Fluorescence-Based Microfluidic Diffusion Sizing. Adv Healthc Mater 2022; 11:e2100021. [PMID: 34109753 PMCID: PMC11469030 DOI: 10.1002/adhm.202100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/19/2021] [Indexed: 12/16/2022]
Abstract
Extracellular vesicles (EVs) are emerging as promising diagnostic and therapeutic tools for a variety of diseases. The characterization of EVs requires a series of orthogonal techniques that are overall time- and material-consuming. Here, a microfluidic device is presented that exploits the combination of diffusion sizing and multiwavelength fluorescence detection to simultaneously provide information on EV size, concentration, and composition. The latter is achieved with the nonspecific staining of lipids and proteins combined with the specific staining of EV markers such as EV-associated tetraspanins via antibodies. The device can be operated as a single-step immunoassay thanks to the integrated separation and quantification of free and EV-bound fluorophores. This microfluidic technique is capable of detecting and quantifying components associated to EV subtypes and impurities and thus to measure EV purity in a time scale of minutes, requiring less than 5 µL of sample and minimal sample handling before the analysis. Moreover, the analysis is performed directly in solution without immobilization steps. Therefore, this method can accelerate screening of EV samples and aid the evaluation of sample reproducibility, representing an important complementary tool to the current array of biophysical methods for EV characterization, particularly valuable for instance for bioprocess development.
Collapse
Affiliation(s)
- Carolina Paganini
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Britta Hettich
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Marie R.G. Kopp
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Adam Eördögh
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
- Institute of Chemical Sciences and EngineeringEPFLCH C2 425, Bâtiment CH, Station 6LausanneCH‐1015Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Giorgia Adamo
- Institute of Biomedical Research and InnovationNational Research Council of ItalyVia Ugo La Malfa 153Palermo90146Italy
| | - Nicolas Touzet
- Department of Environmental ScienceIT SligoAsh LaneSligoF91 YW50Ireland
| | - Mauro Manno
- Institute of BiophysicsNational Research Council of ItalyVia Ugo La Malfa 153Palermo90146Italy
| | - Antonella Bongiovanni
- Institute of Biomedical Research and InnovationNational Research Council of ItalyVia Ugo La Malfa 153Palermo90146Italy
| | - Pablo Rivera‐Fuentes
- Institute of Chemical Sciences and EngineeringEPFLCH C2 425, Bâtiment CH, Station 6LausanneCH‐1015Switzerland
| | - Jean‐Christophe Leroux
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir‐Prelog‐Weg 1–5/10Zürich8093Switzerland
| |
Collapse
|
24
|
Guillou A, Nisli E, Klingler S, Linden A, Holland JP. Photoactivatable Fluorescent Tags for Dual-Modality Positron Emission Tomography Optical Imaging. J Med Chem 2022; 65:811-823. [PMID: 34981931 DOI: 10.1021/acs.jmedchem.1c01899] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescent protein conjugates are vital tools in a wide range of scientific disciplines from basic biochemical research to applications in clinical pathology and intraoperative surgery. We report the synthesis and characterization of photoactivatable fluorophores (PhotoTags) based on the functionalization of coumarin, fluorescein, BODIPY, rhodamine B, and cyanine dyes with a photochemically active aryl azide group. Photochemical labeling experiments using human serum albumin produced fluorescent proteins in high yields under irradiation with ultraviolet light for <15 min. We also synthesized DFO-RhodB-PEG3-ArN3─a photoactivatable compound that can be radiolabeled with 89Zr for applications in optical imaging and positron emission tomography. One-pot 89Zr-radiolabeling and light-induced protein conjugation produced [89Zr]ZrDFO-RhodB-PEG3-azepin-trastuzumab. Proof-of-concept studies in vitro and in vivo confirmed that [89Zr]ZrDFO-RhodB-PEG3-azepin-trastuzumab is a potential dual-modality agent for detecting human epidermal growth factor receptor 2 (HER2/neu) expression. Overall, the PhotoTag technology represents a rapid, synthetically versatile, and user-friendly approach for generating novel protein conjugates.
Collapse
Affiliation(s)
- Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Eda Nisli
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Wu X, Wang R, Kwon N, Ma H, Yoon J. Activatable fluorescent probes for in situ imaging of enzymes. Chem Soc Rev 2021; 51:450-463. [PMID: 34951429 DOI: 10.1039/d1cs00543j] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
As the main biomarkers of most diseases, enzymes play fundamental but extremely critical roles in biosystems. High-resolution studies of enzymes using activatable in situ fluorescence imaging may help to better elucidate their dynamics in living systems. Currently, most activatable probes can realize changeable imaging of enzymes but inevitably tend to diffuse away from the original active site of the enzyme and even translocate out of cells, seriously impairing in situ high-resolution observation of the enzymes. In situ fluorescence imaging of enzymes can be realized by labelling probes or antibodies with always-on signals that fail to enable activatable imaging of enzymes. Thus, fluorescent probes with both "activatable" and "in situ" properties will enable high-resolution studies of enzymes in living systems. In this tutorial review, we summarize the existing methods ranging from design strategies to bioimaging applications that could be used to develop activatable fluorescent probes for in situ imaging of enzymes. It is expected that this tutorial review will promote the new methods generated to design such probes for better deciphering enzymes in complex biosystems and further extend the application of these methods to other fields of enzymes.
Collapse
Affiliation(s)
- Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
26
|
Wang L, Wang S, Tang J, Espinoza VB, Loredo A, Tian Z, Weisman RB, Xiao H. Oxime as a general photocage for the design of visible light photo-activatable fluorophores. Chem Sci 2021; 12:15572-15580. [PMID: 35003586 PMCID: PMC8654061 DOI: 10.1039/d1sc05351e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022] Open
Abstract
Photoactivatable fluorophores have been widely used for tracking molecular and cellular dynamics with subdiffraction resolution. In this work, we have prepared a series of photoactivatable probes using the oxime moiety as a new class of photolabile caging group in which the photoactivation process is mediated by a highly efficient photodeoximation reaction. Incorporation of the oxime caging group into fluorophores results in loss of fluorescence. Upon light irradiation in the presence of air, the oxime-caged fluorophores are oxidized to their carbonyl derivatives, restoring strong fluorophore fluorescence. To demonstrate the utility of these oxime-caged fluorophores, we have created probes that target different organelles for live-cell confocal imaging. We also carried out photoactivated localization microscopy (PALM) imaging under physiological conditions using low-power light activation in the absence of cytotoxic additives. Our studies show that oximes represent a new class of visible-light photocages that can be widely used for cellular imaging, sensing, and photo-controlled molecular release.
Collapse
Affiliation(s)
- Lushun Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Shichao Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Juan Tang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Vanessa B Espinoza
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Axel Loredo
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Zeru Tian
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - R Bruce Weisman
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Han Xiao
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Biosciences, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Bioengineering, Rice University 6100 Main Street Houston Texas 77005 USA
| |
Collapse
|
27
|
Wang Y, Ma C, Zheng X, Ju M, Fu Y, Zhang X, Shen B. A red emission multiple detection site probe for detecting carboxylesterase 1 based on BODIPY fluorophore. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
28
|
Li K, Xu S, Xiong M, Huan SY, Yuan L, Zhang XB. Molecular engineering of organic-based agents for in situ bioimaging and phototherapeutics. Chem Soc Rev 2021; 50:11766-11784. [PMID: 34570124 DOI: 10.1039/d1cs00408e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ monitoring of the location and transportation of bioactive molecules is essential for deciphering diverse biological events in the field of biomedicine. In addition, obtaining the in situ information of lesions will provide a clear perspective for surgeons to perform precise resection in clinical surgery. Notably, delivering drugs or operating photodynamic therapy/photothermal therapy in situ by labeling the lesion regions of interest can improve treatment and reduce side effects in vivo. In various advanced imaging and therapy modalities, optical theranostic agents based on organic small molecules can be conveniently modified as needed and can be easily internalized into cells/lesions in a non-invasive manner, which are prerequisites for in situ bioimaging and precision treatment. In this tutorial review, we first summarize the in situ molecular immobilization strategies to retain small-molecule agents inside cells/lesions to prevent their diffusion in living organisms. Emphasis will be focused on introducing the application of these strategies for in situ imaging of biomolecules and precision treatment, particularly pertaining to why targeting therapy in situ is required.
Collapse
Affiliation(s)
- Ke Li
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuai Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Shuang-Yan Huan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Lin Yuan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China. ,
| |
Collapse
|
29
|
Wang K, Shao X, Tian Z, Liu L, Zhang C, Tan C, Zhang J, Ling P, Liu F, Chen Q, Diao J, Mao Z. A Continuous Add-On Probe Reveals the Nonlinear Enlargement of Mitochondria in Light-Activated Oncosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004566. [PMID: 34197052 PMCID: PMC8425930 DOI: 10.1002/advs.202004566] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/03/2021] [Indexed: 05/25/2023]
Abstract
Oncosis, depending on DNA damage and mitochondrial swelling, is an important approach for treating cancer and other diseases. However, little is known about the behavior of mitochondria during oncosis, due to the lack of probes for in situ visual illumination of the mitochondrial membrane and mtDNA. Herein, a mitochondrial lipid and mtDNA dual-labeled probe, MitoMN, and a continuous add-on assay, are designed to image the dynamic process of mitochondria in conditions that are unobservable with current mitochondrial probes. Meanwhile, the MitoMN can induce oncosis in a light-activated manner, which results in the enlargement of mitochondria and the death of cancer cells. Using structured illumination microscopy (SIM), MitoMN-stained mitochondria with a dual-color response reveals, for the first time, how swelled mitochondria interacts and fuses with each other for a nonlinear enlargement to accelerate oncosis into an irreversible stage. With this sign of irreversible oncosis revealed by MitoMN, oncosis can be segregated into three stages, including before oncosis, initial oncosis, and accelerated oncosis.
Collapse
Affiliation(s)
- Kang‐Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Xintian Shao
- Institute of Materia MedicaShandong First Medical University & Shandong Academy of Medical SciencesJinan250000P. R. China
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
| | - Zhiqi Tian
- Department of Molecular Genetics, Biochemistry, and MicrobiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
| | - Liu‐Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Chengying Zhang
- Institute of Materia MedicaShandong First Medical University & Shandong Academy of Medical SciencesJinan250000P. R. China
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
- School of Pharmaceutical SciencesShandong UniversityJinan250101P. R. China
| | - Cai‐Ping Tan
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| | - Jie Zhang
- Advanced Medical Research Institute/Translational Medicine Core Facility of Advanced Medical Research InstituteShandong UniversityJinan250101P. R. China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
- School of Pharmaceutical SciencesShandong UniversityJinan250101P. R. China
| | - Fei Liu
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
- School of Pharmaceutical SciencesShandong UniversityJinan250101P. R. China
| | - Qixin Chen
- Institute of Materia MedicaShandong First Medical University & Shandong Academy of Medical SciencesJinan250000P. R. China
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
- Shandong Academy of Pharmaceutical ScienceKey Laboratory of BiopharmaceuticalsEngineering Laboratory of Polysaccharide DrugsNational‐Local Joint Engineering Laboratory of Polysaccharide DrugsJinan250101P. R. China
| | - Jiajie Diao
- Department of Cancer BiologyUniversity of Cincinnati College of MedicineCincinnati45267USA
| | - Zong‐Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic ChemistrySchool of ChemistryState Key Laboratory of Oncology in South ChinaSun Yat‐Sen UniversityGuangzhou510275P. R. China
| |
Collapse
|
30
|
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. Logic-Gated Proximity Aptasensing for Cell-Surface Real-Time Monitoring of Apoptosis. Angew Chem Int Ed Engl 2021; 60:20858-20864. [PMID: 34309152 DOI: 10.1002/anie.202106651] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/15/2022]
Abstract
In nature, intact apoptotic cells release ATP as a signaling molecule to trigger prompt phagocytic clearance, even at the earliest stage of apoptosis. Inspired by this, here we introduce a straightforward strategy for real-time monitoring ATP exocytosis and drug-stimulated apoptosis in the cancer cell surroundings. Triplex-boosted G-quadruplexes (tb-G4s) responding to cell environmental factors (H+ and K+ ) are engineered to construct a DNA logic-gated nanoplatform for proximity ATP aptasensing on the cell surface. It enables the real-time monitoring of cell apoptosis by capturing released endogenous ATP during chemotherapy drug stimulation, providing a sensitive approach for dynamically evaluating drug-induced apoptosis and therapeutic efficacy.
Collapse
Affiliation(s)
- Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lin Shi
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
31
|
Zheng J, Wang Q, Shi L, Peng P, Shi L, Li T. Logic‐Gated Proximity Aptasensing for Cell‐Surface Real‐Time Monitoring of Apoptosis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jiao Zheng
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Qiwei Wang
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Lin Shi
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Pai Peng
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| | - Lili Shi
- Department of Chemistry Anhui University 111 Jiulong Road Hefei Anhui 230601 China
| | - Tao Li
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Road Hefei Anhui 230026 China
| |
Collapse
|
32
|
Yao Y, Zhang Y, Yan C, Zhu WH, Guo Z. Enzyme-activatable fluorescent probes for β-galactosidase: from design to biological applications. Chem Sci 2021; 12:9885-9894. [PMID: 34349961 PMCID: PMC8317648 DOI: 10.1039/d1sc02069b] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/27/2021] [Indexed: 12/15/2022] Open
Abstract
β-Galactosidase (β-gal), a typical hydrolytic enzyme, is a vital biomarker for cell senescence and primary ovarian cancers. Developing precise and rapid methods to monitor β-gal activity is crucial for early cancer diagnoses and biological research. Over the past decade, activatable optical probes have become a powerful tool for real-time tracking and in vivo visualization with high sensitivity and specificity. In this review, we summarize the latest advances in the design of β-gal-activatable probes via spectral characteristics and responsiveness regulation for biological applications, and particularly focus on the molecular design strategy from turn-on mode to ratiometric mode, from aggregation-caused quenching (ACQ) probes to aggregation-induced emission (AIE)-active probes, from near-infrared-I (NIR-I) imaging to NIR-II imaging, and from one-mode to dual-mode of chemo-fluoro-luminescence sensing β-gal activity.
Collapse
Affiliation(s)
- Yongkang Yao
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Yutao Zhang
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials, Institute of Fine Chemicals, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
33
|
Abstract
Optical imaging probes allow us to detect and uncover the physiological and pathological functions of an analyte of interest at the molecular level in a non-invasive, longitudinal manner. By virtue of simplicity, low cost, high sensitivity, adaptation to automated analysis, capacity for spatially resolved imaging and diverse signal output modes, optical imaging probes have been widely applied in biology, physiology, pharmacology and medicine. To build a reliable and practically/clinically relevant probe, the design process often encompasses multidisciplinary themes, including chemistry, biology and medicine. Within the repertoire of probes, dual-locked systems are particularly interesting as a result of their ability to offer enhanced specificity and multiplex detection. In addition, chemiluminescence is a low-background, excitation-free optical modality and, thus, can be integrated into dual-locked systems, permitting crosstalk-free fluorescent and chemiluminescent detection of two distinct biomarkers. For many researchers, these dual-locked systems remain a 'black box'. Therefore, this Review aims to offer a 'beginner's guide' to such dual-locked systems, providing simple explanations on how they work, what they can do and where they have been applied, in order to help readers develop a deeper understanding of this rich area of research.
Collapse
|
34
|
Gold-catalyzed ketene dual functionalization and mechanistic insights: divergent synthesis of indenes and benzo[d]oxepines. Sci China Chem 2021. [DOI: 10.1007/s11426-020-9954-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
35
|
Guan P, Liu Y, Yang B, Wu Y, Chai J, Wen G, Liu B. Fluorometric probe for the lipase level: Design, mechanism and biological imaging application. Talanta 2021; 225:121948. [DOI: 10.1016/j.talanta.2020.121948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
|
36
|
Dai J, Hou Y, Wu J, Zhong G, Gao R, Shen B, Huang H. Construction of a red emission fluorescent protein chromophore-based probe for detection of carboxylesterase 1 and carbamate pesticide in culture cells. Talanta 2021; 223:121744. [PMID: 33298268 DOI: 10.1016/j.talanta.2020.121744] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
Designing fluorescent probe for detecting carboxylesterase 1 is remains challenging. Herein, a red emission human carboxylesterase 1 (CES1) probe (CAE-FP) was synthesized based on fluorescent protein chromophore. Probe CAE-FP can specific detect human CES1 with high selectively. The fluorescence quantum yield was calucated as 0.19. The carboxylic acid ester in CAE-FP could be easily hydrolyzed by CES1 under physiological conditions, and this process could induce the obvious fluorescence signal in red emission region. The detection limit of CES1 was calculated as 84.5 ng/mL. Due to the biological detoxification mechanism of carboxylesterase and the obvious inhibitory effect of pesticides on its activity, CAE-FP was applied to detect carbamate pesticide and have achieved good application results. Since fluorescent protein chromophore has excellent biocompatibility, probe CAE-FP with good cell membrane permeable and was successfully applied to monitor the real activities of CES1 in living cells. In summary, this is one of the few reported fluorescent probes that can specific detect the real-time activity of CES1 in biological samples. Besides, we first applied the fluorescent protein chromophore to construct the specific target enzyme probe. This work would contribute to further investigate CES1-associated physiological and pathological processe.
Collapse
Affiliation(s)
- Jianan Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Yadan Hou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Jichun Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Guoyan Zhong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Rui Gao
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
37
|
Oe M, Miki K, Ohe K. An enzyme-triggered turn-on fluorescent probe based on carboxylate-induced detachment of a fluorescence quencher. Org Biomol Chem 2020; 18:8620-8624. [PMID: 32832959 DOI: 10.1039/d0ob00899k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We developed a new class of turn-on fluorescent probes for an esterase. After the esterase-mediated hydrolysis produced carboxylate (as a fluorescence activator), the fluorescence intensity was markedly increased through the detachment of a quencher moiety from the quenched Cy5 fluorophore. Because the probes based on this new activator-induced quencher-detachment (AiQd) adopt a non-immolative linker between the cleavable site and the fluorophore, the rate of the enzymatic reaction is greatly improved, without the generation of any by-products.
Collapse
Affiliation(s)
- Masahiro Oe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Koji Miki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kouichi Ohe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
38
|
|
39
|
Dai J, Hou Y, Wu J, Shen B. A Minireview of Recent Reported Carboxylesterase Fluorescent Probes: Design and Biological Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.202002625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jianan Dai
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| | - Yadan Hou
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| | - Jichun Wu
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering Nanjing Normal University No.1, Wenyuan Road China
| |
Collapse
|
40
|
Chai X, Han HH, Sedgwick AC, Li N, Zang Y, James TD, Zhang J, Hu XL, Yu Y, Li Y, Wang Y, Li J, He XP, Tian H. Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. J Am Chem Soc 2020; 142:18005-18013. [DOI: 10.1021/jacs.0c05379] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianzhi Chai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Na Li
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yang Yu
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yao Li
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yan Wang
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
41
|
Eördögh Á, Paganini C, Pinotsi D, Arosio P, Rivera-Fuentes P. A Molecular Logic Gate Enables Single-Molecule Imaging and Tracking of Lipids in Intracellular Domains. ACS Chem Biol 2020; 15:2597-2604. [PMID: 32803945 DOI: 10.1021/acschembio.0c00639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photoactivatable dyes enable single-molecule imaging and tracking in biology. Despite progress in the development of new fluorophores and labeling strategies, many intracellular compartments remain difficult to image beyond the limit of diffraction in living cells. For example, lipid domains, e.g., membranes and droplets, remain difficult to image with nanometric resolution. To visualize these challenging subcellular targets, it is necessary to develop new fluorescent molecular devices beyond simple on/off switches. Here, we report a fluorogenic molecular logic gate that can be used to image single molecules associated with lipid domains, most notably droplets, with excellent specificity. This probe requires the subsequent action of light, a lipophilic environment, and a competent nucleophile to produce a fluorescent product. The combination of these inputs results in a probe that can be used to image the boundary of lipid droplets in three dimensions with resolution beyond the limit of diffraction. Moreover, this probe enables single-molecule tracking of lipid trafficking between droplets and the endoplasmic reticulum.
Collapse
Affiliation(s)
- Ádám Eördögh
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015 Lausanne, Switzerland
| | - Carolina Paganini
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Paolo Arosio
- Institute for Chemical and Bioengineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
42
|
Liu Z, Liu J, Wang X, Mi F, Wang D, Wu C. Fluorescent Bioconjugates for Super-Resolution Optical Nanoscopy. Bioconjug Chem 2020; 31:1857-1872. [DOI: 10.1021/acs.bioconjchem.0c00320] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Jie Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
- Department of Biology, Hong Kong Baptist University, Hong Kong 999077, China
| | - Xiaodong Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Feixue Mi
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| | - Dan Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 510855, China
| |
Collapse
|
43
|
Halabi EA, Arasa J, Püntener S, Collado-Diaz V, Halin C, Rivera-Fuentes P. Dual-Activatable Cell Tracker for Controlled and Prolonged Single-Cell Labeling. ACS Chem Biol 2020; 15:1613-1620. [PMID: 32298071 PMCID: PMC7309267 DOI: 10.1021/acschembio.0c00208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cell
trackers are fluorescent chemical tools that facilitate imaging
and tracking cells within live organisms. Despite their versatility,
these dyes lack specificity, tend to leak outside of the cell, and
stain neighboring cells. Here, we report a dual-activatable cell tracker
for increased spatial and temporal staining control, especially for
single-cell tracking. This probe overcomes the typical problems of
current cell trackers: off-target staining, high background signal,
and leakage from the intracellular medium. Staining with this dye
is not cytotoxic, and it can be used in sensitive primary cells. Moreover,
this dye is resistant to harsh fixation and permeabilization conditions
and allows for multiwavelength studies with confocal microscopy and
fluorescence-activated cell sorting. Using this cell tracker, we performed in vivo homing experiments in mice with primary splenocytes
and tracked a single cell in a heterogeneous, multicellular culture
environment for over 20 h. These experiments, in addition to comparative
proliferation studies with other cell trackers, demonstrated that
the signal from this dye is retained in cells for over 72 h after
photoactivation. We envision that this type of probes will facilitate
the analysis of single-cell behavior and migration in cell culture
and in vivo experiments.
Collapse
Affiliation(s)
- Elias A. Halabi
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
| | - Jorge Arasa
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Salome Püntener
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| | | | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Pablo Rivera-Fuentes
- Laboratory of Organic Chemistry, ETH Zürich, 8093, Zürich, Switzerland
- Institute of Chemical Sciences and Engineering, EPF Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
44
|
Zhang Y, Raymo FM. Photoactivatable fluorophores for single-molecule localization microscopy of live cells. Methods Appl Fluoresc 2020; 8:032002. [PMID: 32325443 DOI: 10.1088/2050-6120/ab8c5c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Photochemical reactions can be designed to convert either irreversibly or reversibly a nonemissive reactant into an emissive product. The irreversible disconnection of a photocleavable group from an emissive chromophore or the reversible interconversion of a photochromic component is generally exploited to implement these operating principles for fluorescence switching. In both instances, the interplay of activating radiation, to convert the nonemissive state into the emissive species, and exciting radiation, to produce fluorescence from the latter, can be exploited to switch fluorescence on in a given area of interest at a precise interval of time. Such a level of spatiotemporal control provides the opportunity to reconstruct sub-diffraction images with resolution at the nanometer level. Indeed, closely-spaced emitters can be switched on under photochemical control at distinct intervals of time and localized independently at the single-molecule level. In combination with appropriate intracellular targeting strategies, some of these photoactivatable fluorophores can be switched and localized inside live cells to permit the visualization of sub-cellular structures with a spatial resolution that would be impossible to achieve with conventional fluorophores. As a result, photoactivatable fluorophores can become invaluable probes for the implementation of super-resolution imaging schemes aimed at the elucidation of the fundamental factors controlling cellular functions at the molecular level.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory for Molecular Photonics, Department of Chemistry, University of Miami, Coral Gables, FL, United States of America
| | | |
Collapse
|
45
|
Near-infrared emission tracks inter-individual variability of carboxylesterase-2 via a novel molecular substrate. Mikrochim Acta 2020; 187:313. [PMID: 32377952 DOI: 10.1007/s00604-020-04296-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
A low-molecular-weight molecule (4-(2-(3-(dicyanomethyl)-5,5-dimethylcyclohex-1-en-1-yl)vinyl)phenyl-benzoate, DDPB) has been developed. The organic framework possesses very weak fluorescence . The feasibility of the signal transduction has been performed via fluorometric titrations in solution. DDPB gives rise to responses to carboxylesterase 2 (CES2) based on "off-on" responses. The red emission at 670 nm has been derived from the enzyme-induced hydrolysis of ester linkages, thus suppressing the intramolecular charge transfer (ICT) effect and thereby generating the fluorescent segment. The optical excitation window for this probe is extended to the visible light range (λex = 516 nm), and it will induce less harmful influence on biological substances. The detection limit for the measurement of CES2 concentration is as low as 2.33 mU/mL. The conventional studies concerning the activation process are generally performed within only a single liveing cell system. In this study, it is the first time that expression of carboxylesterase 2 in five kinds of cell lines (HeLa > C1498 > active T cell > Jurkat > unactive T cell) has been clarified by flow cytometry, Western blotting, and confocal microscopy analysis. The elucidation of CES2 and its variability in a variety of cells will open new ways for drug metabolism and disease prevention. Graphical abstract We reported a new "substrate-mediated light-on" strategy based on an ester bond cleavage reaction. Most of prepared nanomaterials and organic fluorophores possessed short wavelength emissions in the blue or green region which will not be difficult for cellular imaging. In this study, a novel functional molecule (DDPB) was considered as the substrate for CES2 and the optical "off-on" response was realized. DDPB was cell permeable and possessed very low cytotoxicity. Moreover, the identification of CES2 and their subtle changes in five different cells afforded the sequence for carboxylesterase-2 as Hela > C1498 > Active T cell > Jurkat > Unactive T cell. Inhibition studies showed that the hydrolysis of DDPB was effectively suppressed by bis-p-nitrophenyl phosphate and the cellular tracking results firmly supported this point. To our knowledge, the inter-individual variability for the CES2 expressions in five different cell lines has never been reported via the substrate induced optical changes.
Collapse
|
46
|
Yang S, Jiang J, Zhou A, Zhou Y, Ye W, Cao DS, Yang R. Substrate-Photocaged Enzymatic Fluorogenic Probe Enabling Sequential Activation for Light-Controllable Monitoring of Intracellular Tyrosinase Activity. Anal Chem 2020; 92:7194-7199. [PMID: 32309931 DOI: 10.1021/acs.analchem.0c00746] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Tyrosinase (TYR) is a crucial enzyme involved in melanogenesis, and its overexpression is closely associated with melanoma. To precisely monitor intracellular TYR activity, remote control of a molecule imaging tool is highly meaningful but remains to be explored. In this work, we present the first photocaged tyrosinase fluorogenic probe by caging the substrate of the enzymatic probe with a photolabile group. Because of the sequential light and enzyme-activation feature, this probe exhibits photocontrollable "turn on" response toward TYR with good selectivity and high sensitivity (detection limit: 0.08 U/mL). Fluorescence imaging results validate that the caged probe possesses the capability of visualizing intracellular endogenous tyrosinase activity in a photocontrol fashion, thus offering a promising molecule imaging tool for investigating TYR-related physiological function and pathological role. Moreover, our sequential activation strategy has great potential for developing more photocontrollable enzymatic fluorogenic probes with spatiotemporal resolution.
Collapse
Affiliation(s)
- Sheng Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Jiaxing Jiang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Anxin Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Yibo Zhou
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| | - Wenling Ye
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, P.R. China
| | - Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410003, P.R. China
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha 410114, P.R. China
| |
Collapse
|
47
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
48
|
Guo Z, Yan C, Zhu WH. High-Performance Quinoline-Malononitrile Core as a Building Block for the Diversity-Oriented Synthesis of AIEgens. Angew Chem Int Ed Engl 2020; 59:9812-9825. [PMID: 31725932 DOI: 10.1002/anie.201913249] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Indexed: 12/20/2022]
Abstract
In vivo fluorescent monitoring of physiological processes with high-fidelity is essential in disease diagnosis and biological research, but faces extreme challenges due to aggregation-caused quenching (ACQ) and short-wavelength fluorescence. The development of high-performance and long-wavelength aggregation-induced emission (AIE) fluorophores is in high demand for precise optical bioimaging. The chromophore quinoline-malononitrile (QM) has recently emerged as a new class of AIE building block that possesses several notable features, such as red to near-infrared (NIR) emission, high brightness, marked photostability, and good biocompatibility. In this minireview, we summarize some recent advances of our established AIE building block of QM, focusing on the AIE mechanism, regulation of emission wavelength and morphology, the facile scale-up and fast preparation for AIE nanoparticles, as well as potential biomedical imaging applications.
Collapse
Affiliation(s)
- Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Shanghai Key Laboratory of Functional Materials Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
49
|
Guo Z, Yan C, Zhu W. High‐Performance Quinoline‐Malononitrile Core as a Building Block for the Diversity‐Oriented Synthesis of AIEgens. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Wei‐Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular EngineeringFeringa Nobel Prize Scientist Joint Research CenterShanghai Key Laboratory of Functional Materials ChemistryInstitute of Fine ChemicalsSchool of Chemistry and Molecular EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
50
|
Poronik YM, Vygranenko KV, Gryko D, Gryko DT. Rhodols - synthesis, photophysical properties and applications as fluorescent probes. Chem Soc Rev 2019; 48:5242-5265. [PMID: 31549709 DOI: 10.1039/c9cs00166b] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The formal replacement of one dialkylamino group in rhodamines with a hydroxyl group transforms them into rhodols. This apparently minor difference is not as small as one may think; rhodamines belong to the cyanine family whereas rhodols belong to merocyanines. Discovered in the late 19th century, rhodols have only very recently begun to gain momentum in the field of advanced fluorescence imaging. This is in part due to the increased understanding of their photophysical properties, and new methods of synthesis. Rationalization of how the nature and arrangement of polar substituents around the core affect the photophysical properties of rhodols is now possible. The emergence of so-called π-expanded and heteroatom-modified rhodols has also allowed their fluorescence to be bathochromically shifted into regions applicable for biological imaging. This review serves to outline applicable synthetic strategies for the synthesis of rhodols, and to highlight important structure-property relationships. In the first part of this Review, various synthetic methods leading to rhodols are presented, followed by structural considerations and an overview of photophysical properties. The second part of this review is entirely devoted to the applications of rhodols as fluorescent reporters in biological imaging.
Collapse
Affiliation(s)
- Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| | | | | | | |
Collapse
|