1
|
Zhang Q, Ren L, Wang Y, Tian Y, Wang S, Jin K, Zhai P, Zhang L, Ren R, Xin J, Yu H, Liu SF. Realizing Long Magnon Diffusion in Organic-Inorganic Hybrid Perovskite Film by the Universal Isotope Effect. NANO LETTERS 2024; 24:13238-13246. [PMID: 39392453 DOI: 10.1021/acs.nanolett.4c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Organic-inorganic halide perovskite (OIHP) spintronics has become a promising research field, as it provides a new precisely manipulable degree of freedom. Recently, by utilizing the spin Seebeck effect and inverse spin-Hall effect measurements, we have discovered substantial magnon injection and transport in Pt/OIHP/Y3Fe5O12 nonlocalized structure. In theory, hyperfine interaction (HFI) is considered to have an important role in the magnon transport of OIHP, but there is no clear experimental evidence reported so far. We report increased spin Seebeck coefficient and lengthened magnon diffusion length in deuterated- (D-) OIHP films that have weaker HFI strength compared with protonated- (H-) OIHP. Consequently, D-MAPbBr3 film, as a non-ferromagnetic spacer, achieves long magnon diffusion length at room temperature (close to 120.3 nm). Our finding provides valuable insights into understanding magnon transport in OIHP films and paves the way for the use of OIHPs in multifunctional applications.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lixia Ren
- School of Physical Sciences, Great Bay University, Dongguan, 523000, Guangdong, China
| | - Yifei Wang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Condensed Matter Structures and Properties; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yingyi Tian
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Condensed Matter Structures and Properties; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuanhu Wang
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Condensed Matter Structures and Properties; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Kexin Jin
- MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions; Shaanxi Key Laboratory of Condensed Matter Structures and Properties; School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peng Zhai
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Lu Zhang
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Ren Ren
- Department of Optical Information Science, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingjing Xin
- Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of Education; Shaanxi Engineering Lab for Advanced Energy Technology; School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hua Yu
- School of Physical Sciences, Great Bay University, Dongguan, 523000, Guangdong, China
| | - Shengzhong Frank Liu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Liang Y, Cui X, Li F, Stampfl C, Huang J, Ringer SP, Zheng R. Hydrogen-Anion-Induced Carrier Recombination in MAPbI 3 Perovskite Solar Cells. J Phys Chem Lett 2021; 12:10677-10683. [PMID: 34709819 DOI: 10.1021/acs.jpclett.1c03061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Identification and passivation of defect-induced electron-hole recombination centers are currently crucial for improving the efficiency of hybrid perovskite solar cells. Besides general intrinsic defects, experimental reports have indicated that hydrogen interstitials are also abundant in hybrid perovskite layers; however, few reports have evaluated the effect of such defects on the charge carrier recombination and device efficiencies. Here, we reveal that under I-poor synthesis conditions, the negatively charged monatomic hydrogen interstitial, Hi-, will form in the prototypical CH3NH3PbI3 perovskite layer, acting as a detrimental deep-level defect, which leads to efficient electron-hole recombination and lowers the cell performance. We further rationalize that Br doping can mitigate the large atomic displacement caused by the presence of Hi- and hence suppress the formation of the deep localized state. The results advance the knowledge of the deep-level defects in hybrid perovskites and provide useful information for enhancing solar cell performance by defect engineering.
Collapse
Affiliation(s)
- Yuhang Liang
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Xiangyuan Cui
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Feng Li
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Catherine Stampfl
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jun Huang
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon P Ringer
- School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rongkun Zheng
- School of Physics, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
3
|
Buffeteau T, Hirsch L, Bassani DM. Comment on "Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals": Eppur Non si Muove: A Critical Evaluation of Proton Diffusion in Halide Perovskite Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007715. [PMID: 34308561 DOI: 10.1002/adma.202007715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/11/2021] [Indexed: 06/13/2023]
Abstract
A recent report by Cahen and co-workers is examined that finds the diffusion constant for proton migration in methylammonium lead triiodide single crystals to be 2 × 105 -fold greater than that previously reported by Sadhu et al. By comparing the conversion of single crystals versus microcrystalline samples, it is concluded that proton diffusion in macroscopic single crystals is accelerated by the presence of defects acting as high-diffusivity paths.
Collapse
Affiliation(s)
- Thierry Buffeteau
- Univ. de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, F-33405, France
| | - Lionel Hirsch
- Univ. de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, ENSCBP, Talence, F-33405, France
| | - Dario M Bassani
- Univ. de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence, F-33405, France
| |
Collapse
|
4
|
Zhao X, Long R. Isotopic Exchange Extends Charge Carrier Lifetime in Metal Lead Perovskites by Quantum Dynamics Simulations. J Phys Chem Lett 2020; 11:10298-10305. [PMID: 33227211 DOI: 10.1021/acs.jpclett.0c03289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One may expect that isotopic exchange has no influence on charge carrier lifetime and perovskite solar cell performance because isotopic effects do not affect the fundamental electronic structure of materials. Experiments defy this expectation. By performing nonadiabatic (NA) molecular dynamics simulations, we demonstrate that hydrogen and deuterium exchange significantly enhances the excited-state lifetime and stability of CH3NH3PbI3. Replacing lighter hydrogen with heavier deuterium suppresses the collective motions of organic and inorganic components, thus enhancing lattice stiffness and decreasing the NA coupling. Isotopic exchange further reduces NA coupling by localizing electron wave functions for separation of electrons and holes, which beats the extended coherence time, slowing down nonradiative electron-hole recombination from CH3ND3PbI3 to CD3ND3PbI3 with respect to the pristine system. The unchanged fundamental electronic structure together with the prolonged carrier lifetime and enhanced stability rationalize the improvement of the deuterated CH3NH3PbI3 solar cells. Our work provides valuable insights into isotope effects for the design of high-performance perovskite photovoltaic and optoelectronic devices.
Collapse
Affiliation(s)
- Xi Zhao
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
5
|
Piveteau L, Morad V, Kovalenko MV. Solid-State NMR and NQR Spectroscopy of Lead-Halide Perovskite Materials. J Am Chem Soc 2020; 142:19413-19437. [PMID: 32986955 PMCID: PMC7677932 DOI: 10.1021/jacs.0c07338] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Indexed: 12/20/2022]
Abstract
Two- and three-dimensional lead-halide perovskite (LHP) materials are novel semiconductors that have generated broad interest owing to their outstanding optical and electronic properties. Characterization and understanding of their atomic structure and structure-property relationships are often nontrivial as a result of the vast structural and compositional tunability of LHPs as well as the enhanced structure dynamics as compared with oxide perovskites or more conventional semiconductors. Nuclear magnetic resonance (NMR) spectroscopy contributes to this thrust through its unique capability of sampling chemical bonding element-specifically (1/2H, 13C, 14/15N, 35/37Cl, 39K, 79/81Br, 87Rb, 127I, 133Cs, and 207Pb nuclei) and locally and shedding light onto the connectivity, geometry, topology, and dynamics of bonding. NMR can therefore readily observe phase transitions, evaluate phase purity and compositional and structural disorder, and probe molecular dynamics and ionic motion in diverse forms of LHPs, in which they can be used practically, ranging from bulk single crystals (e.g., in gamma and X-ray detectors) to polycrystalline films (e.g., in photovoltaics, photodetectors, and light-emitting diodes) and colloidal nanocrystals (e.g., in liquid crystal displays and future quantum light sources). Herein we also outline the immense practical potential of nuclear quadrupolar resonance (NQR) spectroscopy for characterizing LHPs, owing to the strong quadrupole moments, good sensitivity, and high natural abundance of several halide nuclei (79/81Br and 127I) combined with the enhanced electric field gradients around these nuclei existing in LHPs as well as the instrumental simplicity. Strong quadrupole interactions, on one side, make 79/81Br and 127I NMR rather impractical but turn NQR into a high-resolution probe of the local structure around halide ions.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
- CNRS,
UPR 3079, CEMHTI, Orléans, 45071 Cedex 02, France
| | - Viktoriia Morad
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, Dübendorf CH-8600, Switzerland
| |
Collapse
|
6
|
Ceratti DR, Zohar A, Kozlov R, Dong H, Uraltsev G, Girshevitz O, Pinkas I, Avram L, Hodes G, Cahen D. Eppur si Muove: Proton Diffusion in Halide Perovskite Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002467. [PMID: 33048452 DOI: 10.1002/adma.202002467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/24/2020] [Indexed: 05/19/2023]
Abstract
Ion diffusion affects the optoelectronic properties of halide-perovskites (HaPs). Until now, the fastest diffusion has been attributed to the movement of the halides, largely neglecting the contribution of protons, on the basis of computed density estimates. Here, the process of proton diffusion inside HaPs, following deuterium-hydrogen exchange and migration in MAPbI3 , MAPbBr3 , and FAPbBr3 single crystals, is proven through D/H NMR quantification, Raman spectroscopy, and elastic recoil detection analysis, challenging the original assumption of halide-dominated diffusion. The results are confirmed by impedance spectroscopy, where MAPbBr3 - and CsPbBr3 -based solar cells respond at very different frequencies. Water plays a key role in allowing the migration of protons as deuteration is not detected in its absence. The water contribution is modeled to explain and forecast its effect as a function of its concentration in the perovskite structure. These findings are of great importance as they evidence how unexpected, water-dependent proton diffusion can be at the basis of the ≈7 orders of magnitude spread of diffusion (attributed to I- and Br- ) coefficient values, reported in the literature. The reported enhancement of the optoelectronic properties of HaP when exposed to small amounts of water may be related to the finding.
Collapse
Affiliation(s)
- Davide Raffaele Ceratti
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Arava Zohar
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Roman Kozlov
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Department of Functional Inorganic Materials, Academician Semenov, Chernogolovka, Moscow, 142432, Russia
| | - Hao Dong
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
- School of Physics, Nanjing University, Nanjing, Jiangsu Province, 210093, China
| | - Gennady Uraltsev
- Department of Mathematics, Cornell University, Ithaca, NY, 14853, USA
| | - Olga Girshevitz
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Iddo Pinkas
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Gary Hodes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - David Cahen
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, 7610001, Israel
- Institute of Nanotechnology and Advanced Materials, Department of Chemistry, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
7
|
Solanki A, Tavakoli MM, Xu Q, Dintakurti SSH, Lim SS, Bagui A, Hanna JV, Kong J, Sum TC. Heavy Water Additive in Formamidinium: A Novel Approach to Enhance Perovskite Solar Cell Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907864. [PMID: 32350935 DOI: 10.1002/adma.201907864] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/09/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Heavy water or deuterium oxide (D2 O) comprises deuterium, a hydrogen isotope twice the mass of hydrogen. Contrary to the disadvantages of deuterated perovskites, such as shorter recombination lifetimes and lower/invariant efficiencies, the serendipitous effect of D2 O as a beneficial solvent additive for enhancing the power conversion efficiency (PCE) of triple-A cation (cesium (Cs)/methylammonium (MA)/formaminidium (FA)) perovskite solar cells from ≈19.2% (reference) to 20.8% (using 1 vol% D2 O) with higher stability is reported. Ultrafast optical spectroscopy confirms passivation of trap states, increased carrier recombination lifetimes, and enhanced charge carrier diffusion lengths in the deuterated samples. Fourier transform infrared spectroscopy and solid-state NMR spectroscopy validate the N-H2 group as the preferential isotope exchange site. Furthermore, the NMR results reveal the induced alteration of the FA to MA ratio due to deuteration causes a widespread alteration to several dynamic processes that influence the photophysical properties. First-principles density functional theory calculations reveal a decrease in PbI6 phonon frequencies in the deuterated perovskite lattice. This stabilizes the PbI6 structures and weakens the electron-LO phonon (Fröhlich) coupling, yielding higher electron mobility. Importantly, these findings demonstrate that selective isotope exchange potentially opens new opportunities for tuning perovskite optoelectronic properties.
Collapse
Affiliation(s)
- Ankur Solanki
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- Department of Science, School of Technology, Pandit Deendayal Petroleum University, Gandhinagar, 382007, India
| | - Mohammad Mahdi Tavakoli
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qiang Xu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Sai S H Dintakurti
- Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 637371, Singapore
- Department of Physics, The University of Warwick, Coventry, CV4 7AL, UK
| | - Swee Sien Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Anirban Bagui
- Centre of Excellence for Green Energy and Sensors Systems, Indian Institute of Engineering Science and Technology, Shibpur, Howrah, 711103, India
| | - John V Hanna
- Department of Physics, The University of Warwick, Coventry, CV4 7AL, UK
- School of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore, 639798, Singapore
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
8
|
Sadhu S, Buffeteau T, Sandrez S, Hirsch L, Bassani DM. Observing the Migration of Hydrogen Species in Hybrid Perovskite Materials through D/H Isotope Exchange. J Am Chem Soc 2020; 142:10431-10437. [DOI: 10.1021/jacs.0c02597] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Subha Sadhu
- Univ.́ de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, ENSCBP F-33405 Talence, France
| | - Thierry Buffeteau
- Univ.́ de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Talence, France
| | - Simon Sandrez
- Univ.́ de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, ENSCBP F-33405 Talence, France
| | - Lionel Hirsch
- Univ.́ de Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, ENSCBP F-33405 Talence, France
| | - Dario M. Bassani
- Univ.́ de Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, F-33405 Talence, France
| |
Collapse
|
9
|
Feng Y, Zhao Y, Zhou WK, Li Q, Saidi WA, Zhao Q, Li XZ. Proton Migration in Hybrid Lead Iodide Perovskites: From Classical Hopping to Deep Quantum Tunneling. J Phys Chem Lett 2018; 9:6536-6543. [PMID: 30358406 DOI: 10.1021/acs.jpclett.8b02929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The organic-inorganic halide perovskites (OIHPs) have shown enormous potential for solar cells, while problems like the current-voltage hysteresis and the long-term instability have seriously hindered their applications. Ion migrations are believed to be relevant. But the atomistic details still remain unclear. Here we study the migrations of ions in CH3NH3PbI3 (MAPbI3) at varying temperatures ( T's), using combined experimental and first-principle theoretical methods. Classical hopping of the iodide ions is the main migration mechanism at moderate T's. Below ∼270 K, the kinetic constant for ionic migration still shows an Arrenhius dependency, but the much lower activation energy is attributed to the migration of H+. A gradual classical-to-quantum transition takes place between ∼140 and ∼80 K. Below ∼80 K, the kinetic constant becomes T-independent, suggesting that deep quantum tunneling of H+ takes over. This study gives direct experimental evidence for the migrations of H+s in MAPbI3 and confirms their quantum nature.
Collapse
Affiliation(s)
- Yexin Feng
- State Key Laboratory for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , P. R. China
- School of Physics and Electronics , Hunan University , Changsha 410082 , P. R. China
| | - Yicheng Zhao
- State Key Laboratory for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , P. R. China
| | - Wen-Ke Zhou
- State Key Laboratory for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , P. R. China
| | - Qi Li
- State Key Laboratory for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , P. R. China
| | - Wissam A Saidi
- Department of Mechanical Engineering and Materials Science , University of Pittsburgh , Pittsburgh , Pennsylvania 15261 , United States
| | - Qing Zhao
- State Key Laboratory for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , P. R. China
- Collaborative Innovation Center of Quantum Matter , Peking University , Beijing 100871 , P. R. China
| | - Xin-Zheng Li
- State Key Laboratory for Mesoscopic Physics and School of Physics , Peking University , Beijing 100871 , P. R. China
- Collaborative Innovation Center of Quantum Matter , Peking University , Beijing 100871 , P. R. China
| |
Collapse
|
10
|
Egger DA, Bera A, Cahen D, Hodes G, Kirchartz T, Kronik L, Lovrincic R, Rappe AM, Reichman DR, Yaffe O. What Remains Unexplained about the Properties of Halide Perovskites? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800691. [PMID: 29569287 DOI: 10.1002/adma.201800691] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Indexed: 05/06/2023]
Abstract
The notion that halide perovskite crystals (ABX3 , where X is a halide) exhibit unique structural and optoelectronic behavior deserves serious scrutiny. After decades of steady and half a decade of intense research, the question which attributes of these materials are unusual, is discussed, with an emphasis on the identification of the most important remaining issues. The goal is to stimulate discussion rather than to merely present a community consensus.
Collapse
Affiliation(s)
- David A Egger
- Institute of Theoretical Physics, University of Regensburg, 93040, Regensburg, Germany
| | - Achintya Bera
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - David Cahen
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - Gary Hodes
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - Thomas Kirchartz
- IEK5-Photovoltaics, Forschungszentrum Jülich, 52425, Jülich, Germany
- Faculty of Engineering and CENIDE, University of Duisburg-Essen, 47057, Duisburg, Germany
| | - Leeor Kronik
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth, 76100, Israel
| | - Robert Lovrincic
- InnovationLab, 69115, Heidelberg, Germany
- Institute for High Frequency Technology, TU Braunschweig, 38106, Braunschweig, Germany
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Pennsylvania, PA, 19104-6323, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Omer Yaffe
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth, 76100, Israel
| |
Collapse
|