1
|
Yan C, Fang C, Gan J, Wang J, Zhao X, Wang X, Li J, Zhang Y, Liu H, Li X, Bai J, Liu J, Hong W. From Molecular Electronics to Molecular Intelligence. ACS NANO 2024; 18:28531-28556. [PMID: 39395180 DOI: 10.1021/acsnano.4c10389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
Molecular electronics is a field that explores the ultimate limits of electronic device dimensions by using individual molecules as operable electronic devices. Over the past five decades since the proposal of a molecular rectifier by Aviram and Ratner in 1974 ( Chem. Phys. Lett.1974,29, 277-283), researchers have developed various fabrication and characterization techniques to explore the electrical properties of molecules. With the push of electrical characterizations and data analysis methodologies, the reproducibility issues of the single-molecule conductance measurement have been chiefly resolved, and the origins of conductance variation among different devices have been investigated. Numerous prototypical molecular electronic devices with external physical and chemical stimuli have been demonstrated based on the advances of instrumental and methodological developments. These devices enable functions such as switching, logic computing, and synaptic-like computing. However, as the goal of molecular electronics, how can molecular-based intelligence be achieved through single-molecule electronic devices? At the fiftieth anniversary of molecular electronics, we try to answer this question by summarizing recent progress and providing an outlook on single-molecule electronics. First, we review the fabrication methodologies for molecular junctions, which provide the foundation of molecular electronics. Second, the preliminary efforts of molecular logic devices toward integration circuits are discussed for future potential intelligent applications. Third, some molecular devices with sensing applications through physical and chemical stimuli are introduced, demonstrating phenomena at a single-molecule scale beyond conventional macroscopic devices. From this perspective, we summarize the current challenges and outlook prospects by describing the concepts of "AI for single-molecule electronics" and "single-molecule electronics for AI".
Collapse
Affiliation(s)
- Chenshuai Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Chao Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jinyu Gan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xin Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaojing Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jing Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Yanxi Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Haojie Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Xiaohui Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Jie Bai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Institute of Artificial Intelligence & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Qiao X, Sil A, Sangtarash S, Smith SM, Wu C, Robertson CM, Nichols RJ, Higgins SJ, Sadeghi H, Vezzoli A. Nuclear Magnetic Resonance Chemical Shift as a Probe for Single-Molecule Charge Transport. Angew Chem Int Ed Engl 2024; 63:e202402413. [PMID: 38478719 PMCID: PMC11497234 DOI: 10.1002/anie.202402413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Indexed: 04/05/2024]
Abstract
Existing modelling tools, developed to aid the design of efficient molecular wires and to better understand their charge-transport behaviour and mechanism, have limitations in accuracy and computational cost. Further research is required to develop faster and more precise methods that can yield information on how charge transport properties are impacted by changes in the chemical structure of a molecular wire. In this study, we report a clear semilogarithmic correlation between charge transport efficiency and nuclear magnetic resonance chemical shifts in multiple series of molecular wires, also accounting for the presence of chemical substituents. The NMR data was used to inform a simple tight-binding model that accurately captures the experimental single-molecule conductance values, especially useful in this case as more sophisticated density functional theory calculations fail due to inherent limitations. Our study demonstrates the potential of NMR spectroscopy as a valuable tool for characterising, rationalising, and gaining additional insights on the charge transport properties of single-molecule junctions.
Collapse
Affiliation(s)
- X. Qiao
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - A. Sil
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - S. Sangtarash
- Device Modelling Group, School of EngineeringUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - S. M. Smith
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - C. Wu
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Institute of Optoelectronic Materials and Devices, Faculty of Materials Metallurgy and ChemistryJiangxi University of Science and TechnologyGanzhou341000China
| | - C. M. Robertson
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - R. J. Nichols
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - S. J. Higgins
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
| | - H. Sadeghi
- Device Modelling Group, School of EngineeringUniversity of WarwickCoventryCV4 7ALUnited Kingdom
| | - A. Vezzoli
- Department of ChemistryUniversity of LiverpoolCrown StreetLiverpoolL69 7ZDUnited Kingdom
- Stephenson Institute for Renewable EnergyUniversity of LiverpoolPeach StreetLiverpoolL69 7ZFUnited Kingdom
| |
Collapse
|
3
|
Guo MM, Jiang Y, Wang JY, Chen ZN, Hou S, Zhang QC. Effectively Enhancing the Conductance of Asymmetric Molecular Wires by Aligning the Energy Level and Symmetrizing the Coupling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38332611 DOI: 10.1021/acs.langmuir.3c03530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
An asymmetric structure is an important strategy for designing highly conductive molecular wires for a gap-fixed molecular circuit. As the conductance enhancement in the current strategy is still limited to about 2 times, we inserted a methylene group as a spacer in a conjugated structure to modulate the structural symmetry. We found that the conductance drastically enhanced in the asymmetric molecular wire to 1.5 orders of magnitude as high as that in the symmetric molecular wire. First-principles quantum transport studies attributed the effective enhancement to the synchronization of improved energy alignment and nearly symmetric coupling between the frontier orbitals and the electrodes.
Collapse
Affiliation(s)
- Meng-Meng Guo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Yuxuan Jiang
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, People's Republic of China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Jin-Yun Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Zhong-Ning Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, People's Republic of China
- Centre for Nanoscale Science and Technology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Qian-Chong Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
4
|
Taherinia D, Frisbie CD. Deciphering I-V characteristics in molecular electronics with the benefit of an analytical model. Phys Chem Chem Phys 2023; 25:32305-32316. [PMID: 37991400 DOI: 10.1039/d3cp03877g] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
We share our perspective that a simple analytical model for electron tunneling in molecular junctions can greatly aid quantitative analysis of experimental data in molecular electronics. In particular, the single-level model (SLM), derived from first principles, provides a precise prediction for the current-voltage (I-V) characteristics in terms of key electronic structure parameters, which in turn depend on the molecular and contact architecture. SLM analysis thus facilitates understanding of structure-property relationships and provides metrics that can be compared across different types of tunnel junctions, as we illustrate with several examples.
Collapse
Affiliation(s)
- Davood Taherinia
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - C Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
5
|
Yang Z, Cazade PA, Lin JL, Cao Z, Chen N, Zhang D, Duan L, Nijhuis CA, Thompson D, Li Y. High performance mechano-optoelectronic molecular switch. Nat Commun 2023; 14:5639. [PMID: 37704605 PMCID: PMC10499996 DOI: 10.1038/s41467-023-41433-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023] Open
Abstract
Highly-efficient molecular photoswitching occurs ex-situ but not to-date inside electronic devices due to quenching of excited states by background interactions. Here we achieve fully reversible in-situ mechano-optoelectronic switching in self-assembled monolayers (SAMs) of tetraphenylethylene molecules by bending their supporting electrodes to maximize aggregation-induced emission (AIE). We obtain stable, reversible switching across >1600 on/off cycles with large on/off ratio of (3.8 ± 0.1) × 103 and 140 ± 10 ms switching time which is 10-100× faster than other approaches. Multimodal characterization shows mechanically-controlled emission with UV-light enhancing the Coulomb interaction between the electrons and holes resulting in giant enhancement of molecular conductance. The best mechano-optoelectronic switching occurs in the most concave architecture that reduces ambient single-molecule conformational entropy creating artificially-tightened supramolecular assemblies. The performance can be further improved to achieve ultra-high switching ratio on the order of 105 using tetraphenylethylene derivatives with more AIE-active sites. Our results promise new applications from optimized interplay between mechanical force and optics in soft electronics.
Collapse
Affiliation(s)
- Zhenyu Yang
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Pierre-André Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Jin-Liang Lin
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Zhou Cao
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, P.R. China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, P.R. China
| | - Christian A Nijhuis
- Department of Molecules and Materials MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired NanoSystems Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland.
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China.
| |
Collapse
|
6
|
Peng W, Chen N, Wang C, Xie Y, Qiu S, Li S, Zhang L, Li Y. Fine-Tuning the Molecular Design for High-Performance Molecular Diodes Based on Pyridyl Isomers. Angew Chem Int Ed Engl 2023; 62:e202307733. [PMID: 37401826 DOI: 10.1002/anie.202307733] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/05/2023]
Abstract
Better control of molecule-electrode coupling (Γ) to minimize leakage current is an effective method to optimize the functionality of molecular diodes. Herein we embedded 5 isomers of phenypyridyl derivatives, each with an N atom placed at a different position, in two electrodes to fine-tune Γ between self-assembled monolayers (SAMs) and the top electrode of EGaIn (eutectic Ga-In terminating in Ga2 O3 ). Combined with electrical tunnelling results, characterizations of electronic structures, single-level model fittings, and DFT calculations, we found that the values of Γ of SAMs formed by these isomers could be regulated by nearly 10 times, thereby contributing to the leakage current changing over about two orders of magnitude and switching the isomers from resistors to diodes with a rectification ratio (r+ =|J(+1.5 V)/J(-1.5 V)|) exceeding 200. We demonstrated that the N atom placement can be chemically engineered to tune the resistive and rectifying properties of the molecular junctions, making it possible to convert molecular resistors into rectifiers. Our study provides fundamental insights into the role of isomerism in molecular electronics and offers a new avenue for designing functional molecular devices.
Collapse
Affiliation(s)
- Wuxian Peng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ningyue Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Caiyun Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu Xie
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shengzhe Qiu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuwei Li
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Liang Zhang
- Center for Combustion Energy, Tsinghua University, Beijing, 100084, China
- School of Vehicle and Mobility, State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing, 100084, China
| | - Yuan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Sun F, Liu L, Zheng CF, Li YC, Yan Y, Fu XX, Wang CK, Liu R, Xu B, Li ZL. Decoding the mechanical conductance switching behaviors of dipyridyl molecular junctions. NANOSCALE 2023; 15:12586-12597. [PMID: 37461829 DOI: 10.1039/d3nr00505d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Dipyridyl molecular junctions often show intriguing conductance switching behaviors with mechanical modulations, but the mechanisms are still not completely revealed. By applying the ab initio-based adiabatic simulation method, the configuration evolution and electron transport properties of dipyridyl molecular junctions in stretching and compressing processes are systematically investigated. The numerical results reveal that the dipyridyl molecular junctions tend to form specific contact configurations during formation processes. In small electrode gaps, the pyridyls almost vertically adsorb on the second Au layers of the tip electrodes by pushing the top Au atoms aside. These specific contact configurations result in stronger molecule-electrode couplings and larger electronic incident cross-sectional areas, which consequently lead to large breaking forces and high conductance. On further elongating the molecular junctions, the pyridyls shift to the top Au atoms of the tip electrodes. The additional scattering of the top Au atoms dramatically decreases the conductance and switches the molecular junctions to the lower conductive states. Perfect cyclical conductance switches are obtained as observed in the experiments by repeatedly stretching and compressing the molecular junctions. The O atom in the side-group tends to hinder the pyridyl from adsorbing on the second Au layer and further inhibits the conductance switch of the dipyridyl molecular junction.
Collapse
Affiliation(s)
- Feng Sun
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Lin Liu
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Chang-Feng Zheng
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Yu-Chen Li
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Yan Yan
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Xiao-Xiao Fu
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Chuan-Kui Wang
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| | - Ran Liu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, USA.
- Biodesign Center for Bioelectronics and Biosensors, School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, Georgia 30602, USA.
| | - Zong-Liang Li
- School of Physics and Electronics, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
8
|
Yanagisawa H, Bohn M, Kitoh-Nishioka H, Goschin F, Kling MF. Light-Induced Subnanometric Modulation of a Single-Molecule Electron Source. PHYSICAL REVIEW LETTERS 2023; 130:106204. [PMID: 36962055 DOI: 10.1103/physrevlett.130.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Single-molecule electron sources of fullerenes driven via constant electric fields, approximately 1 nm in size, produce peculiar emission patterns, such as a cross or a two-leaf pattern. By illuminating the electron sources with femtosecond light pulses, we discovered that largely modulated emission patterns appeared from single molecules. Our simulations revealed that emission patterns, which have been an intractable question for over seven decades, represent single-molecule molecular orbitals. Furthermore, the observed modulations originated from variations of single-molecule molecular orbitals, practically achieving the subnanometric optical modulation of an electron source.
Collapse
Affiliation(s)
- Hirofumi Yanagisawa
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
- Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581, Japan
- Physics Department, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
| | - Markus Bohn
- Physics Department, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
| | - Hirotaka Kitoh-Nishioka
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka 577-8502 Japan
| | - Florian Goschin
- Physics Department, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
| | - Matthias F Kling
- Physics Department, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
- Max Planck Institute of Quantum Optics, D-85748 Garching, Germany
| |
Collapse
|
9
|
Nian LL, Wang T, Lü JT. Plasmon Squeezing in Single-Molecule Junctions. NANO LETTERS 2022; 22:9418-9423. [PMID: 36449564 DOI: 10.1021/acs.nanolett.2c03371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Scanning tunneling microscope (STM)-induced luminescence provides an ideal platform for electrical generation and the atomic-scale manipulation of nonclassical states of light. However, despite its extreme importance in quantum technologies, squeezed light emission with reduced quantum fluctuations has hitherto not been demonstrated in such a platform. Here, we theoretically predict that the emitted light from the plasmon mode can be squeezed in an STM single molecular junction subject to an external laser drive. Going beyond the traditional paradigm that generates squeezing with the quadratic interaction of photons, our prediction explores the molecular coherence involved in an anharmonic energy spectrum of a coupled plasmon-molecule-exciton system. Furthermore, we show that, by selectively exciting the energy ladder, the squeezed plasmon can show either sub- or super-Poissonian statistical properties. We also demonstrate that, following the same principle, the molecular excitonic mode can be squeezed simultaneously.
Collapse
Affiliation(s)
- Lei-Lei Nian
- School of Physics and Astronomy, Yunnan University, 650091Kunming, People's Republic of China
| | - Tao Wang
- School of Physics, Institute for Quantum Science and Engineering, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074Wuhan, People's Republic of China
| | - Jing-Tao Lü
- School of Physics, Institute for Quantum Science and Engineering, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 430074Wuhan, People's Republic of China
| |
Collapse
|
10
|
Single-Molecule Chemical Reactions Unveiled in Molecular Junctions. Processes (Basel) 2022. [DOI: 10.3390/pr10122574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
Abstract
Understanding chemical processes at the single-molecule scale represents the ultimate limit of analytical chemistry. Single-molecule detection techniques allow one to reveal the detailed dynamics and kinetics of a chemical reaction with unprecedented accuracy. It has also enabled the discoveries of new reaction pathways or intermediates/transition states that are inaccessible in conventional ensemble experiments, which is critical to elucidating their intrinsic mechanisms. Thanks to the rapid development of single-molecule junction (SMJ) techniques, detecting chemical reactions via monitoring the electrical current through single molecules has received an increasing amount of attention and has witnessed tremendous advances in recent years. Research efforts in this direction have opened a new route for probing chemical and physical processes with single-molecule precision. This review presents detailed advancements in probing single-molecule chemical reactions using SMJ techniques. We specifically highlight recent progress in investigating electric-field-driven reactions, reaction dynamics and kinetics, host–guest interactions, and redox reactions of different molecular systems. Finally, we discuss the potential of single-molecule detection using SMJs across various future applications.
Collapse
|
11
|
Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem 2022; 6:681-704. [PMID: 37117494 DOI: 10.1038/s41570-022-00423-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.
Collapse
|
12
|
Li P, Zhou L, Zhao C, Ju H, Gao Q, Si W, Cheng L, Hao J, Li M, Chen Y, Jia C, Guo X. Single-molecule nano-optoelectronics: insights from physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:086401. [PMID: 35623319 DOI: 10.1088/1361-6633/ac7401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Single-molecule optoelectronic devices promise a potential solution for miniaturization and functionalization of silicon-based microelectronic circuits in the future. For decades of its fast development, this field has made significant progress in the synthesis of optoelectronic materials, the fabrication of single-molecule devices and the realization of optoelectronic functions. On the other hand, single-molecule optoelectronic devices offer a reliable platform to investigate the intrinsic physical phenomena and regulation rules of matters at the single-molecule level. To further realize and regulate the optoelectronic functions toward practical applications, it is necessary to clarify the intrinsic physical mechanisms of single-molecule optoelectronic nanodevices. Here, we provide a timely review to survey the physical phenomena and laws involved in single-molecule optoelectronic materials and devices, including charge effects, spin effects, exciton effects, vibronic effects, structural and orbital effects. In particular, we will systematically summarize the basics of molecular optoelectronic materials, and the physical effects and manipulations of single-molecule optoelectronic nanodevices. In addition, fundamentals of single-molecule electronics, which are basic of single-molecule optoelectronics, can also be found in this review. At last, we tend to focus the discussion on the opportunities and challenges arising in the field of single-molecule optoelectronics, and propose further potential breakthroughs.
Collapse
Affiliation(s)
- Peihui Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Zhou
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Hongyu Ju
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, People's Republic of China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Wei Si
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Li Cheng
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Jie Hao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Mengmeng Li
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Yijian Chen
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, People's Republic of China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, People's Republic of China
| |
Collapse
|
13
|
Liu R, Han Y, Sun F, Khatri G, Kwon J, Nickle C, Wang L, Wang CK, Thompson D, Li ZL, Nijhuis CA, Del Barco E. Stable Universal 1- and 2-Input Single-Molecule Logic Gates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202135. [PMID: 35546046 DOI: 10.1002/adma.202202135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/24/2022] [Indexed: 06/15/2023]
Abstract
Controllable single-molecule logic operations will enable development of reliable ultra-minimalistic circuit elements for high-density computing but require stable currents from multiple orthogonal inputs in molecular junctions. Utilizing the two unique adjacent conductive molecular orbitals (MOs) of gated Au/S-(CH2 )3 -Fc-(CH2 )9 -S/Au (Fc = ferrocene) single-electron transistors (≈2 nm), a stable single-electron logic calculator (SELC) is presented, which allows real-time modulation of output current as a function of orthogonal input bias (Vb ) and gate (Vg ) voltages. Reliable and low-voltage (ǀVb ǀ ≤ 80 mV, ǀVg ǀ ≤ 2 V) operations of the SELC depend upon the unambiguous association of current resonances with energy shifts of the MOs (which show an invariable, small energy separation of ≈100 meV) in response to the changes of voltages, which is confirmed by electron-transport calculations. Stable multi-logic operations based on the SELC modulated current conversions between the two resonances and Coulomb blockade regimes are demonstrated via the implementation of all universal 1-input (YES/NOT/PASS_1/PASS_0) and 2-input (AND/XOR/OR/NAND/NOR/INT/XNOR) logic gates.
Collapse
Affiliation(s)
- Ran Liu
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Yingmei Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Feng Sun
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, P. R. China
| | - Gyan Khatri
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Jaesuk Kwon
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Cameron Nickle
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| | - Lejia Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- School of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315048, P. R. China
| | - Chuan-Kui Wang
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, P. R. China
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Zong-Liang Li
- Key Laboratory of Medical Physics and Image Processing of Shandong Province, School of Physics and Electronics, Shandong Normal University, Jinan, 250358, P. R. China
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, Netherlands
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, FL, 32816, USA
| |
Collapse
|
14
|
Zhao S, Deng ZY, Albalawi S, Wu Q, Chen L, Zhang H, Zhao XJ, Hou H, Hou S, Dong G, Yang Y, Shi J, Lambert CJ, Tan YZ, Hong W. Charge transport through single-molecule bilayer-graphene junctions with atomic thickness. Chem Sci 2022; 13:5854-5859. [PMID: 35685781 PMCID: PMC9132082 DOI: 10.1039/d1sc07024j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
The van der Waals interactions (vdW) between π-conjugated molecules offer new opportunities for fabricating heterojunction-based devices and investigating charge transport in heterojunctions with atomic thickness. In this work, we fabricate sandwiched single-molecule bilayer-graphene junctions via vdW interactions and characterize their electrical transport properties by employing the cross-plane break junction (XPBJ) technique. The experimental results show that the cross-plane charge transport through single-molecule junctions is determined by the size and layer number of molecular graphene in these junctions. Density functional theory (DFT) calculations reveal that the charge transport through molecular graphene in these molecular junctions is sensitive to the angles between the graphene flake and peripheral mesityl groups, and those rotated groups can be used to tune the electrical conductance. This study provides new insight into cross-plane charge transport in atomically thin junctions and highlights the role of through-space interactions in vdW heterojunctions at the molecular scale. Charge transport through single-molecule bilayer-graphene junctions fabricated by a cross-plane break junction technique can be tuned at the atomic level.![]()
Collapse
Affiliation(s)
- Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ze-Ying Deng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Shadiah Albalawi
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Qingqing Wu
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xin-Jing Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Hao Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Songjun Hou
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Gang Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Colin J Lambert
- Department of Physics, Lancaster University Lancaster LA1 4YB UK
| | - Yuan-Zhi Tan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
15
|
Zou Q, Chen X, Zhou Y, Jin X, Zhang Z, Qiu J, Wang R, Hong W, Su J, Qu DH, Tian H. Photoconductance from the Bent-to-Planar Photocycle between Ground and Excited States in Single-Molecule Junctions. J Am Chem Soc 2022; 144:10042-10052. [PMID: 35611861 DOI: 10.1021/jacs.2c03671] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Single-molecule conductance measurements for 9,14-diphenyl-9,14-dihydrodibenzo[a,c]phenazine (DPAC) may offer unique insight into the bent-to-planar photocycle between the ground and excited states. Herein, we employ DPAC derivative DPAC-SMe as the molecular prototype to fabricate single-molecule junctions using the scanning tunneling microscope break junction technique and explore photoconductance dependence on the excited-state structural/electronic changes. We find up to ∼200% conductance enhancement of DPAC-SMe under continuous 340 nm light irradiation than that without irradiation, while photoconductance disappears in the case where structural evolution of the DPAC-SMe is halted through macrocyclization. The in situ conductance modulation as pulsed 340 nm light irradiation is monitored in the DPAC-SMe-based junctions alone, suggesting that the photoconductance of DPAC-SMe stems from photoinduced intramolecular planarization. Theoretical calculations reveal that the photoinduced structural evolution brings about a significant redistribution of the electron cloud density, which leads to the appearance of Fano resonance, resulting in enhanced conductance through the DPAC-SMe-fabricated junctions. This work provides evidence of bent-to-planar photocycle-induced conductance differences at the single-molecule level, offering a tailored approach for tuning the charge transport characteristics of organic photoelectronic devices.
Collapse
Affiliation(s)
- Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanying Chen
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Jin
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin Qiu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Rui Wang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianhua Su
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
16
|
Dubi Y, Un IW, Sivan Y. Distinguishing Thermal from Nonthermal ("Hot") Carriers in Illuminated Molecular Junctions. NANO LETTERS 2022; 22:2127-2133. [PMID: 35075905 DOI: 10.1021/acs.nanolett.1c04291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The search for the signature of nonthermal (so-called "hot") electrons in illuminated plasmonic nanostructures requires detailed understanding of the nonequilibrium electron distribution under illumination, as well as a careful design of the experimental system employed to distinguish nonthermal electrons from thermal ones. Here, we provide a theory for using plasmonic molecular junctions to achieve this goal. We show how nonthermal electrons can be measured directly and separately from the unavoidable thermal response and discuss the relevance of our theory to recent experiments.
Collapse
Affiliation(s)
- Yonatan Dubi
- Department of Chemistry, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Ieng-Wai Un
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| | - Yonatan Sivan
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be'er Sheva 8410501, Israel
| |
Collapse
|
17
|
Light-Driven Charge Transport and Optical Sensing in Molecular Junctions. NANOMATERIALS 2022; 12:nano12040698. [PMID: 35215024 PMCID: PMC8878161 DOI: 10.3390/nano12040698] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/11/2022]
Abstract
Probing charge and energy transport in molecular junctions (MJs) has not only enabled a fundamental understanding of quantum transport at the atomic and molecular scale, but it also holds significant promise for the development of molecular-scale electronic devices. Recent years have witnessed a rapidly growing interest in understanding light-matter interactions in illuminated MJs. These studies have profoundly deepened our knowledge of the structure–property relations of various molecular materials and paved critical pathways towards utilizing single molecules in future optoelectronics applications. In this article, we survey recent progress in investigating light-driven charge transport in MJs, including junctions composed of a single molecule and self-assembled monolayers (SAMs) of molecules, and new opportunities in optical sensing at the single-molecule level. We focus our attention on describing the experimental design, key phenomena, and the underlying mechanisms. Specifically, topics presented include light-assisted charge transport, photoswitch, and photoemission in MJs. Emerging Raman sensing in MJs is also discussed. Finally, outstanding challenges are explored, and future perspectives in the field are provided.
Collapse
|
18
|
Zhu X, Xu Y, Zhao C, Jia C, Guo X. Recent Advances in Photochemical Reactions on Single-Molecule Electrical Platforms. Macromol Rapid Commun 2022; 43:e2200017. [PMID: 35150177 DOI: 10.1002/marc.202200017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/05/2022] [Indexed: 11/08/2022]
Abstract
The photochemical reaction is a very important type of chemical reactions. Visualizing and controlling photo-mediated reactions is a long-standing goal and challenge. In this regard, single-molecule electrical detection with label-free, real-time and in situ characteristics has unique advantages in monitoring the dynamic process of photoreactions at the single-molecule level. In this Review, we provide a valuable summary of the latest process of single-molecule photochemical reactions based on single-molecule electrical platforms. The single-molecule electrical detection platforms for monitoring photoreactions are displayed, including their fundamental principles, construction methods and practical applications. The single-molecule studies of two different types of light-mediated reactions are summarized as below: i) photo-induced reactions, including reversible cyclization, conformational isomerization and other photo-related reactions; ii) plasmon-mediated photoreactions, including reaction mechanisms and concrete examples, such as plasmon-induced photolysis of S-S/O-O bonds and tautomerization of porphycene. In addition, the prospects for future research directions and challenges in this field are also discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xin Zhu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Yanxia Xu
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Cong Zhao
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin, 300350, P. R. China.,Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing, 100871, P. R. China
| |
Collapse
|
19
|
Elenewski JE, Wójtowicz G, Rams MM, Zwolak M. Performance of reservoir discretizations in quantum transport simulations. J Chem Phys 2021; 155:124117. [PMID: 34598565 DOI: 10.1063/5.0065799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quantum transport simulations often use explicit, yet finite, electronic reservoirs. These should converge to the correct continuum limit, albeit with a trade-off between discretization and computational cost. Here, we study this interplay for extended reservoir simulations, where relaxation maintains a bias or temperature drop across the system. Our analysis begins in the non-interacting limit, where we parameterize different discretizations to compare them on an even footing. For many-body systems, we develop a method to estimate the relaxation that best approximates the continuum by controlling virtual transitions in Kramers turnover for the current. While some discretizations are more efficient for calculating currents, there is little benefit with regard to the overall state of the system. Any gains become marginal for many-body, tensor network simulations, where the relative performance of discretizations varies when sweeping other numerical controls. These results indicate that typical reservoir discretizations have little impact on numerical costs for certain computational tools. The choice of a relaxation parameter is nonetheless crucial, and the method we develop provides a reliable estimate of the optimal relaxation for finite reservoirs.
Collapse
Affiliation(s)
- Justin E Elenewski
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Gabriela Wójtowicz
- Jagiellonian University, Institute of Theoretical Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Marek M Rams
- Jagiellonian University, Institute of Theoretical Physics, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
20
|
Akhtar A, Rashid U, Seth C, Kumar S, Broekmann P, Kaliginedi V. Modulating the charge transport in metal│molecule│metal junctions via electrochemical gating. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhao Z, Guo C, Ni L, Zhao X, Zhang S, Xiang D. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. NANOSCALE HORIZONS 2021; 6:386-392. [PMID: 33949578 DOI: 10.1039/d1nh00031d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We developed a method based on the mechanically controllable break junction technique to investigate the electron transport properties of single molecular junctions upon fiber waveguided light. In our strategy, a metal-coated tapered optical fiber is fixed on a flexible substrate, and this tapered fiber serves as both the optical waveguide and metal electrodes after it breaks. For an imidazole bridged single-molecule junction, two probable conductance values below 1G0 are observed. The higher value shows an approximately 40% enhancement under illumination, while the lower one does not show distinguishable difference under illumination. Theoretical calculations reveal these two conductance values resulting from the imidazole monomer junction and the imidazole dimer junction linked via a hydrogen bond, respectively. In imidazole monomer junctions, the absorption of a single photon strongly shifts the transmission function resulting in optical-induced conductance enhancement. In contrast, the transmission function of imidazole dimer junctions remains at the same level in the bias window despite the light illumination. This work provides a robust experimental framework for studying the underlying mechanisms of photoconductivity in single-molecule junctions and offers tools for tuning the optoelectronic performance of single-molecule devices in situ.
Collapse
Affiliation(s)
- Zhikai Zhao
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology Institute of Modern Optics, Nankai University, Tianjin 300350, China.
| | - Chenyang Guo
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology Institute of Modern Optics, Nankai University, Tianjin 300350, China.
| | - Lifa Ni
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology Institute of Modern Optics, Nankai University, Tianjin 300350, China.
| | - Xueyan Zhao
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology Institute of Modern Optics, Nankai University, Tianjin 300350, China.
| | - Surong Zhang
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology Institute of Modern Optics, Nankai University, Tianjin 300350, China.
| | - Dong Xiang
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology Institute of Modern Optics, Nankai University, Tianjin 300350, China.
| |
Collapse
|
22
|
Chen Y, Huang L, Chen H, Chen Z, Zhang H, Xiao Z, Hong W. Towards Responsive
Single‐Molecule
Device. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yaorong Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Longfeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Hang Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Zhixin Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Collaborative Innovation Center of Chemistry for Energy Materials, Xiamen University Xiamen Fujian 361005 China
| |
Collapse
|
23
|
Zwolak M. Analytic expressions for the steady-state current with finite extended reservoirs. J Chem Phys 2020; 153:224107. [PMID: 33317280 PMCID: PMC8356363 DOI: 10.1063/5.0029223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Open-system simulations of quantum transport provide a platform for the study of true steady states, Floquet states, and the role of temperature, time dynamics, and fluctuations, among other physical processes. They are rapidly gaining traction, especially techniques that revolve around "extended reservoirs," a collection of a finite number of degrees of freedom with relaxation that maintains a bias or temperature gradient, and have appeared under various guises (e.g., the extended or mesoscopic reservoir, auxiliary master equation, and driven Liouville-von Neumann approaches). Yet, there are still a number of open questions regarding the behavior and convergence of these techniques. Here, we derive general analytical solutions, and associated asymptotic analyses, for the steady-state current driven by finite reservoirs with proportional coupling to the system/junction. In doing so, we present a simplified and unified derivation of the non-interacting and many-body steady-state currents through arbitrary junctions, including outside of proportional coupling. We conjecture that the analytic solution for proportional coupling is the most general of its form for isomodal relaxation (i.e., relaxing proportional coupling will remove the ability to find compact, general analytical expressions for finite reservoirs). These results should be of broad utility in diagnosing the behavior and implementation of extended reservoir and related approaches, including the convergence to the Landauer limit (for non-interacting systems) and the Meir-Wingreen formula (for many-body systems).
Collapse
Affiliation(s)
- Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
24
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
25
|
Audi H, Viero Y, Alwhaibi N, Chen Z, Iazykov M, Heynderickx A, Xiao F, Guérin D, Krzeminski C, Grace IM, Lambert CJ, Siri O, Vuillaume D, Lenfant S, Klein H. Electrical molecular switch addressed by chemical stimuli. NANOSCALE 2020; 12:10127-10139. [PMID: 32352127 DOI: 10.1039/d0nr02461a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We demonstrate that the conductance switching of benzo-bis(imidazole) molecules upon protonation depends on the lateral functional groups. The protonated H-substituted molecule shows a higher conductance than the neutral one (Gpro > Gneu), while the opposite (Gneu > Gpro) is observed for a molecule laterally functionalized by amino-phenyl groups. These results are demonstrated at various scale lengths: self-assembled monolayers, tiny nanodot-molecule junctions and single molecules. From ab initio theoretical calculations, we conclude that for the H-substituted molecule, the result Gpro > Gneu is correctly explained by a reduction of the LUMO-HOMO gap, while for the amino-phenyl functionnalized molecule, the result Gneu > Gpro is consistent with a shift of the HOMO, which reduces the density of states at the Fermi energy.
Collapse
Affiliation(s)
- H Audi
- Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), CNRS, Aix Marseille Université, Marseille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Hao T, Tan H, Li S, Wang Y, Zhou Z, Yu C, Zhou Y, Yan D. Multilayer onion‐like vesicles self‐assembled from amphiphilic hyperbranched multiarm copolymers via simulation. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tongfan Hao
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
- Institute of Green Chemistry and Chemical Technology, School of Chemistry and Chemical EngineeringJiangsu University Zhenjiang China
| | - Haina Tan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Shanlong Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yuling Wang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Zhiping Zhou
- Institute of Polymer Materials, School of Materials Science and EngineeringJiangsu University Zhenjiang China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong University Shanghai China
| |
Collapse
|
27
|
Wójtowicz G, Elenewski JE, Rams MM, Zwolak M. Open System Tensor Networks and Kramers' Crossover for Quantum Transport. PHYSICAL REVIEW. A 2020; 101:10.1103/PhysRevA.101.050301. [PMID: 33367191 PMCID: PMC7754794 DOI: 10.1103/physreva.101.050301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tensor networks are a powerful tool for many-body ground states with limited entanglement. These methods can nonetheless fail for certain time-dependent processes-such as quantum transport or quenches-where entanglement growth is linear in time. Matrix-product-state decompositions of the resulting out-of-equilibrium states require a bond dimension that grows exponentially, imposing a hard limit on simulation timescales. However, in the case of transport, if the reservoir modes of a closed system are arranged according to their scattering structure, the entanglement growth can be made logarithmic. Here, we apply this ansatz to open systems via extended reservoirs that have explicit relaxation. This enables transport calculations that can access steady states, time dynamics and noise, and periodic driving (e.g., Floquet states). We demonstrate the approach by calculating the transport characteristics of an open, interacting system. These results open a path to scalable and numerically systematic many-body transport calculations with tensor networks.
Collapse
Affiliation(s)
- Gabriela Wójtowicz
- Jagiellonian University, Institute of Theoretical Physics, Lojasiewicza 11, 30-348 Kraków, Poland
| | - Justin E. Elenewski
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD, USA
| | - Marek M. Rams
- Jagiellonian University, Institute of Theoretical Physics, Lojasiewicza 11, 30-348 Kraków, Poland
| | - Michael Zwolak
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD, USA
| |
Collapse
|
28
|
Fu B, Hsu LY. Photoinduced anomalous Coulomb blockade and the role of triplet states in electron transport through an irradiated molecular transistor. II. Effects of electron-phonon coupling and vibrational relaxation. J Chem Phys 2019. [DOI: 10.1063/1.5112095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Bo Fu
- Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60201, USA
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
29
|
Wang S, Wattanatorn N, Chiang N, Zhao Y, Kim M, Ma H, Jen AKY, Weiss PS. Photoinduced Charge Transfer in Single-Molecule p-n Junctions. J Phys Chem Lett 2019; 10:2175-2181. [PMID: 30995403 DOI: 10.1021/acs.jpclett.9b00855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We measured photoinduced charge separation in isolated individual C60-tethered 2,5-dithienylpyrrole triad (C60 triad) molecules with submolecular resolution using a custom-built laser-assisted scanning tunneling microscope. Laser illumination was introduced evanescently into the tunneling junction through total internal reflection, and the changes in tunneling current and electronic spectra caused by photoexcitation were measured and spatially resolved. Photoinduced charge separation was not detected for all C60 triad molecules, indicating that the conformations of the molecules may affect the excitation probability, lifetime, and/or charge distribution. A photoinduced signal was not observed for dodecanethiol molecules in the surrounding matrix or for control molecules without C60 moieties, as neither absorbs incident photons at this energy. This spectroscopic imaging technique has the potential to elucidate detailed photoinduced carrier dynamics, which are inaccessible via ensemble-scale (i.e., averaging) measurements, which can be used to direct the rational design and optimization of molecular p-n junctions and assemblies for energy harvesting.
Collapse
Affiliation(s)
- Shenkai Wang
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Natcha Wattanatorn
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Naihao Chiang
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Yuxi Zhao
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Moonhee Kim
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Hong Ma
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98185 , United States
| | - Alex K-Y Jen
- Department of Materials Science and Engineering , University of Washington , Seattle , Washington 98185 , United States
| | - Paul S Weiss
- Department of Chemistry and Biochemistry , University of California, Los Angeles , Los Angeles , California 90095 , United States
- California NanoSystems Institute , University of California, Los Angeles , Los Angeles , California 90095 , United States
- Department of Materials Science and Engineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| |
Collapse
|
30
|
Lin K, Burke A, King NB, Kahanda D, Mazaheripour A, Bartlett A, Dibble DJ, McWilliams MA, Taylor DW, Jocson J, Minary‐Jolandan M, Gorodetsky AA, Slinker JD. Enhancement of the Electrical Properties of DNA Molecular Wires through Incorporation of Perylenediimide DNA Base Surrogates. Chempluschem 2019; 84:416-419. [DOI: 10.1002/cplu.201800661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/27/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Kuo‐Yao Lin
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Anthony Burke
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Nolan B. King
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Dimithree Kahanda
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Amir Mazaheripour
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Andrew Bartlett
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - David J. Dibble
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Marc A. McWilliams
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - David W. Taylor
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Jonah‐Micah Jocson
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Majid Minary‐Jolandan
- Department of Mechanical Engineering The University of Texas at Dallas 800 W. Campbell Road, EC 38 Richardson TX 75080-3020 USA
| | - Alon A. Gorodetsky
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Jason D. Slinker
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| |
Collapse
|
31
|
Miwa K, Najarian AM, McCreery RL, Galperin M. Hubbard Nonequilibrium Green's Function Analysis of Photocurrent in Nitroazobenzene Molecular Junction. J Phys Chem Lett 2019; 10:1550-1557. [PMID: 30879300 DOI: 10.1021/acs.jpclett.9b00270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a combined experimental and theoretical study of photoinduced current in molecular junctions consisting of monolayers of nitroazobenzene oligomers chemisorbed on carbon surfaces and illuminated by ultraviolet-visible light through a transparent electrode. Experimentally observed dependence of the photocurrent on light frequency, temperature, and monolayer thickness is analyzed within first-principles simulations employing the Hubbard nonequilibrium Green's function diagrammatic technique. We reproduce qualitatively correct behavior and discuss mechanisms leading to the characteristic behavior of dark and photoinduced currents in response to changes in bias, frequency of radiation, temperature, and thickness of molecular layer.
Collapse
Affiliation(s)
- Kuniyuki Miwa
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92034 , United States
| | | | | | - Michael Galperin
- Department of Chemistry and Biochemistry , University of California San Diego , La Jolla , California 92034 , United States
| |
Collapse
|
32
|
Wang K, Vezzoli A, Grace IM, McLaughlin M, Nichols RJ, Xu B, Lambert CJ, Higgins SJ. Charge transfer complexation boosts molecular conductance through Fermi level pinning. Chem Sci 2019; 10:2396-2403. [PMID: 30881668 PMCID: PMC6385675 DOI: 10.1039/c8sc04199g] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/02/2019] [Indexed: 11/21/2022] Open
Abstract
Interference features in the transmission spectra can dominate charge transport in metal-molecule-metal junctions when they occur close to the contact Fermi energy (E F). Here, we show that by forming a charge-transfer complex with tetracyanoethylene (TCNE) we can introduce new constructive interference features in the transmission profile of electron-rich, thiophene-based molecular wires that almost coincide with E F. Complexation can result in a large enhancement of junction conductance, with very efficient charge transport even at relatively large molecular lengths. For instance, we report a conductance of 10-3 G 0 (∼78 nS) for the ∼2 nm long α-quaterthiophene:TCNE complex, almost two orders of magnitude higher than the conductance of the bare molecular wire. As the conductance of the complexes is remarkably independent of features such as the molecular backbone and the nature of the contacts to the electrodes, our results strongly suggest that the interference features are consistently pinned near to the Fermi energy of the metallic leads. Theoretical studies indicate that the semi-occupied nature of the charge-transfer orbital is not only important in giving rise to the latter effect, but also could result in spin-dependent transport for the charge-transfer complexes. These results therefore present a simple yet effective way to increase charge transport efficiency in long and poorly conductive molecular wires, with important repercussions in single-entity thermoelectronics and spintronics.
Collapse
Affiliation(s)
- Kun Wang
- Department of Physics and Astronomy & NanoSEC , University of Georgia , 220 Riverbend Road , Athens , GA 30602 , USA .
| | - Andrea Vezzoli
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK .
| | - Iain M Grace
- Department of Physics , Lancaster University , Lancaster LA1 4YB , UK .
| | - Maeve McLaughlin
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK .
| | - Richard J Nichols
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK .
| | - Bingqian Xu
- Department of Physics and Astronomy & NanoSEC , University of Georgia , 220 Riverbend Road , Athens , GA 30602 , USA .
- College of Engineering & NanoSEC , University of Georgia , 220 Riverbend Road , Athens , GA 30602 , USA
| | - Colin J Lambert
- Department of Physics , Lancaster University , Lancaster LA1 4YB , UK .
| | - Simon J Higgins
- Department of Chemistry , University of Liverpool , Crown Street , Liverpool L69 7ZD , UK .
| |
Collapse
|
33
|
Najarian AM, McCreery RL. Long-Range Activationless Photostimulated Charge Transport in Symmetric Molecular Junctions. ACS NANO 2019; 13:867-877. [PMID: 30604970 DOI: 10.1021/acsnano.8b08662] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Molecular electronic junctions consisting of nitroazobenzene oligomers covalently bonded to a conducting carbon surface using an established "all-carbon" device design were illuminated with UV-vis light through a partially transparent top electrode. Monitoring junction conductance with a DC bias imposed permitted observation of photocurrents while varying the incident wavelength, light intensity, molecular layer thickness, and temperature. The photocurrent spectrum tracked the in situ absorption spectrum of nitroazobenzene, increased linearly with light intensity, and depended exponentially on applied bias. The electronic characteristics of the photocurrent differed dramatically from those of the same device in the dark, with orders of magnitude higher conductance and very weak attenuation with molecular layer thickness (β = 0.14 nm-1 for thickness above 5 nm). The temperature dependence of the photocurrent was opposite that of the dark current, with a 35% decrease in conductance between 80 and 450 K, while the dark current increased by a factor of 4.5 over the same range. The photocurrent was similar to the dark current for thin molecular layers but greatly exceeded the dark current for low bias and thick molecular layers. We conclude that the light and dark mechanisms are additive, with photoexcited carriers transported without thermal activation for a thickness range of 5-10 nm. The inverse temperature dependence is likely due to scattering or recombination events, both of which increase with temperature and in turn decrease the photocurrent. Photostimulated resonant transport potentially widens the breadth of conceivable molecular electronic devices and may have immediate value for wavelength-specific photodetection.
Collapse
Affiliation(s)
| | - Richard L McCreery
- Department of Chemistry , University of Alberta , Edmonton , Canada T6G 2R3
| |
Collapse
|
34
|
Stiévenard D, Guérin D, Lenfant S, Lévêque G, Nijhuis CA, Vuillaume D. Electrical detection of plasmon-induced isomerization in molecule-nanoparticle network devices. NANOSCALE 2018; 10:23122-23130. [PMID: 30512021 DOI: 10.1039/c8nr07603k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use a network of molecularly linked gold nanoparticles (NPSAN: nanoparticle self-assembled network) to demonstrate the electrical detection (conductance variation) of plasmon-induced isomerization (PII) of azobenzene derivatives (azobenzene bithiophene: AzBT). We show that PII is more efficient in a 3D-like NPSAN (cluster-NPSAN) than in a purely two-dimensional NPSAN (i.e., a monolayer of AzBT functionalized Au NPs). By comparison with the usual optical (UV-visible light) isomerization of AzBT, PII shows faster (a factor > ∼10) isomerization kinetics. Possible PII mechanisms are discussed: electric field-induced isomerization, two-phonon process, and plasmon-induced resonance energy transfer (PIRET), the latter being the most likely.
Collapse
Affiliation(s)
- Didier Stiévenard
- Institute of Electronics, Microelectronics and Nanotechnology (IEMN), CNRS, Université de Lille, Avenue Poincaré, F-59652 cedex, Villeneuve d'Ascq, France.
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Leary E, Limburg B, Alanazy A, Sangtarash S, Grace I, Swada K, Esdaile LJ, Noori M, González MT, Rubio-Bollinger G, Sadeghi H, Hodgson A, Agraı̈t N, Higgins SJ, Lambert CJ, Anderson HL, Nichols RJ. Bias-Driven Conductance Increase with Length in Porphyrin Tapes. J Am Chem Soc 2018; 140:12877-12883. [DOI: 10.1021/jacs.8b06338] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Edmund Leary
- Department of Chemistry, Donnan and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, United Kingdom
| | - Bart Limburg
- Department of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, United Kingdom
| | - Asma Alanazy
- Department of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
- Department of Mathematics and Statistics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Sara Sangtarash
- Department of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Iain Grace
- Department of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Katsutoshi Swada
- Department of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, United Kingdom
| | - Louisa J. Esdaile
- Department of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, United Kingdom
| | - Mohammed Noori
- Department of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
- Physics Department, College of Science, University of Thi Qar, Thi Qar 0964, Iraq
| | - M. Teresa González
- Instituto Madrileño de Estudios Avanzados (IMDEA), Calle Faraday 9, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
| | - Gabino Rubio-Bollinger
- Departamento de Física de la Materia Condensada, IFIMAC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Hatef Sadeghi
- Department of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Andrew Hodgson
- Department of Chemistry, Donnan and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, United Kingdom
| | - Nicolás Agraı̈t
- Instituto Madrileño de Estudios Avanzados (IMDEA), Calle Faraday 9, Campus Universitario de Cantoblanco, 28049 Madrid, Spain
- Departamento de Física de la Materia Condensada, IFIMAC and Instituto “Nicolás Cabrera”, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Simon J. Higgins
- Department of Chemistry, Donnan and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Colin J. Lambert
- Department of Physics, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Harry L. Anderson
- Department of Chemistry, Chemistry Research Laboratory, Oxford University, Oxford OX1 3TA, United Kingdom
| | - Richard J. Nichols
- Department of Chemistry, Donnan and Robert Robinson Laboratories, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Surface Science Research Centre and Department of Chemistry, University of Liverpool, Oxford Street, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
37
|
Fu B, Mosquera MA, Schatz GC, Ratner MA, Hsu LY. Photoinduced Anomalous Coulomb Blockade and the Role of Triplet States in Electron Transport through an Irradiated Molecular Transistor. NANO LETTERS 2018; 18:5015-5023. [PMID: 29995424 DOI: 10.1021/acs.nanolett.8b01838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we explore photoinduced electron transport through a molecule weakly coupled to two electrodes by combining first-principles quantum chemistry calculations with a Pauli master equation approach that accounts for many-electron states. In the incoherent limit, we demonstrate that energy-level alignment of triplet and charged states plays a crucial role, even when the rate of intersystem crossing is much smaller than the rate of fluorescence. Furthermore, the field intensity dependence and an upper bound to the photoinduced electric current can be analytically derived in our model. Under an optical field, the conductance spectra (charge stability diagrams) exhibit unusual Coulomb diamonds, which are associated with molecular excited states, and their widths can be expressed in terms of energies of the molecular electronic states. This study offers new directions for exploring optoelectronic response in nanoelectronics.
Collapse
Affiliation(s)
| | | | | | | | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences , Academia Sinica , Taipei 10617 , Taiwan
| |
Collapse
|
38
|
Wang K. DNA-Based Single-Molecule Electronics: From Concept to Function. J Funct Biomater 2018; 9:jfb9010008. [PMID: 29342091 PMCID: PMC5872094 DOI: 10.3390/jfb9010008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/15/2022] Open
Abstract
Beyond being the repository of genetic information, DNA is playing an increasingly important role as a building block for molecular electronics. Its inherent structural and molecular recognition properties render it a leading candidate for molecular electronics applications. The structural stability, diversity and programmability of DNA provide overwhelming freedom for the design and fabrication of molecular-scale devices. In the past two decades DNA has therefore attracted inordinate amounts of attention in molecular electronics. This review gives a brief survey of recent experimental progress in DNA-based single-molecule electronics with special focus on single-molecule conductance and I–V characteristics of individual DNA molecules. Existing challenges and exciting future opportunities are also discussed.
Collapse
Affiliation(s)
- Kun Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|