1
|
Ren P, Chen L, Sun C, Hua X, Luo N, Fan B, Chen P, Shao X, Zhang HL, Liu Z. Linear Non-benzenoid Isomer of Acene Fusing Chrysene with Azulene Units. J Phys Chem Lett 2024; 15:8410-8419. [PMID: 39116005 DOI: 10.1021/acs.jpclett.4c01917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received considerable attention owing to their distinctive optical and electrical properties. Nevertheless, the synthesis and optoelectronic application of non-benzenoid PAHs remain challenging. Herein, we present a facile synthesis of linear non-benzenoid PAH with an armchair edge, diACh, by fusing chrysene with two azulene units. We systematically investigated the optical and electrical properties, which were also compared to its isomers, including benzenoid and non-benzenoid zigzag edge isomers. diACh exhibits global aromaticity, good planarity, and suitable highest occupied molecular orbital/lowest unoccupied molecular orbital energy levels. The protonation of diACh in solution successively forms a stable tropylium cation and dication. Moreover, the neutral, cationic, and dicationic states of diACh can be transformed with remarkable reversibility during the protonation-deprotonation process, as confirmed by ultraviolet-visible absorptions, fluorescence spectra, 1H nuclear magnetic resonance, and theoretical calculations. Additionally, we fabricate p-type organic field-effect transistor (OFET) devices based on diACh with hole mobility up to 0.026 cm2 V-1 s-1, and we further develop OFET-based acid vapor sensors with good sensitivity, recyclability, and selectivity. These findings underscore the unique properties of linear non-benzenoid PAHs with an armchair edge engendered by the fusion of azulene with the acene backbone, showcasing prospective applications in organic optoelectronics.
Collapse
Affiliation(s)
- Peng Ren
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Liangliang Chen
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, People's Republic of China
| | - Chunlin Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xinqiang Hua
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Nan Luo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Baojin Fan
- College of Chemistry and Chemical Engineering Institute of Polymers and Energy Chemistry, Nanchang University, Nanchang, Jiangxi 330031, People's Republic of China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, People's Republic of China
| |
Collapse
|
2
|
Ishizuka T, Kojima T. Recent Development of π-Expanded Porphyrin Derivatives by Peripheral Ring Fusion. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba
| |
Collapse
|
3
|
Chen Z, Li W, Zhang Y, Wang Z, Zhu W, Zeng M, Li Y. Aggregation-Induced Radical of Donor-Acceptor Organic Semiconductors. J Phys Chem Lett 2021; 12:9783-9790. [PMID: 34596405 DOI: 10.1021/acs.jpclett.1c02463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Narrow bandgap donor-acceptor organic semiconductors are generally considered to show a closed-shell singlet ground state, and their radicals are reported as impurities, defects, polarons, and charge transfer monoradicals. Herein, we systematically investigated the open-shell singlet diradical electronic ground state of two diketopyrrolopyrrole-based compounds via the combination of electron spin resonance (ESR), nuclear magnetic resonance, superconducting quantum interference device magnetometry, and theoretical calculations. It is widely known that the quinoidal character will be significantly enhanced in the aggregation state accompanied by improved planarity and enhanced delocalization. We proposed an aggregation-induced radical and captodative effect as the driving force for the formation and stabilization of the open-shell quinoid diradical based on the ESR test in different proportions of mixed solvents. Our results provided a novel view for understanding the intrinsic chemical structure of donor-acceptor organic semiconductors, the open-shell singlet and thermally excited triplet electronic states, and the unexpected physical processes between the ground state and the excited state.
Collapse
Affiliation(s)
- Zhongxin Chen
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Wenqiang Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yiheng Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Zejun Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Weiya Zhu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Miao Zeng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Yuan Li
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
4
|
Gu PY, Jiang Y, Fink Z, Xie G, Hu Q, Kim PY, Xu QF, Lu JM, Russell TP. Conductive Thin Films over Large Areas by Supramolecular Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54020-54025. [PMID: 33200916 DOI: 10.1021/acsami.0c13488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a "one-step" method for preparing conductive thin films with cylindrical microdomains oriented normal to the surface over large areas using the supramolecular assembly of poly(styrene-block-4-vinylpyridine) (PS19-b-P4VP5) and 5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine (HOTPP). HOTPP interacts with the P4VP block by hydrogen bonding between the hydroxyl group of HOTPP and pyridine ring of PS19-b-P4VP5, forming cylindrical P4VP(HOTPP) domains having an average diameter of ∼17 nm in a PS matrix. Dynamic light scattering, contact angle, and in situ grazing incidence small-angle X-ray scattering measurements show a morphological transition from spherical micelles in solution to cylindrical microdomains oriented normal to the substrate surface during the drying process. From the dependence of current on voltage, an average current of ∼4.0 nA is found to pass through a single microdomain, pointing to a promising route for organic semiconductor device applications.
Collapse
Affiliation(s)
- Pei-Yang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Yufeng Jiang
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Applied Science and Technology, University of California, Berkeley, 210 Hearst Memorial Mining Building, Berkeley, California 94720, United States
| | - Zachary Fink
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ganhua Xie
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Qin Hu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Qing-Feng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jian-Mei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01003, United States
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
5
|
Tashiro S, Shimizu S, Kuritani M, Shionoya M. Protonation-induced self-assembly of bis-phenanthroline macrocycles into nanofibers arrayed with tetrachloroaurate, hexachloroplatinate or phosphomolybdate ions. Dalton Trans 2020; 49:13948-13953. [PMID: 33047767 DOI: 10.1039/d0dt03287e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
One-dimensional self-assembly of macrocycles is one of the important strategies for constructing fibrous nanomaterials with anisotropic functions such as one-dimensional transport and accumulation of molecules and ions. Herein we report on the synthesis and properties of self-assembled nanofibers using macrocycles to develop a multipurpose template for one-dimensional array of noble metal ions. The nanofibers were prepared by protonation-induced self-assembly of bis-phenanthroline macrocycles, which have enabled the accumulation of some metal-containing anions, such as tetrachloroaurate, hexachloroplatinate and phosphomolybdate. Microscopic observations have demonstrated that the supramolecular nanofibers were reproducibly formed in a similar way, regardless of the structures and charge numbers of the anions. Moreover, the resulting nanofibers, arrayed with several metal ions, were chemically reduced, producing dispersible gold nanoparticles and mixed-valence nanofibers.
Collapse
Affiliation(s)
- Shohei Tashiro
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shun Shimizu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Masumi Kuritani
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
6
|
Han Z, Ai Y, Jiang X, You Y, Wei F, Luo H, Cui J, Bao Q, Fu J, He Q, Liu S, Cheng J. Pre-Polymerization Enables Controllable Synthesis of Nanosheet-Based Porphyrin Polymers towards High-Performance Li-Ion Batteries. Chemistry 2020; 26:10433-10438. [PMID: 32428368 DOI: 10.1002/chem.202001943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Indexed: 12/21/2022]
Abstract
The precise regulation of nucleation growth and assembly of polymers is still an intriguing goal but an enormous challenge. In this study, we proposed a pre-polymerization strategy to regulate the assembly and growth of polymers by facilely controlling the concentration of polymerization initiator, and thus obtained two kinds of different nanosheet-based porphyrin polymer materials using tetrakis-5,10,15,20-(4-aminophenyl) porphyrin (TAPP) as the precursor. Notably, due to the π-π stacking and doping of TAPP during the preparation process, the obtained PTAPP-nanocube material exhibits a high intrinsic bulk conductivity reaching 1.49×10-4 S m-1 . Profiting from the large π-conjugated structure of porphyrin units, closely stacked layer structure and excellent conductivity, the resultant porphyrin polymers, as electrode materials for lithium ion batteries, deliver high specific capacity (≈650 mAh g-1 at the current density of 100 mA g-1 ), excellent rate performance and long-cycle stability, which are among the best reports of porphyrin polymer-based electrode materials for lithium-ion batteries, to the best of our knowledge. Therefore, such a pre-polymerization approach would provide a new insight for the controllable synthesis of polymers towards custom-made architecture and function.
Collapse
Affiliation(s)
- Zhuolei Han
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Yan Ai
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Xiaolin Jiang
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Yuxiu You
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Facai Wei
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Hao Luo
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Jing Cui
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Qinye Bao
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qingguo He
- State Key Lab of Transducer Technology, Shanghai Institute of, Microsystem and Information Technology, Chinese Academy of, Sciences, Shanghai, 200050, P.R. China
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy, Engineering Research Center for Nanophotonics and Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, P. R. China.,State Key Lab of Transducer Technology, Shanghai Institute of, Microsystem and Information Technology, Chinese Academy of, Sciences, Shanghai, 200050, P.R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of, Microsystem and Information Technology, Chinese Academy of, Sciences, Shanghai, 200050, P.R. China
| |
Collapse
|
7
|
Chen D, Zhu D, Lin G, Du M, Shi D, Peng Q, Jiang L, Liu Z, Zhang G, Zhang D. New fused conjugated molecules with fused thiophene and pyran units for organic electronic materials. RSC Adv 2020; 10:12378-12383. [PMID: 35497610 PMCID: PMC9050829 DOI: 10.1039/d0ra01984d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/06/2020] [Indexed: 12/22/2022] Open
Abstract
Rigid and planar conjugated molecules have substantial significance due to their potential applications in organic electronics. Herein we report two highly fused ladder type conjugated molecules, TTCTTC and TTTCTTTC, with up to 10 fused rings in which the fused-thiophene rings are fused to the chromeno[6,5,4-def]chromene unit. Both molecules show high HOMO levels and accordingly they can be oxidized into their radical cations with absorptions extending to 1300 nm in the presence of trifluoroacetic acid. Thin films of TTCTTC and TTTCTTTC exhibit p-type semiconductor properties with hole mobilities up to 0.39 cm2 V−1 s−1. Moreover, TTCTTC shows a high fluorescence quantum yield of up to 16.5% in the solid state. Fused conjugated molecules TTCTTC and TTTCTTTC with up to ten heterocycles were constructed by fusing fused-thiophene to the chromeno[6,5,4-def]chromene unit.![]()
Collapse
|
8
|
De J, Bala I, Gupta SP, Pandey UK, Pal SK. High Hole Mobility and Efficient Ambipolar Charge Transport in Heterocoronene-Based Ordered Columnar Discotics. J Am Chem Soc 2019; 141:18799-18805. [DOI: 10.1021/jacs.9b09126] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Joydip De
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Sahibzada Ajit Singh Nagar, Knowledge City, Manauli 140306, India
| | - Indu Bala
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Sahibzada Ajit Singh Nagar, Knowledge City, Manauli 140306, India
| | | | - Upendra Kumar Pandey
- Interdisciplinary Centre for Energy Research (ICER), Indian Institute of Science (IISc) Bangalore, C. V. Raman Road, Bangalore, Karnataka 560012, India
| | - Santanu Kumar Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Sahibzada Ajit Singh Nagar, Knowledge City, Manauli 140306, India
| |
Collapse
|
9
|
|
10
|
Yuan D, Guo Y, Zeng Y, Fan Q, Wang J, Yi Y, Zhu X. Air‐Stable n‐Type Thermoelectric Materials Enabled by Organic Diradicaloids. Angew Chem Int Ed Engl 2019; 58:4958-4962. [DOI: 10.1002/anie.201814544] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/24/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yuan Guo
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yan Zeng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Qingrui Fan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Jianjun Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
11
|
Yuan D, Guo Y, Zeng Y, Fan Q, Wang J, Yi Y, Zhu X. Air‐Stable n‐Type Thermoelectric Materials Enabled by Organic Diradicaloids. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201814544] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Dafei Yuan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yuan Guo
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Yan Zeng
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Qingrui Fan
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| | - Jianjun Wang
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Green PrintingInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Xiaozhang Zhu
- Beijing National Laboratory for Molecular SciencesCAS Key Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Chemical SciencesUniversity of Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
12
|
|