1
|
Deck KEV, Brittain WDG. Synthesis of metal-binding amino acids. Org Biomol Chem 2024. [PMID: 39364570 DOI: 10.1039/d4ob01326c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The ability for amino acid residues to bind metals underpins the functions of metalloproteins to conduct a plethora of critical processes in living organisms as well as unnatural applications in the fields of catalysis, sensing and medicinal chemistry. The capability to access metal-binding peptides heavily relies on the ability to generate appropriate building blocks. This review outlines recently developed strategies for the synthesis of metal binding non-proteinogenic amino acids. The chemistries to access, as well as to incorporate these amino acids into peptides is presented herein.
Collapse
Affiliation(s)
- Katherine E V Deck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|
2
|
Bayardon J, Qian C, Malacea-Kabbara R, Rousselin Y, Jugé S. Enantioselective Synthesis of P-Chirogenic 1,2,3-Triazolobenzophospholes. J Org Chem 2024; 89:11031-11042. [PMID: 39016213 DOI: 10.1021/acs.joc.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
An enantioselective synthesis of a new class of benzophosphole-based heterocycles bearing a fused triazole ring with enantioselectivities of ≤99% is reported. The key steps of the synthesis are based on an innovative stereospecific phosphinyl N → O migration of aminophosphine-boranes into phosphinites, followed by an intramolecular cyclization. Five X-ray structures of P-chirogenic triazolobenzophospholes and a gold(I) complex were established, for assigning absolute configurations, the stereochemistry of the reactions, and the placement of the triazole substituent at the syn position of the P center.
Collapse
Affiliation(s)
- Jérôme Bayardon
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne (UMR-CNRS 6302), 9, av. A. Savary, 21078 Dijon, France
| | - Chen Qian
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne (UMR-CNRS 6302), 9, av. A. Savary, 21078 Dijon, France
| | - Raluca Malacea-Kabbara
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne (UMR-CNRS 6302), 9, av. A. Savary, 21078 Dijon, France
| | - Yoann Rousselin
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne (UMR-CNRS 6302), 9, av. A. Savary, 21078 Dijon, France
| | - Sylvain Jugé
- Institut de Chimie Moléculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne (UMR-CNRS 6302), 9, av. A. Savary, 21078 Dijon, France
| |
Collapse
|
3
|
Schenk M, König N, Hey-Hawkins E, Beck-Sickinger AG. Illuminating the Path to Enhanced Bioimaging by Phosphole-based Fluorophores. Chembiochem 2024; 25:e202300857. [PMID: 38206088 DOI: 10.1002/cbic.202300857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
As the research of biological systems becomes increasingly complex, there is a growing demand for fluorophores with a diverse range of wavelengths. In this study, we introduce phosphole-based fluorophores that surpass existing options like dansyl chloride. The reactive S-Cl bond in chlorosulfonylimino-5-phenylphosphole derivatives allows rapid and direct coupling to peptides making the fluorophores easily introducible to peptides. This coupling process occurs under mild conditions, demonstrated for [F7 ,P34 ]-NPY and its shorter analogues. Peptides linked with our fluorophores exhibit similar receptor activation to the control peptide, while maintaining high stability and low toxicity, making them ideal biolabeling reagents. In fluorescence microscopy experiments, they can be easily visualized even at low concentrations, without suffering from the typical issue of bleaching. These phosphole-based fluorophores represent a significant leap forward in the field. Their versatility, ease of modification, superior performance, and applicability in biological labeling make them a promising choice for researchers seeking advanced tools to unravel the details of complex biological systems.
Collapse
Affiliation(s)
- Mareike Schenk
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103, Leipzig, Germany
| | - Nils König
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Annette G Beck-Sickinger
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstrasse 34, 04103, Leipzig, Germany
| |
Collapse
|
4
|
Zadeh SS, Ebrahimi A, Shahraki A. The impact of π-π stacking interactions on photo-physical properties of hydroxyanthraquinones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122453. [PMID: 36753863 DOI: 10.1016/j.saa.2023.122453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The impact of π-π stacking interactions on photo-physical properties of hydroxyanthraquinone (HA) has been investigated using the density functional (DFT) and time-dependent density functional theory (TD-DFT) calculations in the gas phase and solution media. The vertical transition is characterized with strong HOMO-LUMO transition in the complexes. The intramolecular hydrogen bond (IHB) made in the HA and π-π complexes is strengthened after S0 → S1 excitation, such that the proton transfers is facilitated in the first excited state. The complexes exhibit an exothermic excited state intramolecular proton transfer (ESIPT) in the solution media, which is a barrierless process for some complexes. The π-π stacking interaction affects the absorption and emission bands of HA, and provides a large Stokes shift. This indicates the desirable fluorescence properties of π-π complexes, which are cross-validated by geometries, potential energy curve scannings, electronic and vibrational spectra, and frontier molecular orbital analyses.
Collapse
Affiliation(s)
- Samira Sedighi Zadeh
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, P.O. XZBox 98135-674, Zahedan, Iran
| | - Ali Ebrahimi
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, P.O. XZBox 98135-674, Zahedan, Iran.
| | - Asiyeh Shahraki
- Department of Chemistry, Computational Quantum Chemistry Laboratory, University of Sistan and Baluchestan, P.O. XZBox 98135-674, Zahedan, Iran
| |
Collapse
|
5
|
Duan HZ, Hu C, Li YL, Wang SH, Xia Y, Liu X, Wang J, Chen YX. Genetically Encoded Phosphine Ligand for Metalloprotein Design. J Am Chem Soc 2022; 144:22831-22837. [DOI: 10.1021/jacs.2c09683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Hua-Zhen Duan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Cheng Hu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Yue-Lin Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Shi-Hao Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yan Xia
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
6
|
Rémond E, Fehrentz J, Liénart L, Clément S, Banères J, Cavelier F. Fluorescent P‐Hydroxyphosphole for Peptide Labeling through P‐N Bond Formation. Chemistry 2022; 28:e202201526. [DOI: 10.1002/chem.202201526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Emmanuelle Rémond
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Jean‐Alain Fehrentz
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Laure Liénart
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Jean‐Louis Banères
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseronm IBMM, UMR 5247 Pôle Chimie Balard 1919, route de Mende 34093 Montpellier cedex 5 France
| |
Collapse
|
7
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022; 61:e202204788. [PMID: 35704518 PMCID: PMC9542129 DOI: 10.1002/anie.202204788] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/06/2022]
Abstract
Recent advances in optical bioimaging have prompted the need for minimal chemical reporters that can retain the molecular recognition properties and activity profiles of biomolecules. As a result, several methodologies to reduce the size of fluorescent and Raman labels to a few atoms (e.g., single aryl fluorophores, Raman-active triple bonds and isotopes) and embed them into building blocks (e.g., amino acids, nucleobases, sugars) to construct native-like supramolecular structures have been described. The integration of small optical reporters into biomolecules has also led to smart molecular entities that were previously inaccessible in an expedite manner. In this article, we review recent chemical approaches to synthesize miniaturized optical tags as well as some of their multiple applications in biological imaging.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| | - William Tipping
- Centre for Molecular NanometrologyThe University of StrathclydeGlasgowG1 1RDUK
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEdinburghEH16 4TJUK
| |
Collapse
|
8
|
Benson S, de Moliner F, Tipping W, Vendrell M. Miniaturized Chemical Tags for Optical Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sam Benson
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - Fabio de Moliner
- The University of Edinburgh Centre for Inflammation Research UNITED KINGDOM
| | - William Tipping
- University of Strathclyde Centre for Molecular Nanometrology UNITED KINGDOM
| | - Marc Vendrell
- University of Edinburgh Centre for Inflammation Research 47 Little France Crescent EH16 4TJ Edinburgh UNITED KINGDOM
| |
Collapse
|
9
|
Ma J, Wang L, Duan Z. Chemo- and Regioselectivity-Tunable Phosphination of Alkynes. Org Lett 2022; 24:1550-1555. [DOI: 10.1021/acs.orglett.2c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Juan Ma
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Phosphafluorenyl lithiums: direct synthesis from white phosphorus, structure and diversified synthons. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1139-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Singh H, Verma S. Visualization of third-level information in latent fingerprints by a new fluorogenic L-tyrosine analogue. Chem Commun (Camb) 2021; 57:5290-5293. [PMID: 33942826 DOI: 10.1039/d1cc01910d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Incorporation of fluorescent α-amino acids in peptide/protein sequences, at desired positions, is eminently useful for non-invasive detection of cellular events, without impacting their native properties. As an extension to such an approach, we describe the design of two stable, fluorescent l-tyrosine analogs, FHBY and BHBY, exhibiting photophysical properties associated with the AIE-coupled ESIPT mechanism, for fluorescent reporting of latent fingerprints. Notably, FHBY selectively adheres to the papillary ridges of latent fingerprints and reveals up to the third-level of information at one of the lowest reported concentrations of 25 μM.
Collapse
Affiliation(s)
- Harminder Singh
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| | - Sandeep Verma
- Department of Chemistry and Center for Nanoscience, Indian Institute of Technology Kanpur, Kanpur, 208016, UP, India.
| |
Collapse
|
12
|
Zhou B, Guo M, Pan Q, Zhou M, Xu L, Rao Y, Wang K, Yin B, Zhou J, Song J. Rhodium-catalyzed annulation of pyrrole substituted BODIPYs with alkynes to access π-extended polycyclic heteroaromatic molecules and NIR absorption. Org Chem Front 2021. [DOI: 10.1039/d0qo01625j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A series of π-extended BODIPY derivatives fused with an indolizine scaffold were prepared smoothly via rhodium-catalyzed C–H functionalization/annulation. These fluorophores show significantly red-shifted absorption, reaching to the near infrared (NIR) region.
Collapse
|
13
|
Hu W, Li EQ, Duan Z, Mathey F. Concise Synthesis of Phospholene and Its P-Stereogenic Derivatives. J Org Chem 2020; 85:14772-14778. [PMID: 32375482 DOI: 10.1021/acs.joc.0c00545] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple method to build phospholene derivatives has been achieved in a one-pot reaction with readily available o-alkynylaryl bromides and alkylphosphine oxides. This method is also applicable to synthesize P-stereogenic phospholenes, and the resulting chiral phosphine was utilized as a ligand for coordination chemistry.
Collapse
Affiliation(s)
- Wei Hu
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - François Mathey
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
14
|
Fluorescent amino acids as versatile building blocks for chemical biology. Nat Rev Chem 2020; 4:275-290. [PMID: 37127957 DOI: 10.1038/s41570-020-0186-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2020] [Indexed: 12/13/2022]
Abstract
Fluorophores have transformed the way we study biological systems, enabling non-invasive studies in cells and intact organisms, which increase our understanding of complex processes at the molecular level. Fluorescent amino acids have become an essential chemical tool because they can be used to construct fluorescent macromolecules, such as peptides and proteins, without disrupting their native biomolecular properties. Fluorescent and fluorogenic amino acids with unique photophysical properties have been designed for tracking protein-protein interactions in situ or imaging nanoscopic events in real time with high spatial resolution. In this Review, we discuss advances in the design and synthesis of fluorescent amino acids and how they have contributed to the field of chemical biology in the past 10 years. Important areas of research that we review include novel methodologies to synthesize building blocks with tunable spectral properties, their integration into peptide and protein scaffolds using site-specific genetic encoding and bioorthogonal approaches, and their application to design novel artificial proteins, as well as to investigate biological processes in cells by means of optical imaging.
Collapse
|
15
|
Li G, Zhao M, Xie J, Yao Y, Mou L, Zhang X, Guo X, Sun W, Wang Z, Xu J, Xue J, Hu T, Zhang M, Li M, Hong L. Efficient synthesis of cyclic amidine-based fluorophores via 6π-electrocyclic ring closure. Chem Sci 2020; 11:3586-3591. [PMID: 34094046 PMCID: PMC8152618 DOI: 10.1039/d0sc00798f] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Novel 10π-electron cyclic amidines with excellent fluorescence properties were synthesized by a general and efficient 6π-electrocyclic ring closure of ketenimine and imine starting from N-sulfonyl triazoles and arylamines. The photophysical properties of cyclic amidine fluorophores have been studied in detail and have shown good properties of a large Stokes shift, pH insensitivity, low cytotoxicity and higher photostability, which have great potential for biological imaging. Furthermore, this novel fluorophore was successfully applied to the localization of the NK-1 receptor in living systems. Novel 10π-electron cyclic amidines with excellent fluorescence properties were synthesized by a general and efficient 6π-electrocyclic ring closure of ketenimine and imine starting from N-sulfonyl triazoles and arylamines.![]()
Collapse
Affiliation(s)
- Guofeng Li
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Man Zhao
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Junqiu Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Ying Yao
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Lingyun Mou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Xiaowei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Xiaomin Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Wangsheng Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Zheng Wang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Jiecheng Xu
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Jianzhong Xue
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Tao Hu
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Ming Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University Lanzhou 730000 China
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecular and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University Guangzhou 510006 China
| |
Collapse
|
16
|
|
17
|
Arribat M, Cavelier F, Rémond E. Phosphorus-containing amino acids with a P–C bond in the side chain or a P–O, P–S or P–N bond: from synthesis to applications. RSC Adv 2020. [DOI: 10.1039/c9ra10917j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Strategies for the preparation of phosphorus-containing amino acids and their utility in the organic chemistry, physico-chemistry, agrochemistry, and pharmacology fields are reported.
Collapse
Affiliation(s)
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron
- IBMM
- UMR 5247
- CNRS
- Université de Montpellier
| |
Collapse
|
18
|
Bell JD, Harkiss AH, Nobis D, Malcolm E, Knuhtsen A, Wellaway CR, Jamieson AG, Magennis SW, Sutherland A. Conformationally rigid pyrazoloquinazoline α-amino acids: one- and two-photon induced fluorescence. Chem Commun (Camb) 2020; 56:1887-1890. [DOI: 10.1039/c9cc09064a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Conformationally rigid unnatural α-amino acids bearing a pyrazoloquinazoline ring system that are amenable to both one- and two-photon excitation have been developed as new fluorescent probes.
Collapse
Affiliation(s)
- Jonathan D. Bell
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Alexander H. Harkiss
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - David Nobis
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Eilidh Malcolm
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Astrid Knuhtsen
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | | | - Andrew G. Jamieson
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Steven W. Magennis
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| | - Andrew Sutherland
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow
| |
Collapse
|
19
|
Boknevitz K, Italia JS, Li B, Chatterjee A, Liu SY. Synthesis and characterization of an unnatural boron and nitrogen-containing tryptophan analogue and its incorporation into proteins. Chem Sci 2019; 10:4994-4998. [PMID: 31183048 PMCID: PMC6524624 DOI: 10.1039/c8sc05167d] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 04/15/2019] [Indexed: 12/12/2022] Open
Abstract
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized and incorporated into proteins.
A boron and nitrogen containing unnatural analogue of tryptophan is synthesized through the functionalization of BN-indole. The spectroscopic properties of BN-tryptophan are reported with respect to the natural tryptophan, and the incorporation of BN-tryptophan into proteins expressed in E. coli using selective pressure incorporation is described. This work shows that a cellular system can recognize the unnatural, BN-containing tryptophan. More importantly, it presents the first example of an azaborine containing amino acid being incorporated into proteins.
Collapse
Affiliation(s)
- Katherine Boknevitz
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - James S Italia
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Bo Li
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Abhishek Chatterjee
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| | - Shih-Yuan Liu
- Department of Chemistry , Boston College , Chestnut Hill , MA 02467 , USA . ;
| |
Collapse
|
20
|
[4+2] versus [2+2] Homodimerization in P(V) Derivatives of 2,4-Disubstituted Phospholes. HETEROATOM CHEMISTRY 2019. [DOI: 10.1155/2019/2596405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphole P(V) derivatives are interesting building blocks for various applications from ligand synthesis to material sciences. We herein describe the preparation and characterisation of new 2,4-disubstituted oxo-, thiooxo-, and selenooxophospholes. The nature of the substituents on the phosphole ring determines the reactivity of these compounds towards homodimerization reactions. Aryl and trimethylsilyl substituted oxophospholes undergo selective [4+2] dimerization, whereas, for thiooxo- and selenooxophospholes, light-induced, selective [2+2] head-to-head dimerization occurs in the case of aryl substituents. DFT calculations provide some insights on these differences in reactivity.
Collapse
|
21
|
Hao J, Yang Y. Dynamic Excited-State Intramolecular Proton Transfer Mechanisms of Two Novel 3-Hydroxyflavone-Based Chromophores in Two Different Surroundings. J Phys Chem A 2019; 123:3937-3948. [DOI: 10.1021/acs.jpca.9b00879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiaojiao Hao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yang Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
22
|
Affiliation(s)
- Guanyu Tao
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zheng Duan
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Francois Mathey
- College of Chemistry and Molecular Engineering, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
23
|
Arribat M, Rémond E, Richeter S, Gerbier P, Clément S, Cavelier F. Silole Amino Acids with Aggregation-Induced Emission Features Synthesized by Hydrosilylation. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801869] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mathieu Arribat
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS; Université de Montpellier; ENSCM, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Emmanuelle Rémond
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS; Université de Montpellier; ENSCM, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| | - Sébastien Richeter
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS; Université de Montpellier, ENSCM, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Philippe Gerbier
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS; Université de Montpellier, ENSCM, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Sébastien Clément
- Institut Charles Gerhardt Montpellier, ICGM, UMR 5253, CNRS; Université de Montpellier, ENSCM, Place Eugène Bataillon; 34095 Montpellier cedex 5 France
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS; Université de Montpellier; ENSCM, Place Eugène Bataillon 34095 Montpellier cedex 5 France
| |
Collapse
|
24
|
Oshchepkova E, Zagidullin A, Burganov T, Katsyuba S, Miluykov V, Lodochnikova O. Novel enantiopure monophospholes: synthesis, spatial and electronic structure, photophysical characteristics and conjugation effects. Dalton Trans 2018; 47:11521-11529. [DOI: 10.1039/c8dt02208a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A rational and highly efficient method to access lithium 2,3,4,5-tetraphenylphospholide directly from white phosphorus, diphenylacetylene and lithium has been developed.
Collapse
Affiliation(s)
- Elena Oshchepkova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Almaz Zagidullin
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Timur Burganov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Sergey Katsyuba
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Vasily Miluykov
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| | - Olga Lodochnikova
- Arbuzov Institute of Organic and Physical Chemistry
- FRC Kazan Scientific Center of RAS
- 420088 Kazan
- Russia
| |
Collapse
|