1
|
Dashti Y, Mohammadipanah F, Zhang Y, Cerqueira Diaz PM, Vocat A, Zabala D, Fage CD, Romero-Canelon I, Bunk B, Spröer C, Alkhalaf LM, Overmann J, Cole ST, Challis GL. Discovery and Biosynthesis of Persiathiacins: Unusual Polyglycosylated Thiopeptides Active Against Multidrug Resistant Tuberculosis. ACS Infect Dis 2024; 10:3378-3391. [PMID: 39189814 PMCID: PMC11406533 DOI: 10.1021/acsinfecdis.4c00502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Thiopeptides are ribosomally biosynthesized and post-translationally modified peptides (RiPPs) that potently inhibit the growth of Gram-positive bacteria by targeting multiple steps in protein biosynthesis. The poor pharmacological properties of thiopeptides, particularly their low aqueous solubility, has hindered their development into clinically useful antibiotics. Antimicrobial activity screens of a library of Actinomycetota extracts led to discovery of the novel polyglycosylated thiopeptides persiathiacins A and B from Actinokineospora sp. UTMC 2448. Persiathiacin A is active against methicillin-resistant Staphylococcus aureus and several Mycobacterium tuberculosis strains, including drug-resistant and multidrug-resistant clinical isolates, and does not significantly affect the growth of ovarian cancer cells at concentrations up to 400 μM. Polyglycosylated thiopeptides are extremely rare and nothing is known about their biosynthesis. Sequencing and analysis of the Actinokineospora sp. UTMC 2448 genome enabled identification of the putative persiathiacin biosynthetic gene cluster (BGC). A cytochrome P450 encoded by this gene cluster catalyzes the hydroxylation of nosiheptide in vitro and in vivo, consistent with the proposal that the cluster directs persiathiacin biosynthesis. Several genes in the cluster encode homologues of enzymes known to catalyze the assembly and attachment of deoxysugars during the biosynthesis of other classes of glycosylated natural products. One of these encodes a glycosyl transferase that was shown to catalyze attachment of a D-glucose residue to nosiheptide in vitro. The discovery of the persiathiacins and their BGC thus provides the basis for the development of biosynthetic engineering approaches to the creation of novel (poly)glycosylated thiopeptide derivatives with enhanced pharmacological properties.
Collapse
Affiliation(s)
- Yousef Dashti
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Sydney Infectious Diseases Institute, Faculty of Medicine and Health, University of Sydney, Sydney NSW 2015, Australia
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Yu Zhang
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Anthony Vocat
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Daniel Zabala
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | | | - Isolda Romero-Canelon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- School of Pharmacy, Institute of Clinical Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Boyke Bunk
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Lona M Alkhalaf
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
| | - Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Technical University of Braunschweig, 38106 Braunschweig, Germany
- German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Stewart T Cole
- Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
| | - Gregory L Challis
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K
- Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry CV4 7AL, U.K
- Department of Biochemistry and Molecular Biology, Monash University, Clayton VIC 3168, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton VIC 3168, Australia
| |
Collapse
|
2
|
Mu N, Guo H, Zhang E, Yin Y, Wang W, Chen D, Wang S, Liu W. Mutasynthesis Generates Antibacterial Benzothiophenic-Containing Nosiheptide Analogues. JOURNAL OF NATURAL PRODUCTS 2022; 85:2274-2281. [PMID: 36122372 DOI: 10.1021/acs.jnatprod.2c00273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nosiheptide is a bicyclic thiopeptide featuring an indole-containing side ring, which is biologically important in maintaining its potent antibacterial activity. By using mutational biosynthesis, the pharmaceutically significant benzothiophene was introduced into the nosiheptide biosynthetic pathway, resulting in the generation of three bioactive nosiheptide analogues with characteristic benzothiophene-containing side rings. Insights were provided into the transformation relationship of these analogues, which effectively improves the yield of S-NOS-1 with favorable activity against Gram-positive pathogens.
Collapse
Affiliation(s)
- Ning Mu
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - E Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Yu Yin
- School of Pharmacy, Shanghai Jiaotong University, Shanghai 200240, People's Republic of China
| | - Wengui Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
- Huzhou Zhongke Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, People's Republic of China
| | - Shoufeng Wang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan 250022, People's Republic of China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
3
|
Brimberry MA, Mathew L, Lanzilotta W. Making and breaking carbon-carbon bonds in class C radical SAM methyltransferases. J Inorg Biochem 2022; 226:111636. [PMID: 34717253 PMCID: PMC8667262 DOI: 10.1016/j.jinorgbio.2021.111636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Radical S-adenosylmethionine (SAM) enzymes utilize a [4Fe-4S]1+ cluster and S-(5'-adenosyl)-L-methionine, (SAM), to generate a highly reactive radical and catalyze what is arguably the most diverse set of chemical reactions for any known enzyme family. At the heart of radical SAM catalysis is a highly reactive 5'-deoxyadenosyl radical intermediate (5'-dAdo●) generated through reductive cleavage of SAM or nucleophilic attack of the unique iron of the [4Fe-4S]+ cluster on the 5' C atom of SAM. Spectroscopic studies reveal the 5'-dAdo● is transiently captured in an FeC bond (Ω species). In the presence of substrate, homolytic scission of this metal‑carbon bond regenerates the 5'-dAdo● for catalytic hydrogen atom abstraction. While reminiscent of the adenosylcobalamin mechanism, radical SAM enzymes appear to encompass greater catalytic diversity. In this review we discuss recent developments for radical SAM enzymes involved in unique chemical rearrangements, specifically regarding class C radical SAM methyltransferases. Illuminating this class of radical SAM enzymes is especially significant as many enzymes have been shown to play critical roles in pathogenesis and the synthesis of novel antimicrobial compounds.
Collapse
Affiliation(s)
- Marley A. Brimberry
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - Liju Mathew
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602
| | - William Lanzilotta
- Department of Biochemistry and Molecular Biology & Center for Metalloenzyme Studies,,Department of Chemistry University of Georgia, Athens GA 30602.,To whom correspondence should be addressed. Phone, (706) 542-1324; fax, (706) 542-1738;
| |
Collapse
|
4
|
Wang B, Silakov A, Booker SJ. Using peptide substrate analogs to characterize a radical intermediate in NosN catalysis. Methods Enzymol 2022; 666:469-487. [DOI: 10.1016/bs.mie.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
De BC, Zhang W, Zhang G, Liu Z, Tan B, Zhang Q, Zhang L, Zhang H, Zhu Y, Zhang C. Host-dependent heterologous expression of berninamycin gene cluster leads to linear thiopeptide antibiotics. Org Biomol Chem 2021; 19:8940-8946. [PMID: 34617948 DOI: 10.1039/d1ob01759d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Berninamycins are a class of thiopeptide antibiotics with potent activity against Gram-positive bacteria. Heterologous expression of the berninamycin (ber) biosynthetic gene cluster from marine-derived Streptomyces sp. SCSIO 11878 in different terrestrial model Streptomyces hosts led to the production of berninamycins A (1) and B (2) in Streptomyces lividans SBT18 and Streptomyces coelicolor M1154, while two new linearized berninamycins J (3) and K (4) were obtained in Streptomyces albus J1074. Their structures were elucidated by detailed interpretation of NMR data and Marfey's method. Bioactivity assays showed that the linear thiopeptides 3 and 4 were less potent than 1 and 2 in antibacterial activity. This work indicates that undefined host-dependent enzymes might be responsible for generating the linear thiopeptides 3 and 4 in S. albus J1074.
Collapse
Affiliation(s)
- Bidhan Chandra De
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Guangtao Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| | - Bin Tan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Yiguang Zhu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Rd., Nansha District, Guangzhou 511458, China
| |
Collapse
|
6
|
Guo H, Bai X, Yang Q, Xue Y, Chen D, Tao J, Liu W. NocU is a cytochrome P450 oxygenase catalyzing N-hydroxylation of the indolic moiety during the maturation of the thiopeptide antibiotics nocathiacins. Org Biomol Chem 2021; 19:8338-8342. [PMID: 34523664 DOI: 10.1039/d1ob01284c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ribosomally synthesized and post-translationally modified peptide (RiPP) natural products include the family of thiopeptide antibiotics, where nocathiacins (NOCs) and nosiheptide (NOS) are structurally related bicyclic members featuring an indolic moiety within the side ring system. Compared with NOS, NOCs bear additional functionalities that lead to the improvement of water solubility and bioavailability, a problem inherent to most of the thiopeptide antibiotics, and thus hold potential for clinical use in anti-infective agent development. The process through which post-translational modifications (PTMs) occur to afford these functionalities remains unclear. In this study, an engineered NOS-producing strain is applied to study the function of NocU, a cytochrome P450 oxygenase unique during the PTMs in NOC biosynthesis. Benefiting from the isolation and structure characterization of nosiheptide U (NOS-U), a new NOS-type compound with an extra hydroxyl group at the indole nitrogen, we report that NocU is responsible for the N-hydroxylation of the indolic moiety during the maturation of NOCs. This finding reveals the cause of structural differences at the indole nitrogen of NOCs, which will not only accelerate the biosynthetic studies of NOCs, but also promote new analog development by utilizing the compatibility of the biosynthetic machinery of thiopeptide antibiotics.
Collapse
Affiliation(s)
- Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Xuebing Bai
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Yufeng Xue
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
| | - Jiang Tao
- Department of General Dentistry, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China.
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China.
| |
Collapse
|
7
|
Yin Y, Ji X, Zhang Q. The Promiscuous Activity of the Radical
SAM
Enzyme
NosL
toward Two Unnatural Substrates. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Yin
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Xinjian Ji
- Department of Chemistry Fudan University Shanghai 200433 China
| | - Qi Zhang
- Department of Chemistry Fudan University Shanghai 200433 China
| |
Collapse
|
8
|
Malit JJL, Wu C, Liu LL, Qian PY. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters. Front Microbiol 2021; 12:635389. [PMID: 33995295 PMCID: PMC8120280 DOI: 10.3389/fmicb.2021.635389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Thioamidated ribosomally synthesized and post-translationally modified peptides (RiPPs) are recently characterized natural products with wide range of potent bioactivities, such as antibiotic, antiproliferative, and cytotoxic activities. These peptides are distinguished by the presence of thioamide bonds in the peptide backbone catalyzed by the YcaO-TfuA protein pair with its genes adjacent to each other. Genome mining has facilitated an in silico approach to identify biosynthesis gene clusters (BGCs) responsible for thioamidated RiPP production. In this work, publicly available genomic data was used to detect and illustrate the diversity of putative BGCs encoding for thioamidated RiPPs. AntiSMASH and RiPPER analysis identified 613 unique TfuA-related gene cluster families (GCFs) and 797 precursor peptide families, even on phyla where the presence of these clusters have not been previously described. Several additional biosynthesis genes are colocalized with the detected BGCs, suggesting an array of possible chemical modifications. This study shows that thioamidated RiPPs occupy a widely unexplored chemical landscape.
Collapse
Affiliation(s)
- Jessie James Limlingan Malit
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chuanhai Wu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ling-Li Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
9
|
Majer HM, Ehrlich RL, Ahmed A, Earl JP, Ehrlich GD, Beld J. Whole genome sequencing of Streptomyces actuosus ISP-5337, Streptomyces sioyaensis B-5408, and Actinospica acidiphila B-2296 reveals secondary metabolomes with antibiotic potential. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 29:e00596. [PMID: 33643857 PMCID: PMC7893419 DOI: 10.1016/j.btre.2021.e00596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 12/31/2022]
Abstract
Whole genome sequencing of Actinomycetes reveals metabolic potential. High quality genomes are necessary for mining of biosynthetic gene clusters. Characterization of thiopeptides by high resolution mass spectrometry. Thiopeptides are potent antibacterials against Staphylococcus aureus.
Streptomycetes are bacteria of biotechnological importance since they are avid producers of secondary metabolites, including antibiotics. Progress in genome mining has recently shown that Streptomyces species encode for many biosynthetic gene clusters which are mostly unexplored. Here, we selected three Actinomycetes species for whole genome sequencing that are known to produce potent thiopeptide antibiotics. Streptomyces actuosus biosynthesizes nosiheptide, Streptomyces sioyaensis produces siomycin, and Actinospica acidiphila is a member of the Actinomycete subfamily. Bioinformatic analyses demonstrated diverse secondary metabolomes with multiple antibiotic-encoding gene clusters. Detailed mass spectrometry analysis of metabolite extracts verified the active expression of nosiheptide and siomycin from S. actuosus and S. sioyaensis while fractionation of the bacterial extracts and subsequent challenge against Staphylococcus aureus demonstrated potent antibiotic activity of fractions containing these compounds. Whole genome sequencing of these species facilitates future bioengineering efforts for thiopeptides and characterization of relevant secondary metabolites.
Collapse
Affiliation(s)
- Haley M Majer
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Rachel L Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Azad Ahmed
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Joshua P Earl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Garth D Ehrlich
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| | - Joris Beld
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15 St, Philadelphia, PA 19102, USA
| |
Collapse
|
10
|
Lu J, Li Y, Bai Z, Lv H, Wang H. Enzymatic macrocyclization of ribosomally synthesized and posttranslational modified peptides via C-S and C-C bond formation. Nat Prod Rep 2021; 38:981-992. [PMID: 33185226 DOI: 10.1039/d0np00044b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: 2000 to 2020 Ribosomally synthesized and posttranslational modified peptides (RiPPs) are a rapidly growing class of bioactive natural products. Many members of RiPPs contain macrocyclic structural units constructed by modification enzymes through macrocyclization of linear precursor peptides. In this study, we summarize recent progress in the macrocyclization of RiPPs by C-S and C-C bond formation with a focus on the current understanding of the enzymatic mechanisms.
Collapse
Affiliation(s)
- Jingxia Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yuqing Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zengbing Bai
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Hongmei Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
11
|
Zhu H, Ge H. Biosynthesis of Central Imidazopiperidine Heterocycle in Series c Thiopeptide Antibiotic. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Zhang E, Guo H, Chen D, Yang Q, Fan Y, Yin Y, Wang W, Chen D, Wang S, Liu W. Mutational biosynthesis to generate novel analogs of nosiheptide featuring a fluorinated indolic acid moiety. Org Biomol Chem 2020; 18:4051-4055. [PMID: 32412572 DOI: 10.1039/d0ob00084a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nosiheptide (NOS) is a member of bicyclic thiopeptides possessing a biologically important indolic acid (IA) moiety appended onto the family-characteristic core system. The IA formation relies primarily on NosL, a radical S-adenosylmethionine (SAM) protein that catalyzes a complex rearrangement of the carbon side chain of l-tryptophan, leading to the generation of 3-methyl-2-indolic acid (MIA). Here, we establish an efficient mutational biosynthesis strategy for the structural expansion of the side-ring system of NOS. The nosL-deficient mutant Streptomyces actuosus SL4005 complemented by chemically feeding 6-fluoro-MIA is capable of accumulating two new products. The target product 6'-fluoro-NOS contains an additional fluorine atom at C6 of the IA moiety, in contrast with an unexpected product 6'-fluoro-NOSint that features an open side ring and a bis-dehydroalanine (Dha) tail. The newly obtained 6'-fluoro-NOS displayed equivalent or slightly reduced activities against the tested drug-resistant pathogens compared with NOS, but dramatically decreased water solubility compared with NOS. Our results indicate that the modification of the IA moiety of NOS not only affects its biological activity but also affects its activity which will be key considerations for further modification.
Collapse
Affiliation(s)
- E Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, 336 West Road of Nan Xinzhuang, Jinan, 250022, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Du Y, Qiu Y, Meng X, Feng J, Tao J, Liu W. A Heterotrimeric Dehydrogenase Complex Functions with 2 Distinct YcaO Proteins to Install 5 Azole Heterocycles into 35-Membered Sulfomycin Thiopeptides. J Am Chem Soc 2020; 142:8454-8463. [DOI: 10.1021/jacs.0c02329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junyin Feng
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| | - Jiang Tao
- Department of General Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
14
|
Bai X, Guo H, Chen D, Yang Q, Tao J, Liu W. Isolation and structure determination of two new nosiheptide-type compounds provide insights into the function of the cytochrome P450 oxygenase NocV in nocathiacin biosynthesis. Org Chem Front 2020. [DOI: 10.1039/c9qo01328h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two new nosiheptide-type compounds isolated from an engineered strain provide insights into the function of the cytochrome P450 oxygenase NocV.
Collapse
Affiliation(s)
- Xuebing Bai
- Department of General Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Qian Yang
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Jiang Tao
- Department of General Dentistry
- Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
- China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
15
|
Jin WB, Wu S, Xu YF, Yuan H, Tang GL. Recent advances in HemN-like radical S-adenosyl-l-methionine enzyme-catalyzed reactions. Nat Prod Rep 2020; 37:17-28. [DOI: 10.1039/c9np00032a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
HemN-like radical S-adenosyl-l-methionine (SAM) enzymes have been recently disclosed to catalyze diverse chemically challenging reactions from primary to secondary metabolic pathways.
Collapse
Affiliation(s)
- Wen-Bing Jin
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Sheng Wu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Yi-Fan Xu
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Hua Yuan
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| |
Collapse
|
16
|
Abstract
Bacterial natural products display astounding structural diversity, which, in turn, endows them with a remarkable range of biological activities that are of significant value to modern society. Such structural features are generated by biosynthetic enzymes that construct core scaffolds or perform peripheral modifications, and can thus define natural product families, introduce pharmacophores and permit metabolic diversification. Modern genomics approaches have greatly enhanced our ability to access and characterize natural product pathways via sequence-similarity-based bioinformatics discovery strategies. However, many biosynthetic enzymes catalyse exceptional, unprecedented transformations that continue to defy functional prediction and remain hidden from us in bacterial (meta)genomic sequence data. In this Review, we highlight exciting examples of unusual enzymology that have been uncovered recently in the context of natural product biosynthesis. These suggest that much of the natural product diversity, including entire substance classes, awaits discovery. New approaches to lift the veil on the cryptic chemistries of the natural product universe are also discussed.
Collapse
|
17
|
Wang B, LaMattina JW, Marshall SL, Booker SJ. Capturing Intermediates in the Reaction Catalyzed by NosN, a Class C Radical S-Adenosylmethionine Methylase Involved in the Biosynthesis of the Nosiheptide Side-Ring System. J Am Chem Soc 2019; 141:5788-5797. [PMID: 30865439 DOI: 10.1021/jacs.8b13157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Nosiheptide is a ribosomally synthesized and post-translationally modified thiopeptide natural product that possesses antibacterial, anticancer, and immunosuppressive properties. It contains a bicyclic structure composed of a large macrocycle and a unique side-ring system containing a 3,4-dimethylindolic acid bridge connected to the side chains of Glu6 and Cys8 of the core peptide via ester and thioester linkages, respectively. In addition to the structural peptide, encoded by the nosM gene, the biosynthesis of the side-ring structure requires the actions of NosI, -J, -K, -L, and -N. NosN is annotated as a class C radical S-adenosylmethionine (SAM) methylase, but its true function is to transfer a C1 unit from SAM to C4 of 3-methyl-2-indolic acid (MIA) with concomitant formation of a bond between the carboxylate of Glu6 of the core peptide and the nascent C1 unit. However, exactly when NosN performs its function during the biosynthesis of nosiheptide is unknown. Herein, we report the syntheses and use of three peptide mimics as potential substrates designed to address the timing of NosN's function. Our results show that NosN clearly closes the side ring before NosO forms the pyridine ring and most likely before NosD/E catalyzes formation of the dehydrated amino acids, although the possibility of a more random process (i.e., NosN acting after NosD/E) cannot be ruled out. Using a substrate mimic containing a rigid structure, we also identify and characterize two reaction-based adducts containing SAM fused to C4 of MIA. The two SAM adducts are derived from a consensus radical-containing species proposed to be the key intermediate-or a derivative of the key intermediate-in our proposed catalytic mechanism of NosN.
Collapse
|
18
|
Qiu Y, Du Y, Wang S, Zhou S, Guo Y, Liu W. Radical S-Adenosylmethionine Protein NosN Forms the Side Ring System of Nosiheptide by Functionalizing the Polythiazolyl Peptide S-Conjugated Indolic Moiety. Org Lett 2019; 21:1502-1505. [DOI: 10.1021/acs.orglett.9b00293] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shoufeng Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Shuaixiang Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
19
|
Liu J, Lin Z, Li Y, Zheng Q, Chen D, Liu W. Insights into the thioamidation of thiopeptins to enhance the understanding of the biosynthetic logic of thioamide-containing thiopeptides. Org Biomol Chem 2019; 17:3727-3731. [DOI: 10.1039/c9ob00402e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In vivo experiments show that the thioamide moiety of thiopeptins is generated by a TfuA–YcaO pair, before the maturation of the bicyclic scaffold.
Collapse
Affiliation(s)
- Jingyu Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Zhi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Yuqing Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Dandan Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry
- Center for Excellence on Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
20
|
Abstract
Although considerable knowledge of the biosynthetic machinery of thiopeptide antibiotics has been accumulated, the regulation of their production remains unclear. In this issue of Cell Chemical Biology, Li et al. (2018) have now characterized a key transcription factor and suggest its feedback regulation by biosynthesis intermediates and the final product.
Collapse
Affiliation(s)
- Claudia Roessler
- Friedrich Schiller University, Institute of Organic and Macromolecular Chemistry, Humboldtstr. 10, D-07743 Jena, Germany
| | - Hans-Dieter Arndt
- Friedrich Schiller University, Institute of Organic and Macromolecular Chemistry, Humboldtstr. 10, D-07743 Jena, Germany.
| |
Collapse
|
21
|
Wang B, LaMattina JW, Badding ED, Gadsby LK, Grove TL, Booker SJ. Using Peptide Mimics to Study the Biosynthesis of the Side-Ring System of Nosiheptide. Methods Enzymol 2018; 606:241-268. [PMID: 30097095 PMCID: PMC6501191 DOI: 10.1016/bs.mie.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Thiopeptide natural products have gained interest recently for their diverse pharmacological properties, including antibacterial, antifungal, anticancer, and antimalarial activities. Due to their inherent poor solubility and uptake, there is interest in developing new thiopeptides that mimic these unique structures, but which exhibit better pharmacokinetic properties. One strategy is to exploit the biosynthetic pathways using a chemoenzymatic approach to make analogs. However, a complete understanding of thiopeptide biosynthesis is not available, especially for those molecules that contain a large number of modifications to the thiopeptide core. This gap in knowledge and the lack of a facile method for generating a variety of thiopeptide intermediates makes studying particular enzymatic steps difficult. We developed a method to produce thiopeptide mimics based on established synthetic procedures to study the reaction catalyzed by NosN, the class C radical S-adenosylmethionine methylase involved in carbon transfer to C4 of 3-methylindolic acid and completion of the side-ring system in nosiheptide. Herein, we detail strategies for overproducing and isolating NosN, as well as procedures for synthesizing substrate mimics to study the formation of the side-ring system of nosiheptide.
Collapse
Affiliation(s)
- Bo Wang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Joseph W LaMattina
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Edward D Badding
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Lauren K Gadsby
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Tyler L Grove
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - Squire J Booker
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States; Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States; The Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|