1
|
Abstract
The oxetane ring is an emergent, underexplored motif in drug discovery that shows attractive properties such as low molecular weight, high polarity, and marked three-dimensionality. Oxetanes have garnered further interest as isosteres of carbonyl groups and as molecular tools to fine-tune physicochemical properties of drug compounds such as pKa, LogD, aqueous solubility, and metabolic clearance. This perspective highlights recent applications of oxetane motifs in drug discovery campaigns (2017-2022), with emphasis on the effect of the oxetane on medicinally relevant properties and on the building blocks used to incorporate the oxetane ring. Based on this analysis, we provide an overview of the potential benefits of appending an oxetane to a drug compound, as well as potential pitfalls, challenges, and future directions.
Collapse
Affiliation(s)
- Juan J. Rojas
- Department of Chemistry,
Imperial College London, Molecular Sciences
Research Hub, White City
Campus, Wood Lane, London W12 0BZ, U.K.
| | - James A. Bull
- Department of Chemistry,
Imperial College London, Molecular Sciences
Research Hub, White City
Campus, Wood Lane, London W12 0BZ, U.K.
| |
Collapse
|
2
|
Boram TJ, Benjamin AB, de Sousa AS, Stunkard LM, Stewart TA, Adams TJ, Craft NA, Velázquez-Marrero KG, Ling J, Nice JN, Lohman JR. Activity of Fatty Acid Biosynthesis Initiating Ketosynthase FabH with Acetyl/Malonyl-oxa/aza(dethia)CoAs. ACS Chem Biol 2023; 18:49-58. [PMID: 36626717 PMCID: PMC10311946 DOI: 10.1021/acschembio.2c00667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fatty acid and polyketide biosynthetic enzymes exploit the reactivity of acyl- and malonyl-thioesters for catalysis. A prime example is FabH, which initiates fatty acid biosynthesis in many bacteria and plants. FabH performs an acyltransferase reaction with acetyl-CoA to generate an acetyl-S-FabH acyl-enzyme intermediate and subsequent decarboxylative Claisen-condensation with a malonyl-thioester carried by an acyl carrier protein (ACP). We envision that crystal structures of FabH with substrate analogues can provide insight into the conformational changes and enzyme/substrate interactions underpinning the distinct reactions. Here, we synthesize acetyl/malonyl-CoA analogues with esters or amides in place of the thioester and characterize their stability and behavior as Escherichia coli FabH substrates or inhibitors to inform structural studies. We also characterize the analogues with mutant FabH C112Q that mimics the acyl-enzyme intermediate allowing dissection of the decarboxylation reaction. The acetyl- and malonyl-oxa(dethia)CoA analogues undergo extremely slow hydrolysis in the presence of FabH or the C112Q mutant. Decarboxylation of malonyl-oxa(dethia)CoA by FabH or C112Q mutant was not detected. The amide analogues were completely stable to enzyme activity. In enzyme assays with acetyl-CoA and malonyl-CoA (rather than malonyl-ACP) as substrates, acetyl-oxa(dethia)CoA is surprisingly slightly activating, while acetyl-aza(dethia)CoA is a moderate inhibitor. The malonyl-oxa/aza(dethia)CoAs are inhibitors with Ki's near the Km of malonyl-CoA. For comparison, we determine the FabH catalyzed decomposition rates for acetyl/malonyl-CoA, revealing some fundamental catalytic traits of FabH, including hysteresis for malonyl-CoA decarboxylation. The stability and inhibitory properties of the substrate analogues make them promising for structure-function studies to reveal fatty acid and polyketide enzyme/substrate interactions.
Collapse
Affiliation(s)
- Trevor J. Boram
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Aaron B. Benjamin
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Amanda Silva de Sousa
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Lee M. Stunkard
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Taylor A. Stewart
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Timothy J. Adams
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Nicholas A. Craft
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Kevin G. Velázquez-Marrero
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jianheng Ling
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jaelen N. Nice
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| | - Jeremy R. Lohman
- Department of Biochemistry, Purdue University, 175 S. University St., West Lafayette, IN 47907, United States
| |
Collapse
|
3
|
Chalyk B, Grynyova A, Filimonova K, Rudenko TV, Dibchak D, Mykhailiuk PK. Unexpected Isomerization of Oxetane-Carboxylic Acids. Org Lett 2022; 24:4722-4728. [PMID: 35766229 PMCID: PMC9490830 DOI: 10.1021/acs.orglett.2c01402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Many
oxetane-carboxylic
acids were found to be unstable. They easily
isomerized into new (hetero)cyclic lactones while being stored at
room temperature or slightly heated. Chemists should keep in mind
the high instability of these molecules, as this could dramatically
affect the reaction yields and lead to negative results (especially
in those reactions that require heating).
Collapse
Affiliation(s)
- Bohdan Chalyk
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Strasse 5, 02094 Kyiv, Ukraine
| | | | | | - Tymofii V Rudenko
- Enamine Ltd., Chervonotkatska 78, 02094 Kyiv, Ukraine.,Institute of Organic Chemistry, National Academy of Sciences of Ukraine, Murmanska Strasse 5, 02094 Kyiv, Ukraine
| | | | | |
Collapse
|
4
|
Serapian S, Crosby J, Crump MP, van der Kamp MW. Path to Actinorhodin: Regio- and Stereoselective Ketone Reduction by a Type II Polyketide Ketoreductase Revealed in Atomistic Detail. JACS AU 2022; 2:972-984. [PMID: 35557750 PMCID: PMC9088766 DOI: 10.1021/jacsau.2c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 06/15/2023]
Abstract
In type II polyketide synthases (PKSs), which typically biosynthesize several antibiotic and antitumor compounds, the substrate is a growing polyketide chain, shuttled between individual PKS enzymes, while covalently tethered to an acyl carrier protein (ACP): this requires the ACP interacting with a series of different enzymes in succession. During biosynthesis of the antibiotic actinorhodin, produced by Streptomyces coelicolor, one such key binding event is between an ACP carrying a 16-carbon octaketide chain (actACP) and a ketoreductase (actKR). Once the octaketide is bound inside actKR, it is likely cyclized between C7 and C12 and regioselective reduction of the ketone at C9 occurs: how these elegant chemical and conformational changes are controlled is not yet known. Here, we perform protein-protein docking, protein NMR, and extensive molecular dynamics simulations to reveal a probable mode of association between actACP and actKR; we obtain and analyze a detailed model of the C7-C12-cyclized octaketide within the actKR active site; and we confirm this model through multiscale (QM/MM) reaction simulations of the key ketoreduction step. Molecular dynamics simulations show that the most thermodynamically stable cyclized octaketide isomer (7R,12R) also gives rise to the most reaction competent conformations for ketoreduction. Subsequent reaction simulations show that ketoreduction is stereoselective as well as regioselective, resulting in an S-alcohol. Our simulations further indicate several conserved residues that may be involved in selectivity of C7-12 cyclization and C9 ketoreduction. Detailed insights obtained on ACP-based substrate presentation in type II PKSs can help design ACP-ketoreductase systems with altered regio- or stereoselectivity.
Collapse
Affiliation(s)
- Stefano
A. Serapian
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| | - John Crosby
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Matthew P. Crump
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, United Kingdom
| | - Marc W. van der Kamp
- School
of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
5
|
Chen A, Jiang Z, Burkart MD. Enzymology of standalone elongating ketosynthases. Chem Sci 2022; 13:4225-4238. [PMID: 35509474 PMCID: PMC9006962 DOI: 10.1039/d1sc07256k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
The β-ketoacyl-acyl carrier protein synthase, or ketosynthase (KS), catalyses carbon-carbon bond formation in fatty acid and polyketide biosynthesis via a decarboxylative Claisen-like condensation. In prokaryotes, standalone elongating KSs interact with the acyl carrier protein (ACP) which shuttles substrates to each partner enzyme in the elongation cycle for catalysis. Despite ongoing research for more than 50 years since KS was first identified in E. coli, the complex mechanism of KSs continues to be unravelled, including recent understanding of gating motifs, KS-ACP interactions, substrate recognition and delivery, and roles in unsaturated fatty acid biosynthesis. In this review, we summarize the latest studies, primarily conducted through structural biology and molecular probe design, that shed light on the emerging enzymology of standalone elongating KSs.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
6
|
Malarney KP, Kc S, Schmidt VA. Recent strategies used in the synthesis of saturated four-membered heterocycles. Org Biomol Chem 2021; 19:8425-8441. [PMID: 34546272 DOI: 10.1039/d1ob00988e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The importance and prevalance of O-, N-, and S-atom containing saturated four-membered ring motifs in biologically active molecules and potential therapeutics continues to drive efforts in their efficient synthetic preparation. In this review, general and recent strategies for the synthesis of these heterocycles are presented. Due to the limited potential bond disconnections, retrosynthetic strategies are broadly limited to cyclizations and cycloadditions. Nonetheless, diverse approaches for accessing cyclization precursors have been developed, ranging from nucleophilic substitution to C-H functionalization. Innovative methods for substrate activation have been developed for cycloadditions under photochemical and thermal conditions. Advances in accessing oxetanes, azetidines, and thietanes remain active areas of research with continued breakthroughs anticipated to enable future applications.
Collapse
Affiliation(s)
- Kien P Malarney
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| | - Shekhar Kc
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| | - Valerie A Schmidt
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92071, USA.
| |
Collapse
|
7
|
|
8
|
Sulpizio A, Crawford CEW, Koweek RS, Charkoudian LK. Probing the structure and function of acyl carrier proteins to unlock the strategic redesign of type II polyketide biosynthetic pathways. J Biol Chem 2021; 296:100328. [PMID: 33493513 PMCID: PMC7949117 DOI: 10.1016/j.jbc.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 02/04/2023] Open
Abstract
Type II polyketide synthases (PKSs) are protein assemblies, encoded by biosynthetic gene clusters in microorganisms, that manufacture structurally complex and pharmacologically relevant molecules. Acyl carrier proteins (ACPs) play a central role in biosynthesis by shuttling malonyl-based building blocks and polyketide intermediates to catalytic partners for chemical transformations. Because ACPs serve as central hubs in type II PKSs, they can also represent roadblocks to successfully engineering synthases capable of manufacturing 'unnatural natural products.' Therefore, understanding ACP conformational dynamics and protein interactions is essential to enable the strategic redesign of type II PKSs. However, the inherent flexibility and transience of ACP interactions pose challenges to gaining insight into ACP structure and function. In this review, we summarize how the application of chemical probes and molecular dynamic simulations has increased our understanding of the structure and function of type II PKS ACPs. We also share how integrating these advances in type II PKS ACP research with newfound access to key enzyme partners, such as the ketosynthase-chain length factor, sets the stage to unlock new biosynthetic potential.
Collapse
Affiliation(s)
- Ariana Sulpizio
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | | - Rebecca S Koweek
- Department of Chemistry, Haverford College, Haverford, Pennsylvania, USA
| | | |
Collapse
|
9
|
Parthasarathy A, Mantravadi PK, Kalesh K. Detectives and helpers: Natural products as resources for chemical probes and compound libraries. Pharmacol Ther 2020; 216:107688. [PMID: 32980442 DOI: 10.1016/j.pharmthera.2020.107688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023]
Abstract
About 70% of the drugs in use are derived from natural products, either used directly or in chemically modified form. Among all possible small molecules (not greater than 5 kDa), only a few of them are biologically active. Natural product libraries may have a higher rate of finding "hits" than synthetic libraries, even with the use of fewer compounds. This is due to the complementarity between the "chemical space" of small molecules and biological macromolecules such as proteins, DNA and RNA, in addition to the three-dimensional complexity of NPs. Chemical probes are molecules which aid in the elucidation of the biological mechanisms behind the action of drugs or drug-like molecules by binding with macromolecular/cellular interaction partners. Probe development and application have been spurred by advancements in photoaffinity label synthesis, affinity chromatography, activity based protein profiling (ABPP) and instrumental methods such as cellular thermal shift assay (CETSA) and advanced/hyphenated mass spectrometry (MS) techniques, as well as genome sequencing and bioengineering technologies. In this review, we restrict ourselves to a survey of natural products (including peptides/mini-proteins and excluding antibodies), which have been applied largely in the last 5 years for the target identification of drugs/drug-like molecules used in research on infectious diseases, and the description of their mechanisms of action.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology, Thomas H. Gosnell School of Life Sciences, 85 Lomb Memorial Dr, Rochester, NY 14623, USA
| | | | - Karunakaran Kalesh
- Department of Chemistry, Durham University, Lower Mount Joy, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
10
|
Kilgour SL, Kilgour DPA, Prasongpholchai P, O'Connor PB, Tosin M. A Light-Activated Acyl Carrier Protein "Trap" for Intermediate Capture in Type II Iterative Polyketide Biocatalysis. Chemistry 2019; 25:16515-16518. [PMID: 31596972 PMCID: PMC6972679 DOI: 10.1002/chem.201903662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/03/2019] [Indexed: 01/24/2023]
Abstract
A discrete acyl carrier protein (ACP) bearing a photolabile nonhydrolysable carba(dethia) malonyl pantetheine cofactor was chemoenzymatically prepared and utilised for the trapping of biosynthetic polyketide intermediates following light activation. From the in vitro assembly of the polyketides SEK4 and SEK4b, by the type II actinorhodin "minimal" polyketide synthase (PKS), a range of putative ACP-bound diketides, tetraketides, pentaketides and hexaketides were identified and characterised by FT-ICR-MS, providing direct insights on active site accessibility and substrate processing for this enzyme class.
Collapse
Affiliation(s)
| | - David P. A. Kilgour
- Department of Chemistry and ForensicsNottingham Trent UniversityNottinghamNG11 8NSUK
| | | | - Peter B. O'Connor
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| | - Manuela Tosin
- Department of ChemistryUniversity of WarwickLibrary RoadCoventryCV4 7ALUK
| |
Collapse
|
11
|
Paioti PHS, del Pozo J, Mikus MS, Lee J, Koh MJ, Romiti F, Torker S, Hoveyda AH. Catalytic Enantioselective Boryl and Silyl Substitution with Trifluoromethyl Alkenes: Scope, Utility, and Mechanistic Nuances of Cu–F β-Elimination. J Am Chem Soc 2019; 141:19917-19934. [DOI: 10.1021/jacs.9b11382] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Paulo H. S. Paioti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Juan del Pozo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Malte S. Mikus
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jaehee Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Ming Joo Koh
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Filippo Romiti
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Sebastian Torker
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
| | - Amir H. Hoveyda
- Supramolecular Science and Engineering Institute, University of Strasbourg, CNRS, 67000 Strasbourg, France
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
12
|
Duncan D, Auclair K. The coenzyme A biosynthetic pathway: A new tool for prodrug bioactivation. Arch Biochem Biophys 2019; 672:108069. [PMID: 31404525 DOI: 10.1016/j.abb.2019.108069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 11/29/2022]
Abstract
Prodrugs account for more than 5% of pharmaceuticals approved worldwide. Over the past decades several prodrug design strategies have been firmly established; however, only a few functional groups remain amenable to this approach. The aim of this overview is to highlight the use of coenzyme A (CoA) biosynthetic enzymes as a recently explored bioactivation scheme and provide information about its scope of utility. This emerging tool is likely to have a strong impact on future medicinal and biological studies as it offers promiscuity, orthogonal selectivity, and the capability of assembling exceptionally large molecules.
Collapse
Affiliation(s)
- Dustin Duncan
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.
| |
Collapse
|
13
|
Gulick AM, Aldrich CC. Trapping interactions between catalytic domains and carrier proteins of modular biosynthetic enzymes with chemical probes. Nat Prod Rep 2019; 35:1156-1184. [PMID: 30046790 DOI: 10.1039/c8np00044a] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to early 2018 The Nonribosomal Peptide Synthetases (NRPSs) and Polyketide Synthases (PKSs) are families of modular enzymes that produce a tremendous diversity of natural products, with antibacterial, antifungal, immunosuppressive, and anticancer activities. Both enzymes utilize a fascinating modular architecture in which the synthetic intermediates are covalently attached to a peptidyl- or acyl-carrier protein that is delivered to catalytic domains for natural product elongation, modification, and termination. An investigation of the structural mechanism therefore requires trapping the often transient interactions between the carrier and catalytic domains. Many novel chemical probes have been produced to enable the structural and functional investigation of multidomain NRPS and PKS structures. This review will describe the design and implementation of the chemical tools that have proven to be useful in biochemical and biophysical studies of these natural product biosynthetic enzymes.
Collapse
Affiliation(s)
- Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 955 Main St, Buffalo, NY 14203, USA.
| | | |
Collapse
|
14
|
Schaub AJ, Moreno GO, Zhao S, Truong HV, Luo R, Tsai SC. Computational structural enzymology methodologies for the study and engineering of fatty acid synthases, polyketide synthases and nonribosomal peptide synthetases. Methods Enzymol 2019; 622:375-409. [PMID: 31155062 PMCID: PMC7197764 DOI: 10.1016/bs.mie.2019.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Various computational methodologies can be applied to enzymological studies on enzymes in the fatty acid, polyketide, and non-ribosomal peptide biosynthetic pathways. These multi-domain complexes are called fatty acid synthases, polyketide synthases, and non-ribosomal peptide synthetases. These mega-synthases biosynthesize chemically diverse and complex bioactive molecules, with the intermediates being chauffeured between catalytic partners via a carrier protein. Recent efforts have been made to engineer these systems to expand their product diversity. A major stumbling block is our poor understanding of the transient protein-protein and protein-substrate interactions between the carrier protein and its many catalytic partner domains and product intermediates. The innate reactivity of pathway intermediates in two major classes of polyketide synthases has frustrated our mechanistic understanding of these interactions during the biosynthesis of these natural products, ultimately impeding the engineering of these systems for the generation of engineered natural products. Computational techniques described in this chapter can aid data interpretation or used to generate testable models of these experimentally intractable transient interactions, thereby providing insight into key interactions that are difficult to capture otherwise, with the potential to expand the diversity in these systems.
Collapse
Affiliation(s)
- Andrew J Schaub
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Gabriel O Moreno
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Shiji Zhao
- Mathematical, Computational and Systems Biology Program, Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Hau V Truong
- Department of Chemistry, University of California, Irvine, CA, United States
| | - Ray Luo
- Departments of Molecular Biology and Biochemistry, Chemical and Biomolecular Engineering, Materials Science and Engineering, and Biomedical Engineering, University of California, Irvine, CA, United States.
| | - Shiou-Chuan Tsai
- Department of Molecular Biology and Biochemistry, Chemistry, Pharmaceutical Sciences, University of California, Irvine, CA, United States.
| |
Collapse
|
15
|
Stunkard LM, Dixon AD, Huth TJ, Lohman JR. Sulfonate/Nitro Bearing Methylmalonyl-Thioester Isosteres Applied to Methylmalonyl-CoA Decarboxylase Structure–Function Studies. J Am Chem Soc 2019; 141:5121-5124. [PMID: 30869886 DOI: 10.1021/jacs.9b00650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Lee M. Stunkard
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Austin D. Dixon
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Tyler J. Huth
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeremy R. Lohman
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue
Center
for Cancer Research, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Qi R, Luo R. Robustness and Efficiency of Poisson-Boltzmann Modeling on Graphics Processing Units. J Chem Inf Model 2018; 59:409-420. [PMID: 30550277 DOI: 10.1021/acs.jcim.8b00761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Poisson-Boltzmann equation (PBE) based continuum electrostatics models have been widely used in modeling electrostatic interactions in biochemical processes, particularly in estimating protein-ligand binding affinities. Fast convergence of PBE solvers is crucial in binding affinity computations as numerous snapshots need to be processed. Efforts have been reported to develop PBE solvers on graphics processing units (GPUs) for efficient modeling of biomolecules, though only relatively simple successive over-relaxation and conjugate gradient methods were implemented. However, neither convergence nor scaling properties of the two methods are optimal for large biomolecules. On the other hand, geometric multigrid (MG) has been shown to be an optimal solver on CPUs, though no MG have been reported for biomolecular applications on GPUs. This is not a surprise as it is a more complex method and depends on simpler but limited iterative methods such as Gauss-Seidel in its core relaxation procedure. The robustness and efficiency of MG on GPUs are also unclear. Here we present an implementation and a thorough analysis of MG on GPUs. Our analysis shows that robustness is a more pronounced issue than efficiency for both MG and other tested solvers when the single precision is used for complex biomolecules. We further show how to balance robustness and efficiency utilizing MG's overall efficiency and conjugate gradient's robustness, pointing to a hybrid GPU solver with a good balance of efficiency and accuracy. The new PBE solver will significantly improve the computational throughput for a range of biomolecular applications on the GPU platforms.
Collapse
|
17
|
Chen A, Re RN, Burkart MD. Type II fatty acid and polyketide synthases: deciphering protein-protein and protein-substrate interactions. Nat Prod Rep 2018; 35:1029-1045. [PMID: 30046786 PMCID: PMC6233901 DOI: 10.1039/c8np00040a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Covering: up to April 5, 2018 Metabolites from type II fatty acid synthase (FAS) and polyketide synthase (PKS) pathways differ broadly in their identities and functional roles. The former are considered primary metabolites that are linear hydrocarbon acids, while the latter are complex aromatic or polyunsaturated secondary metabolites. Though the study of bacterial FAS has benefitted from decades of biochemical and structural investigations, type II PKSs have remained less understood. Here we review the recent approaches to understanding the protein-protein and protein-substrate interactions in these pathways, with an emphasis on recent chemical biology and structural applications. New approaches to the study of FAS have highlighted the critical role of the acyl carrier protein (ACP) with regard to how it stabilizes intermediates through sequestration and selectively delivers cargo to successive enzymes within these iterative pathways, utilizing protein-protein interactions to guide and organize enzymatic timing and specificity. Recent tools that have shown promise in FAS elucidation should find new approaches to studying type II PKS systems in the coming years.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0358, USA.
| | | | | |
Collapse
|
18
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as mollebenzylanol A from Rhododendron molle.
Collapse
|