1
|
Ma JT, Xiao YL, Zhang B, Wang S, Zhou ZB, Fu HH. Ultralow magnetic susceptibility in pure and Fe(Bi)-doped Au-Pt alloys improved by structural strain regulation. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 37:045801. [PMID: 39442540 DOI: 10.1088/1361-648x/ad8ab8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
Designing and manufacturing multi-component alloy samples with ultralow magnetic susceptibilityχ(<10-6cm3mol-1) is crucial for producing high-quality test masses to successfully detect gravitational wave in the LISA and TianQin projects. Previous research has idenfified AuPt alloys as a potential candidate for test masses, capable of achieving ultralow magnetic susceptibility that meets the requirements from both theoretical and experimental perspectives. In this study, we discover that the structural strain regulation (i.e. tensile and stress) can effectively optimize and further reduce the ultralow magnetic susceptibility of AuPt allpys, while fully understanding their underlying physical mechanisms. More importantly, even when doped with trace elements such as Fe or Bi impurity, strain regulation can still effectively reduce the magnetic susceptibility of the doped AuPt alloy to the desired range. Our theoretical calculations also reveal that, when the strain ratioηis controlled within in a relatively small range (<2.0%), the regulaton effect on the ultralow magnetic susceptibilities of pure or doped-AuPt alloys remains significant. This property is beneficial for achieving ultralow or even near-zero magnetic susceptibility in real AuPt alloy samples.
Collapse
Affiliation(s)
- Jun-Tao Ma
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ye-Lei Xiao
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Butian Zhang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Shun Wang
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ze-Bing Zhou
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- MOE Key Laboratory of Fundamental Physical Quantities Measurement and Hubei Key Laboratory of Gravitation and Quantum Physics, PGMF, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Hua-Hua Fu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
2
|
Xiong Y, Rao Y, Hu J, Luo Z, Chen C. Nanoparticle-Based Photothermal Therapy for Breast Cancer Noninvasive Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305140. [PMID: 37561994 DOI: 10.1002/adma.202305140] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Rapid advancements in materials science and nanotechnology, intertwined with oncology, have positioned photothermal therapy (PTT) as a promising noninvasive treatment strategy for cancer. The breast's superficial anatomical location and aesthetic significance render breast cancer a particularly pertinent candidate for the clinical application of PTT following melanoma. This review comprehensively explores the research conducted on the various types of nanoparticles employed in PTT for breast cancer and elaborates on their specific roles and mechanisms of action. The integration of PTT with existing clinical therapies for breast cancer is scrutinized, underscoring its potential for synergistic outcomes. Additionally, the mechanisms underlying PTT and consequential modifications to the tumor microenvironment after treatment are elaborated from a medical perspective. Future research directions are suggested, with an emphasis on the development of integrative platforms that combine multiple therapeutic approaches and the optimization of nanoparticle synthesis for enhanced treatment efficacy. The goal is to push the boundaries of PTT toward a comprehensive, clinically applicable treatment for breast cancer.
Collapse
Affiliation(s)
- Yao Xiong
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Yan Rao
- Animal Biosafety Level III Laboratory at the Center for Animal Experiment, Wuhan University School of Medicine, Wuhan, Hubei, 430000, P. R. China
| | - Jiawei Hu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Zixuan Luo
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, No 238 Jiefang Road, Wuchang District, Wuhan, Hubei, 430060, P. R. China
| |
Collapse
|
3
|
Strasser JW, Crooks RM. Single atoms and small clusters of atoms may accompany Au and Pd dendrimer-encapsulated nanoparticles. SOFT MATTER 2022; 18:5067-5073. [PMID: 35758848 DOI: 10.1039/d2sm00518b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report the presence of small clusters of atoms (<1 nm) (SCs) and single atoms (SAs) in solutions containing 1-2 nm dendrimer-encapsulated nanoparticles (DENs). Au and Pd DENs were imaged using aberration-corrected scanning transmission electron microscopy (ac-STEM), and energy dispersive spectroscopy (EDS) was used to identify and quantify the SAs/SCs. Two main findings have emerged from this work. First, the presence or absence of SAs/SCs depends on both the terminal functional group of the dendrimer (-NH2 or -OH) and the elemental composition of the DENs (Au or Pd). Second, dialysis can be used to remove the majority of SAs/SCs in cases where a high density of SAs/SCs are present. The foregoing conclusions provide insights into the mechanisms for Au and Pd DEN synthesis and stability. Ultimately, these results demonstrate the need for careful characterization of systems containing nanoparticles to ensure that SAs/SCs, which may be below the detection limit of most analytical methods, are taken into consideration (especially for catalysis experiments).
Collapse
Affiliation(s)
- Juliette W Strasser
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 2506 Speedway, Stop A5300, Austin, TX 78712-1224, USA.
| | - Richard M Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 2506 Speedway, Stop A5300, Austin, TX 78712-1224, USA.
| |
Collapse
|
4
|
Synthesis of Gold-Platinum Core-Shell Nanoparticles Assembled on a Silica Template and Their Peroxidase Nanozyme Properties. Int J Mol Sci 2022; 23:ijms23126424. [PMID: 35742866 PMCID: PMC9223353 DOI: 10.3390/ijms23126424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 02/01/2023] Open
Abstract
Bimetallic nanoparticles are important materials for synthesizing multifunctional nanozymes. A technique for preparing gold-platinum nanoparticles (NPs) on a silica core template (SiO2@Au@Pt) using seed-mediated growth is reported in this study. The SiO2@Au@Pt exhibits peroxidase-like nanozyme activity has several advantages over gold assembled silica core templates (SiO2@Au@Au), such as stability and catalytic performance. The maximum reaction velocity (Vmax) and the Michaelis–Menten constants (Km) were and 2.1 × 10−10 M−1∙s−1 and 417 µM, respectively. Factors affecting the peroxidase activity, including the quantity of NPs, solution pH, reaction time, and concentration of tetramethyl benzidine, are also investigated in this study. The optimization of SiO2@Au@Pt NPs for H2O2 detection obtained in 0.5 mM TMB; using 5 µg SiO2@Au@Pt, at pH 4.0 for 15 min incubation. H2O2 can be detected in the dynamic liner range of 1.0 to 100 mM with the detection limit of 1.0 mM. This study presents a novel method for controlling the properties of bimetallic NPs assembled on a silica template and increases the understanding of the activity and potential applications of highly efficient multifunctional NP-based nanozymes.
Collapse
|
5
|
Vanzan M, Jones RM, Corni S, D'Agosta R, Baletto F. Exploring AuRh Nanoalloys: A Computational Perspective on the Formation and Physical Properties. Chemphyschem 2022; 23:e202200035. [PMID: 35156760 PMCID: PMC9314847 DOI: 10.1002/cphc.202200035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/09/2022] [Indexed: 11/12/2022]
Abstract
We studied the formation of AuRh nanoalloys (between 20-150 atoms) in the gas phase by means of Molecular Dynamics (MD) calculations, exploring three possible formation processes: one-by-one growth, coalescence, and nanodroplets annealing. As a general trend, we recover a predominance of Rh@Au core-shell ordering over other chemical configurations. We identify new structural motifs with enhanced thermal stabilities. The physical features of those selected systems were studied at the Density Functional Theory (DFT) level, revealing profound correlations between the nanoalloys morphology and properties. Surprisingly, the arrangement of the inner Rh core seems to play a dominant role on nanoclusters' physical features like the HOMO-LUMO gap and magnetic moment. Strong charge separations are recovered within the nanoalloys suggesting the existence of charge-transfer transitions.
Collapse
Affiliation(s)
- Mirko Vanzan
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
| | - Robert M. Jones
- Department of PhysicsKing's College LondonStrandLondonWC2R 2LSUK
| | - Stefano Corni
- Department of Chemical SciencesUniversity of PadovaVia Marzolo 135131PadovaItaly
- CNR Institute of NanoscienceVia Campi 213/A41125ModenaItaly
| | - Roberto D'Agosta
- Department of Polymers and Advanced Materials: Physics, Chemistry and Technology (PMAS)Universidad del País Vasco UPV/EHUAvenida de Tolosa 7220018San SebastiánSpain
- IKERBASQUEBasque Foundation for SciencePlaza de Euskadi 548009BilbaoSpain
| | - Francesca Baletto
- Department of PhysicsKing's College LondonStrandLondonWC2R 2LSUK
- Department of PhysicsUniversity of MilanoVia Celoria 1620133MilanoItaly
| |
Collapse
|
6
|
Hoang NT, Thuan Nguyen PT, Chung PD, Thu Ha VT, Hung TQ, Nam PT, Thu VT. Electrochemical preparation of monodisperse Pt nanoparticles on a grafted 4-aminothiophenol supporting layer for improving the MOR reaction. RSC Adv 2022; 12:8137-8144. [PMID: 35424755 PMCID: PMC8982339 DOI: 10.1039/d2ra00040g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
The methanol oxidation reaction (MOR) has recently gained a lot of attention due to its application in fuel cells and electrochemical sensors. To enhance the MOR, noble metal nanoparticles should be homogeneously dispersed on the electrode surface with the aid of one suitable support. In this work, 4-aminothiophenol (4-ATP) molecules which contain simultaneously amine and thiol groups were electro-grafted onto the electrode surface to provide anchoring sites, limit aggregation and ensure good dispersion of metal nanoparticles. The results showed a high density of platinum nanoparticles (PtNPs) with an average size of 25 nm on the glassy electrode modified with a 4-ATP supporting layer. Consequently, the MOR was improved by 2.1 times with the aid of the grafted 4-ATP layer. The electrochemical sensor based on PtNPs/4-ATP/GCE is able to detect MeOH in a linear range from 1.26 to 21.42 mM with a detection limit of 1.21 mM.
Collapse
Affiliation(s)
- Nguyen Tien Hoang
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | | | - Pham Do Chung
- Hanoi National University of Education (HNUE 134 Xuan Thuy, Cau Giay Hanoi Vietnam
| | - Vu Thi Thu Ha
- Institute of Chemistry (IOC), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tran Quang Hung
- Institute of Chemistry (IOC), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Pham Thi Nam
- Institute of Tropical Technology (ITT), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Vu Thi Thu
- University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
7
|
Ricciardulli T, Adams JS, DeRidder M, van Bavel AP, Karim AM, Flaherty DW. H2O-assisted O2 reduction by H2 on Pt and PtAu bimetallic nanoparticles: Influences of composition and reactant coverages on kinetic regimes, rates, and selectivities. J Catal 2021. [DOI: 10.1016/j.jcat.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Mo F, Guo J, Chen M, Meng H, Fu Y. Gold Nanoparticles Photosensitization towards 3,4,9,10-Perylenetetracarboxylic Dianhydride Integrated with a Dual-Particle Three-Dimensional DNA Roller: A General "ON-OFF-ON" Photoelectric Plasmon-Enhanced Biosensor. Anal Chem 2021; 93:10947-10954. [PMID: 34319699 DOI: 10.1021/acs.analchem.1c01816] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A high initial signal for the sensitive detection of analytes is critical in photoelectrochemical (PEC) biosensing systems. As a semiconductor, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) possesses an appropriate optical band gap of 2.5 eV and inherently intense and stable PEC response. When gold nanoparticles (Au NPs) are electrodeposited on the surface of PTCDA to form a Schottky junction (Au NPs/PTCDA), a surprising and satisfactory PEC performance is unfolded before our eyes. Considering the outstanding PEC behaviors of Au NPs/PTCDA and the great quenching effect of gold nanoclusters (Au NCs), the "ON-OFF-ON" PEC sensing platform has been developed for microRNA 1246 (miRNA 1246) detection combined with the cascaded quadratic amplification strategy of the polymerization/nicking reaction and dual-particle 3D DNA roller. The higher initial PEC signals of the system can be acquired by regulating the deposition time for 35 s (-0.2 V), which is derived from the synergetic effect of localized surface plasmon resonance of Au NPs and the formation of a Schottky junction. The dual-particle 3D DNA roller has been designed to guarantee wide walking space, remarkable operation performances, and inhibition of derailment. The proposed biosensor shows a dynamic range from 10 aM to 1 pM at a low detection limit of 3.1 aM and exhibits good analytical behaviors while analyzing miRNA 1246 in healthy human serum samples. This work not only expands the application of organic photoelectric materials in bioanalysis but also provides potential possibility of detecting other biomarkers by choosing appropriate target units.
Collapse
Affiliation(s)
- Fangjing Mo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang Guo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Hui Meng
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yingzi Fu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
9
|
Strasser JW, Hersbach TJP, Liu J, Lapp AS, Frenkel AI, Crooks RM. Electrochemical Cleaning Stability and Oxygen Reduction Reaction Activity of 1‐2 nm Dendrimer‐Encapsulated Au Nanoparticles. ChemElectroChem 2021. [DOI: 10.1002/celc.202100549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Juliette W. Strasser
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Thomas J. P. Hersbach
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Jing Liu
- Department of Physics Manhattan College Riverdale NY 10471 USA
| | - Aliya S. Lapp
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook University Stony Brook NY 11794 USA
- Division of Chemistry Brookhaven National Laboratory Upton NY 11973 USA
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute The University of Texas at Austin 2506 Speedway, Stop A5300 Austin TX 78712-1224, U.S.A
| |
Collapse
|
10
|
Zhang WC, Luoshan MD, Wang PF, Huang CY, Wang QQ, Ding SJ, Zhou L. Growth of Porous Ag@AuCu Trimetal Nanoplates Assisted by Self-Assembly. NANOMATERIALS 2020; 10:nano10112207. [PMID: 33167463 PMCID: PMC7694533 DOI: 10.3390/nano10112207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/03/2023]
Abstract
The self-assembly process of metal nanoparticles has aroused wide attention due to its low cost and simplicity. However, most of the recently reported self-assembly systems only involve two or fewer metals. Herein, we first report a successful synthesis of self-assembled Ag@AuCu trimetal nanoplates in aqueous solution. The building blocks of multibranched AuCu alloy nanocrystals were first synthesized by a chemical reduction method. The growth of Ag onto the AuCu nanocrystals in the presence of hexadecyltrimethylammonium chloride (CTAC) induces a self-assembly process and formation of Ag@AuCu trimetal nanoplates. These nanoplates with an average side length of over 2 μm show a porous morphology and a very clear boundary with the branches of the as-prepared AuCu alloy nanocrystals extending out. The shape and density of the Ag@AuCu trimetal nanoplates can be controlled by changing the reaction time and the concentration of silver nitrate. The as-assembled Ag@AuCu nanoplates are expected to have the potential for wide-ranging applications in surface-enhanced Raman scattering (SERS) and catalysis owing to their unique structures.
Collapse
Affiliation(s)
- Wan-Cheng Zhang
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
| | - Meng-Dai Luoshan
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Peng-Fei Wang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Chu-Yun Huang
- School of Science, Hubei University of Technology, Wuhan 430068, China; (W.-C.Z.); (M.-D.L.); (C.-Y.H.)
| | - Qu-Quan Wang
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
| | - Si-Jing Ding
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
- Correspondence: (S.-J.D.); (L.Z.)
| | - Li Zhou
- Key Laboratory of Artificial Micro- and Nano-structures of the Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China; (P.-F.W.); (Q.-Q.W.)
- Correspondence: (S.-J.D.); (L.Z.)
| |
Collapse
|
11
|
Laghrib F, Aghris S, Ajermoun N, Hrioua A, Bakasse M, Lahrich S, El Mhammedi MA. Recent progress in controlling the synthesis and assembly of nanostructures: Application for electrochemical determination of p-nitroaniline in water. Talanta 2020; 219:121234. [PMID: 32887125 DOI: 10.1016/j.talanta.2020.121234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/11/2023]
Abstract
The development of nanoparticle research has grown considerably in recent years. One of the reasons for the considerable current interest in nanoparticles is because such materials frequently display unusual physical (structural, electronic, magnetic, and optical) and chemical (catalytic) properties. The development of nanomaterials is of interest to the scientific community and industrial companies. Different methods (physical, chemical, and biological) allow their manufacture. In particular, a major effort has been devoted to the development and improvement of synthesis methods in order to obtain nano-objects of controlled size and shape, a necessary pre-requisite to their organization, and to the study of their intrinsic and collective properties. Reviews play an important role in keeping interested parties up to date on the current state of the research in any academic field. This review aims to focus on the development of nanoparticles and stabilization with adsorbed/covalently attached ligands in solution phase since these factors are deeply related to the origins of the particles' stability, the media to which they are exposed, and the involved applications. This study also examines the factors that influence the synthesis of nanoparticles. It aims to provide an overview of existing electrochemical sensors, particularly those that operate with nanomaterial-based electrode modifications for p-nitroaniline (PNA) determination and to propose guidelines for related research and development activities. Emphasis was placed on the procedure for the analysis of PNA in water samples using nanosilver-based electrodes.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - N Ajermoun
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - A Hrioua
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M Bakasse
- University Chouaib Doukkali, Organic Micropollutants Analysis Team, Faculty of Sciences, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco.
| |
Collapse
|
12
|
Treatment of disorder effects in X-ray absorption spectra beyond the conventional approach. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Chen W, Yang L, Yan C, Yao B, Lu J, Xu J, Liu G. Surface-Confined Building of Au@Pt-Centered and Multi-G-Quadruplex/Hemin Wire-Surrounded Electroactive Super-nanostructures for Ultrasensitive Monitoring of Morphine. ACS Sens 2020; 5:2644-2651. [PMID: 32633121 DOI: 10.1021/acssensors.0c01230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Overuse and abuse of morphine (MOP), one of the main components of pericarpium papaveris, have attracted increasing attention in the medical field owing to its pharmacological and toxicological activity. Herein, we proposed a new electrochemical nano-biosensor for MOP detection based on surface-confined building of Au@Pt-centered and multi-G-quadruplex/hemin wire-surrounded electroactive super-nanostructures. The center Au@Pt was flower-shaped and irregularly protruded, allowing substantial loading of multiple G-quadruplex wire/hemin complexes on its surface to accomplish the assembly of electroactive super-nanostructures. Interestingly, as the super-nanostructures were closely confined on the electrode surface, a significantly amplified electrochemical signal was thus obtained in the absence of MOP. In contrast, the introduction of target MOP can induce an intense competitive effect and strongly destroy the assembly process, resulting in the reduction of the electrochemical response that is correlated with the logarithmic concentration of MOP. Under optimal conditions, the electrochemical nano-biosensor is capable of highly sensitive detection of MOP in a dynamic concentration range from 1 ppt to 500 ppb. The limit of detection is achieved as low as 0.69 ppt, and the practical application was confirmed by examining MOP from chafing dish condiments. We expect the electrochemical platform utilizing this unique nanoarchitecture to provide rational guidelines to design high-performance analytical tools.
Collapse
Affiliation(s)
- Wei Chen
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lijun Yang
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Chao Yan
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China
| | - Bangben Yao
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Province Institute of Product Quality Supervision & Inspection, Hefei 230051, P. R. China
| | - Jianfeng Lu
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jianguo Xu
- Engineering Research Center of Bioprocess, MOE, School of Food & Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang 233100, China
| |
Collapse
|
14
|
Uzunoğlu D, Ergüt M, Kodaman CG, Özer A. Biosynthesized Silver Nanoparticles for Colorimetric Detection of Fe3+ Ions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04760-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
15
|
Lapp AS, Crooks RM. Multilayer electrodeposition of Pt onto 1-2 nm Au nanoparticles using a hydride-termination approach. NANOSCALE 2020; 12:11026-11039. [PMID: 32420580 DOI: 10.1039/d0nr02929g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here we report on hydride-terminated (HT) electrodeposition of Pt multilayers onto ∼1.6 nm Au nanoparticles (NPs). The results build on our earlier findings regarding electrodeposition of a single monolayer of Pt onto Au NPs and reports relating to HT Pt electrodeposition onto bulk Au. In the latter case, it was found that electrodeposition of Pt from a solution containing PtCl42- can be limited to a single monolayer of Pt atoms if it is immediately followed by adsorption of a monolayer of H atoms. The H-atom capping layer prevents deposition of Pt multilayers. In the present report we are interested in comparing the structure of NPs after multiple HT Pt electrodeposition cycles to the bulk analog. The results indicate that a greater number of HT Pt cycles are required to electrodeposit both a single Pt monolayer and Pt multilayers onto these Au NPs compared to bulk Au. Additionally, detailed structural analysis shows that there are fundamental differences in the structures of the AuPt materials depending on whether they are prepared on Au NPs or bulk Au. The resulting structures have a profound impact on formic acid oxidation electrocatalysis.
Collapse
Affiliation(s)
- Aliya S Lapp
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 2506 Speedway, Stop A5300, Austin, TX 78712-1224, USA.
| | - Richard M Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 2506 Speedway, Stop A5300, Austin, TX 78712-1224, USA.
| |
Collapse
|
16
|
Scaria J, Nidheesh PV, Kumar MS. Synthesis and applications of various bimetallic nanomaterials in water and wastewater treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 259:110011. [PMID: 32072958 DOI: 10.1016/j.jenvman.2019.110011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 11/13/2019] [Accepted: 12/16/2019] [Indexed: 05/07/2023]
Abstract
Bimetallic nanoparticles are the complex combination of two different metal constituents in nanoscale. Water and wastewater treatment utilizing bimetallic particles is an emerging research area. When two metals are combined, it can show not only the properties of its constituents but also new and enhanced properties derived by the synergy of the combination. These properties of bimetallic nanoparticles inevitably depend on the size, structure, and morphology of the particles. Thus the adopting synthesis strategy is very crucial to achieve desired results. Here in this review, the various bimetallic synthesis strategies are compared. The bimetallic nanoparticles decontaminate water through adsorption and/or catalysis mechanism. The various degradation pathways, specifically, adsorption, reduction, oxidation, and advanced oxidation processes are discussed in detail in this review.
Collapse
Affiliation(s)
- Jaimy Scaria
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - P V Nidheesh
- Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| | - M Suresh Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India; Environmental Impact and Sustainability Division, CSIR-National Environmental Engineering Research Institute, Nagpur, Maharashtra, India
| |
Collapse
|
17
|
Lapp AS, Duan Z, Henkelman G, Crooks RM. Combined Experimental and Theoretical Study of the Structure of AuPt Nanoparticles Prepared by Galvanic Exchange. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16496-16507. [PMID: 31804090 DOI: 10.1021/acs.langmuir.9b03192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this article, experiment and theory are combined to analyze Pb and Cu underpotential deposition (UPD) on ∼1.7 nm Au nanoparticles (NPs) and the AuPt structures that result after galvanic exchange (GE) of the UPD layer for Pt. Experimental Pb (0.49 ML) and Pt (0.50 ML) coverages are close to values predicted by density functional theory-molecular dynamics (DFT-MD, 0.59 ML). DFT-MD reveals that the AuNPs spontaneously reconstruct from cuboctahedral to a (111)-like structure prior to UPD. In the case of Pb, this results in the random electrodeposition of Pb onto the Au surface. This mechanism is a consequence of opposing trends in Pb-Pb and Pb-Au coordination numbers as a function of Pb coverage. Cu UPD is more complex, and agreement between theory and experiment takes into account ligand effects (e.g., SO42- present as the electrolyte) and the electric double layer. Importantly, AuPt structures formed upon Pt GE are found to differ markedly depending on the UPD metal. Specifically, cyclic voltammetry indicates that the Pt coverage is ∼0.20 ML greater for Cu UPD/Pt GE (0.70 ML) than for Pb UPD/Pt GE (0.50 ML). This difference is corroborated by DFT-MD theoretical predictions. Finally, DFT-MD calculations predict the formation of surface alloy and core@shell structures for Pb UPD/Pt GE and Cu UPD/Pt GE, respectively.
Collapse
|
18
|
Trindell JA, Duan Z, Henkelman G, Crooks RM. Well-Defined Nanoparticle Electrocatalysts for the Refinement of Theory. Chem Rev 2019; 120:814-850. [DOI: 10.1021/acs.chemrev.9b00246] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jamie A. Trindell
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Zhiyao Duan
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Graeme Henkelman
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| | - Richard M. Crooks
- Department of Chemistry and Texas Materials Institute, The University of Texas at Austin, 105 East 24th Street, Stop A5300, Austin, Texas 78712-1224, United States
| |
Collapse
|
19
|
Hong W, Li CW. Microstructural Evolution of Au@Pt Core-Shell Nanoparticles under Electrochemical Polarization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30977-30986. [PMID: 31365226 DOI: 10.1021/acsami.9b10158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the microstructural evolution of bimetallic Pt nanoparticles under electrochemical polarization is critical to developing durable fuel cell catalysts. In this work, we develop a colloidal synthetic method to generate core-shell Au@Pt nanoparticles of varying surface Pt coverages to understand how as-synthesized bimetallic microstructure influences nanoparticle structural evolution during formic acid oxidation. By comparing the electrochemical and structural properties of our Au@Pt core-shells with bimetallic AuPt alloys at various stages in catalytic cycling, we determine that these two structures evolve in divergent ways. In core-shell nanoparticles, Au atoms from the core migrate outward onto the surface, generating transient "single-atom" Pt active sites with high formic acid oxidation activity. Metal migration continues until Pt is completely encapsulated by Au, and catalytic reactivity ceases. In contrast, AuPt alloys undergo surface dealloying and significant leaching of Pt out of the nanoparticle. Elucidating the dynamic restructuring processes responsible for high electrocatalytic reactivity in Pt bimetallic structures will enable better design and predictive synthesis of nanoparticle catalysts that are both active and stable.
Collapse
Affiliation(s)
- Wei Hong
- Department of Chemistry , Purdue University , 560 Oval Dr. , West Lafayette , Indiana 47907 , United States
| | - Christina W Li
- Department of Chemistry , Purdue University , 560 Oval Dr. , West Lafayette , Indiana 47907 , United States
| |
Collapse
|
20
|
Timoshenko J, Duan Z, Henkelman G, Crooks RM, Frenkel AI. Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:501-522. [PMID: 30699037 DOI: 10.1146/annurev-anchem-061318-114929] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Extended X-ray absorption fine structure (EXAFS) spectroscopy is a premiere method for analysis of the structure and structural transformation of nanoparticles. Extraction of analytical information about the three-dimensional structure and dynamics of metal-metal bonds from EXAFS spectra requires special care due to their markedly non-bulk-like character. In recent decades, significant progress has been made in the first-principles modeling of structure and properties of nanoparticles. In this review, we summarize new approaches for EXAFS data analysis that incorporate particle structure modeling into the process of structural refinement.
Collapse
Affiliation(s)
- J Timoshenko
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA;
| | - Z Duan
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - G Henkelman
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Computational and Engineering Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - R M Crooks
- Department of Chemistry and Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712, USA
| | - A I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, USA;
- Division of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
21
|
Duan Z, Timoshenko J, Kunal P, House SD, Wan H, Jarvis K, Bonifacio C, Yang JC, Crooks RM, Frenkel AI, Humphrey SM, Henkelman G. Structural characterization of heterogeneous RhAu nanoparticles from a microwave-assisted synthesis. NANOSCALE 2018; 10:22520-22532. [PMID: 30480291 DOI: 10.1039/c8nr04866e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A microwave assisted method was used to synthesize RhAu nanoparticles (NPs). Characterization, based upon transmission electron microscopy (TEM), energy dispersive spectroscopy, and powder X-ray diffraction, provided the evidence of monomodal alloy NPs with a mean size distribution between 3 and 5 nm, depending upon the composition. Extended X-ray adsorption fine-structure spectroscopy (EXAFS) also showed evidence of alloying, but the coordination numbers of Rh and Au indicated significant segregation between the metals. More problematic were the low coordination numbers for Rh; values of ca. 9 indicate NPs smaller than 2 nm, significantly smaller than those observed with TEM. Additionally, no single-particle structural models were able to reproduce the experimental EXAFS data. Resolution of this discrepancy was achieved with high resolution aberration corrected scanning TEM imaging which showed the presence of ultra-small (<2 nm) pure Rh clusters and larger (∼3-5 nm) segregated particles with Au-rich cores and Rh-decorated shells. A heterogeneous model with a mixture of ultrasmall pure Rh clusters and larger segregated Rh/Au NPs was able to explain the experimental measurements of the NPs over the range of compositions measured. The combination of density functional theory, EXAFS, and TEM allowed us to quantify the heterogeneity in the RhAu NPs. It was only through this combination of theoretical and experimental techniques that resulted in a bimodal distribution of particle sizes that was able to explain all of the experimental characterization data.
Collapse
Affiliation(s)
- Zhiyao Duan
- Department of Chemistry and the Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712-0165, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Kang H, Buchman JT, Rodriguez RS, Ring HL, He J, Bantz KC, Haynes CL. Stabilization of Silver and Gold Nanoparticles: Preservation and Improvement of Plasmonic Functionalities. Chem Rev 2018; 119:664-699. [DOI: 10.1021/acs.chemrev.8b00341] [Citation(s) in RCA: 258] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hyunho Kang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Joseph T. Buchman
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Rebeca S. Rodriguez
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Hattie L. Ring
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Jiayi He
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Kyle C. Bantz
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant Street Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|