1
|
Chang ASM, Kascoutas MA, Valentine QP, How KI, Thomas RM, Cook AK. Alkene Isomerization Using a Heterogeneous Nickel-Hydride Catalyst. J Am Chem Soc 2024; 146:15596-15608. [PMID: 38771258 DOI: 10.1021/jacs.4c04719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Transition metal-catalyzed alkene isomerization is an enabling technology used to install an alkene distal to its original site. Due to their well-defined structure, homogeneous catalysts can be fine-tuned to optimize reactivity, stereoselectivity, and positional selectivity, but they often suffer from instability and nonrecyclability. Heterogeneous catalysts are generally highly robust but continue to lack active-site specificity and are challenging to rationally improve through structural modification. Known single-site heterogeneous catalysts for alkene isomerization utilize precious metals and bespoke, expensive, and synthetically intense supports. Additionally, they generally have mediocre reactivity, inspiring us to develop a heterogeneous catalyst with an active site made from readily available compounds made of Earth-abundant elements. Previous work demonstrated that a very active homogeneous catalyst is formed upon protonation of Ni[P(OEt)3]4 by H2SO4, generating a [Ni-H]+ active site. This catalyst is incredibly active, but also decomposes readily, which severely limits its utility. Herein we show that by using a solid acid (sulfated zirconia, SZO300), not only is this decomposition prevented, but high activity is maintained, improved selectivity is achieved, and a broader scope of functional groups is tolerated. Preliminary mechanistic experiments suggest that the catalytic reaction likely goes through an intermolecular, two-electron pathway. A detailed kinetic study comparing the state-of-the-art Ni and Pd isomerization catalysts reveals that the highest activity and selectivity is seen with the Ni/SZO300 system. The reactivity of Ni/SZO300, is not limited to alkene isomerization; it is also a competent catalyst for hydroalkenylation, hydroboration, and hydrosilylation, demonstrating the broad application of this heterogeneous catalyst.
Collapse
Affiliation(s)
- Alison Sy-Min Chang
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Melanie A Kascoutas
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Quinn P Valentine
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Kiera I How
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Rachel M Thomas
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| | - Amanda K Cook
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
2
|
Samudrala KK, Conley MP. Effects of surface acidity on the structure of organometallics supported on oxide surfaces. Chem Commun (Camb) 2023; 59:4115-4127. [PMID: 36912586 DOI: 10.1039/d3cc00047h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Well-defined organometallics supported on high surface area oxides are promising heterogeneous catalysts. An important design factor in these materials is how the metal interacts with the functionalities on an oxide support, commonly anionic X-type ligands derived from the reaction of an organometallic M-R with an -OH site on the oxide. The metal can either form a covalent M-O bond or form an electrostatic M+⋯-O ion-pair, which impacts how well-defined organometallics will interact with substrates in catalytic reactions. A less common reaction pathway involves the reaction of a Lewis site on the oxide with the organometallic, resulting in abstraction to form an ion-pair, which is relevant to industrial olefin polymerization catalysts. This Feature Article views the spectrum of reactivity between an organometallic and an oxide through the prism of Brønsted and/or Lewis acidity of surface sites and draws analogies to the molecular frame where Lewis and Brønsted acids are known to form reactive ion-pairs. Applications of the well-defined sites developed in this article are also discussed.
Collapse
Affiliation(s)
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, USA.
| |
Collapse
|
3
|
Gao J, Zhu L, Conley MP. Cationic Tantalum Hydrides Catalyze Hydrogenolysis and Alkane Metathesis Reactions of Paraffins and Polyethylene. J Am Chem Soc 2023; 145:4964-4968. [PMID: 36827508 DOI: 10.1021/jacs.2c13610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Sulfated aluminum oxide (SAO), a high surface area material containing sulfate anions that behave like weakly coordinating anions, reacts with Ta(═CHtBu)(CH2tBu)3 to form [Ta(CH2tBu)2(O-)2][SAO] (1). Subsequent treatment with H2 forms Ta-H+ sites supported on SAO that are active in hydrogenolysis and alkane metathesis reactions. In both reactions Ta-H+ is more active than related neutral Ta-H sites supported on silica. This reaction chemistry extends to melts of high-density polyethylene (HDPE), where Ta-H+ converts 30% of a low molecular weight HDPE (Mn = 2.5 kg mol-1; Đ = 3.6) to low molecular weight paraffins under hydrogenolysis conditions. Under alkane metathesis conditions Ta-H+ converts this HDPE to a high MW fraction (Mn = 6.2 kDa; Đ = 2.3) and low molecular weight alkane products (C13-C32). These results show that incorporating charge as a design element in supported d0 metal hydrides is a viable strategy to increase the reaction rate in challenging reactions involving reorganization of C-C bonds in alkanes.
Collapse
Affiliation(s)
- Jiaxin Gao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Lingchao Zhu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
4
|
Syed ZH, Mian MR, Patel R, Xie H, Pengmei Z, Chen Z, Son FA, Goetjen TA, Chapovetsky A, Fahy KM, Sha F, Wang X, Alayoglu S, Kaphan DM, Chapman KW, Neurock M, Gagliardi L, Delferro M, Farha OK. Sulfated Zirconium Metal–Organic Frameworks as Well-Defined Supports for Enhancing Organometallic Catalysis. J Am Chem Soc 2022; 144:16883-16897. [DOI: 10.1021/jacs.2c05290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zoha H. Syed
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Roshan Patel
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haomiao Xie
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Zihan Pengmei
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Florencia A. Son
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Timothy A. Goetjen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alon Chapovetsky
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Kira M. Fahy
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Fanrui Sha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Xingjie Wang
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Selim Alayoglu
- Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karena W. Chapman
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, United States
| | - Matthew Neurock
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, Illinois 60637, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Kim J, Kim DH, Park J, Jeong K, Ha HP. Decrypting Catalytic NOX Activation and Poison Fragmentation Routes Boosted by Mono- and Bi-Dentate Surface SO32–/SO42– Modifiers under a SO2-Containing Flue Gas Stream. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04611] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jongsik Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Dong Ho Kim
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Jinseon Park
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Keunhong Jeong
- Department of Physics and Chemistry, Korea Military Academy, Seoul 01805, South Korea
| | - Heon Phil Ha
- Extreme Materials Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| |
Collapse
|
6
|
Xie R, Ma L, Li Z, Qu Z, Yan N, Li J. Review of Sulfur Promotion Effects on Metal Oxide Catalysts for NOx Emission Control. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02197] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Renyi Xie
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Ma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihao Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zan Qu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Naiqiang Yan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhua Li
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Alférez MG, Moreno JJ, Hidalgo N, Campos J. Reversible Hydride Migration from C 5Me 5 to Rh I Revealed by a Cooperative Bimetallic Approach. Angew Chem Int Ed Engl 2020; 59:20863-20867. [PMID: 33448577 PMCID: PMC7754342 DOI: 10.1002/anie.202008442] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/16/2020] [Indexed: 02/06/2023]
Abstract
The use of cyclopentadienyl ligands in organometallic chemistry and catalysis is ubiquitous, mostly due to their robust spectator role. Nonetheless, increasing examples of non-innocent behaviour are being documented. Here, we provide evidence for reversible intramolecular C-H activation at one methyl terminus of C5Me5 in [(η-C5Me5)Rh(PMe3)2] to form a new Rh-H bond, a process so far restricted to early transition metals. Experimental evidence was acquired from bimetallic rhodium/gold structures in which the gold center binds either to the rhodium atom or to the activated Cp* ring. Reversibility of the C-H activation event regenerates the RhI and AuI monometallic precursors, whose cooperative reactivity towards polar E-H bonds (E=O, N), including the N-H bonds in ammonia, can be understood in terms of bimetallic frustration.
Collapse
Affiliation(s)
- Macarena G. Alférez
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Juan J. Moreno
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Nereida Hidalgo
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ)Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)Consejo Superior de Investigaciones Científicas (CSIC)University of SevillaAvenida Américo Vespucio 4941092SevillaSpain
| |
Collapse
|
8
|
Alférez MG, Moreno JJ, Hidalgo N, Campos J. Reversible Hydride Migration from C
5
Me
5
to Rh
I
Revealed by a Cooperative Bimetallic Approach. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Macarena G. Alférez
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Juan J. Moreno
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Nereida Hidalgo
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| | - Jesús Campos
- Instituto de Investigaciones Químicas (IIQ) Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA) Consejo Superior de Investigaciones Científicas (CSIC) University of Sevilla Avenida Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
9
|
Witzke RJ, Chapovetsky A, Conley MP, Kaphan DM, Delferro M. Nontraditional Catalyst Supports in Surface Organometallic Chemistry. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03350] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan J. Witzke
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Alon Chapovetsky
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, Riverside, California 92521, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
10
|
Culver DB, Huynh W, Tafazolian H, Conley MP. Solid-State 45Sc NMR Studies of Cp* 2Sc–OR (R = CMe 2CF 3, CMe(CF 3) 2, C(CF 3) 3, SiPh 3) and Relationship to the Structure of Cp* 2Sc-Sites Supported on Partially Dehydroxylated Silica. Organometallics 2020. [DOI: 10.1021/acs.organomet.9b00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Damien B. Culver
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Winn Huynh
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Hosein Tafazolian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
11
|
Preparation and regeneration of supported single-Ir-site catalysts by nanoparticle dispersion via CO and nascent I radicals. J Catal 2020. [DOI: 10.1016/j.jcat.2019.12.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Huynh W, Conley MP. Origin of the 29Si NMR chemical shift in R3Si–X and relationship to the formation of silylium (R3Si+) ions. Dalton Trans 2020; 49:16453-16463. [DOI: 10.1039/d0dt02099k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The origin in deshielding of 29Si NMR chemical shifts in R3Si–X, where X = H, OMe, Cl, OTf, [CH6B11X6], toluene, and OX (OX = surface oxygen), as well as iPr3Si+ and Mes3Si+ were studied using DFT methods.
Collapse
Affiliation(s)
- Winn Huynh
- Department of Chemistry
- University of California
- Riverside
- USA
| | | |
Collapse
|
13
|
Culver DB, Venkatesh A, Huynh W, Rossini AJ, Conley MP. Al(OR F) 3 (R F = C(CF 3) 3) activated silica: a well-defined weakly coordinating surface anion. Chem Sci 2019; 11:1510-1517. [PMID: 34084380 PMCID: PMC8148071 DOI: 10.1039/c9sc05904k] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Weakly Coordinating Anions (WCAs) containing electron deficient delocalized anionic fragments that are reasonably inert allow for the isolation of strong electrophiles. Perfluorinated borates, perfluorinated aluminum alkoxides, and halogenated carborane anions are a few families of WCAs that are commonly used in synthesis. Application of similar design strategies to oxide surfaces is challenging. This paper describes the reaction of Al(ORF)3*PhF (RF = C(CF3)3) with silica partially dehydroxylated at 700 °C (SiO2-700) to form the bridging silanol [triple bond, length as m-dash]Si-OH⋯Al(ORF)3 (1). DFT calculations using small clusters to model 1 show that the gas phase acidity (GPA) of the bridging silanol is 43.2 kcal mol-1 lower than the GPA of H2SO4, but higher than the strongest carborane acids, suggesting that deprotonated 1 would be a WCA. Reactions of 1 with NOct3 show that 1 forms weaker ion-pairs than classical WCAs, but stronger ion-pairs than carborane or borate anions. Though 1 forms stronger ion-pairs than these state-of-the-art WCAs, 1 reacts with alkylsilanes to form silylium type surface species. To the best of our knowledge, this is the first example of a silylium supported on derivatized silica.
Collapse
Affiliation(s)
- Damien B Culver
- Department of Chemistry, University of California Riverside California 92521 USA
| | - Amrit Venkatesh
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Winn Huynh
- Department of Chemistry, University of California Riverside California 92521 USA
| | - Aaron J Rossini
- Department of Chemistry, Iowa State University Ames Iowa 50011 USA
| | - Matthew P Conley
- Department of Chemistry, University of California Riverside California 92521 USA
| |
Collapse
|
14
|
Lassalle S, Jabbour R, Schiltz P, Berruyer P, Todorova TK, Veyre L, Gajan D, Lesage A, Thieuleux C, Camp C. Metal–Metal Synergy in Well-Defined Surface Tantalum–Iridium Heterobimetallic Catalysts for H/D Exchange Reactions. J Am Chem Soc 2019; 141:19321-19335. [DOI: 10.1021/jacs.9b08311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sébastien Lassalle
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Ribal Jabbour
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Pauline Schiltz
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Pierrick Berruyer
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Tanya K. Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 05, France
| | - Laurent Veyre
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - David Gajan
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Anne Lesage
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
15
|
Rankin AGM, Trébosc J, Pourpoint F, Amoureux JP, Lafon O. Recent developments in MAS DNP-NMR of materials. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2019; 101:116-143. [PMID: 31189121 DOI: 10.1016/j.ssnmr.2019.05.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 05/03/2023]
Abstract
Solid-state NMR spectroscopy is a powerful technique for the characterization of the atomic-level structure and dynamics of materials. Nevertheless, the use of this technique is often limited by its lack of sensitivity, which can prevent the observation of surfaces, defects or insensitive isotopes. Dynamic Nuclear Polarization (DNP) has been shown to improve by one to three orders of magnitude the sensitivity of NMR experiments on materials under Magic-Angle Spinning (MAS), at static magnetic field B0 ≥ 5 T, conditions allowing for the acquisition of high-resolution spectra. The field of DNP-NMR spectroscopy of materials has undergone a rapid development in the last ten years, spurred notably by the availability of commercial DNP-NMR systems. We provide here an in-depth overview of MAS DNP-NMR studies of materials at high B0 field. After a historical perspective of DNP of materials, we describe the DNP transfers under MAS, the transport of polarization by spin diffusion and the various contributions to the overall sensitivity of DNP-NMR experiments. We discuss the design of tailored polarizing agents and the sample preparation in the case of materials. We present the DNP-NMR hardware and the influence of key experimental parameters, such as microwave power, magnetic field, temperature and MAS frequency. We give an overview of the isotopes that have been detected by this technique, and the NMR methods that have been combined with DNP. Finally, we show how MAS DNP-NMR has been applied to gain new insights into the structure of organic, hybrid and inorganic materials with applications in fields, such as health, energy, catalysis, optoelectronics etc.
Collapse
Affiliation(s)
- Andrew G M Rankin
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Julien Trébosc
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Univ. Lille, CNRS-FR2638, Fédération Chevreul, F-59000 Lille, France
| | - Frédérique Pourpoint
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France
| | - Jean-Paul Amoureux
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Bruker Biospin, 34 rue de l'industrie, F-67166, Wissembourg, France
| | - Olivier Lafon
- Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France; Institut Universitaire de France, 1 rue Descartes, F-75231, Paris, France.
| |
Collapse
|
16
|
Otake KI, Ye J, Mandal M, Islamoglu T, Buru CT, Hupp JT, Delferro M, Truhlar DG, Cramer CJ, Farha OK. Enhanced Activity of Heterogeneous Pd(II) Catalysts on Acid-Functionalized Metal–Organic Frameworks. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01043] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ken-ichi Otake
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Jingyun Ye
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Mukunda Mandal
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra T. Buru
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Massimiliano Delferro
- Chemical Sciences & Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439-4803, United States
| | - Donald G. Truhlar
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry, Minnesota Supercomputing Institute, and Chemical Theory Center, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
17
|
Syed ZH, Kaphan DM, Perras FA, Pruski M, Ferrandon MS, Wegener EC, Celik G, Wen J, Liu C, Dogan F, Goldberg KI, Delferro M. Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. J Am Chem Soc 2019; 141:6325-6337. [DOI: 10.1021/jacs.9b00896] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zoha H. Syed
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - David M. Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | | | - Marek Pruski
- U.S. DOE Ames Laboratory, Ames, Iowa 50011, United States
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Magali S. Ferrandon
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Evan C. Wegener
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Gokhan Celik
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Jianguo Wen
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Fulya Dogan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karen I. Goldberg
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
18
|
Rodriguez J, Culver DB, Conley MP. Generation of Phosphonium Sites on Sulfated Zirconium Oxide: Relationship to Brønsted Acid Strength of Surface −OH Sites. J Am Chem Soc 2019; 141:1484-1488. [DOI: 10.1021/jacs.8b13204] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Jessica Rodriguez
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Damien B. Culver
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Matthew P. Conley
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
19
|
Zatsepin P, Ahn S, Pudasaini B, Gau MR, Baik MH, Mindiola DJ. Conversion of methane to ethylene using an Ir complex and phosphorus ylide as a methylene transfer reagent. Chem Commun (Camb) 2019; 55:1927-1930. [DOI: 10.1039/c8cc08761j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cp*(Me3P)Ir(CH3)(OTf), a complex known to reversibly activate CH4 and other hydrocarbons under mild conditions, reacts with the phosphorus ylide H2CPPh3 in THF to afford two major species [Cp*(Me3P)(Ph3P)Ir(CH2CH3)][OTf] and [Cp*(Me3P)Ir(H)(η2-CH2CH2)][OTf].
Collapse
Affiliation(s)
| | - Seihwan Ahn
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Institute for Basic Science (IBS)
| | - Bimal Pudasaini
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Institute for Basic Science (IBS)
| | | | - Mu-Hyun Baik
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- Institute for Basic Science (IBS)
| | | |
Collapse
|
20
|
Culver DB, Conley MP. Activation of C−F Bonds by Electrophilic Organosilicon Sites Supported on Sulfated Zirconia. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Damien B. Culver
- Chemistry University of California, Riverside 501 Big Springs Rd. Riverside CA 92521 USA
| | - Matthew P. Conley
- Chemistry University of California, Riverside 501 Big Springs Rd. Riverside CA 92521 USA
| |
Collapse
|
21
|
Culver DB, Conley MP. Activation of C−F Bonds by Electrophilic Organosilicon Sites Supported on Sulfated Zirconia. Angew Chem Int Ed Engl 2018; 57:14902-14905. [PMID: 30265766 DOI: 10.1002/anie.201809199] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Damien B. Culver
- Chemistry University of California, Riverside 501 Big Springs Rd. Riverside CA 92521 USA
| | - Matthew P. Conley
- Chemistry University of California, Riverside 501 Big Springs Rd. Riverside CA 92521 USA
| |
Collapse
|