1
|
Cheng Q, Yu Y, Wan Z, Zhou M, Tang W, Tan W, Liu M. Structure-based design and screening of hydrogel copolymer/Fe 3O 4 composite microspheres for magnetic solid phase extraction of bisphenol A from aqueous samples. Talanta 2025; 283:127178. [PMID: 39520927 DOI: 10.1016/j.talanta.2024.127178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
It is of great significance to monitor bisphenol A (BPA) in the environment because of its potential environmental and health risks. However, the detection of trace or ultratrace BPA in complicated environmental samples is challenging due to the relatively low affinity and poor selectivity of existing adsorbents used in sample pretreatment. Herein, we report a high-affinity, low environment-dependent and strong interference-resistant abiotic affinity ligand, a N-methacryloyl-l-lysine-NH2 (MLys)-based hydrogel copolymer (HP 17) screened from a small focused polymer library engineered by incorporating various combinations and ratios of candidate functional monomers. The selection of these monomers was guided by molecular mechanism between BPA and the ligand-binding pocket of its estrogen receptors. The BPA-HP17 binding is mainly a synergistic effect of π-cation and hydrophobic interactions. The screened HP 17 has high adsorption capacity (349.4 mg/g) for BPA under wide pH (3.0-10.0) and ionic strength (0-150 mM) range. To improve its practicability, a hydrogel copolymer/Fe3O4 composite microspheres (Fe3O4@HP 17) was synthesized and applied for magnetic solid phase extraction-high-performance liquid chromatography (MSPE-HPLC) analysis of BPA in tap water, lake water and industrial effluents. The method shows wide linear range (2.5⁓100 ng/mL), high sensitivity (detection limit of 0.22 ng/mL even without further concentration after desorption), high accuracies (92.6⁓103.0 %) and good precisions (0.57⁓4.53 %), indicating a great potential of this material and method in the detection of trace or ultratrace BPA in complex environmental water samples.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Yunli Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Meng Zhou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
2
|
Chen R, Zhuang Y, Wang M, Yu J, Chi D. Transcriptomic Analysis of the Response of the Dioryctria abietella Larva Midgut to Bacillus thuringiensis 2913 Infection. Int J Mol Sci 2024; 25:10921. [PMID: 39456705 PMCID: PMC11507524 DOI: 10.3390/ijms252010921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Dioryctria abietella Denis Schiffermuller (Lepidoptera: Pyralidae) is an oligophagous pest that mainly damages Pinaceae plants. Here, we investigated the effects of the Bacillus thuringiensis 2913 strain (Bt 2913), which carries the Cry1Ac, Cry2Ab, and Vip3Aa genes, on the D. abietella midgut transcriptome at 6, 12, and 24 h after infection. In total, 7497 differentially expressed genes (DEGs) were identified from the midgut transcriptome of D. abietella larvae infected with Bt 2913. Among these DEGs, we identified genes possibly involved in Bt 2913-induced perforation of the larval midgut. For example, the DEGs included 67 genes encoding midgut proteases involved in Cry/Vip toxin activation, 74 genes encoding potential receptor proteins that bind to insecticidal proteins, and 19 genes encoding receptor NADH dehydrogenases that may bind to Cry1Ac. Among the three transcriptomes, 88 genes related to metabolic detoxification and 98 genes related to immune defense against Bt 2913 infection were identified. Interestingly, 145 genes related to the 60S ribosomal protein were among the DEGs identified in the three transcriptomes. Furthermore, we performed bioinformatic analysis of zonadhesin, GST, CYP450, and CarE in the D. abietella midgut to determine their possible associations with Bt 2913. On the basis of the results of this analysis, we speculated that trypsin and other serine proteases in the D. abietella larval midgut began to activate Cry/Vip prototoxin at 6 h to 12 h after Bt 2913 ingestion. At 12 h after Bt 2913 ingestion, chymotrypsin was potentially involved in degrading the active core fragment of Vip3Aa toxin, and the detoxification enzymes in the larvae contributed to the metabolic detoxification of the Bt toxin. The ABC transporter and several other receptor-protein-related genes were also downregulated to increase resistance to Bt 2913. However, the upregulation of 60S ribosomal protein and heat shock protein expression weakened the resistance of larvae to Bt 2913, thereby enhancing the expression of NADH dehydrogenase and other receptor proteins that are highly expressed in the larval midgut and bind to activating toxins, including Cry1Ac. At 24 h after Bt 2913 ingestion, many activated toxins were bound to receptor proteins such as APN in the larval midgut, resulting in membrane perforation. Here, we clarified the mechanism of Bt 2913 infection in D. abietella larvae, as well as the larval immune defense response to Bt 2913, which provides a theoretical basis for the subsequent control of D. abietella using B. thuringiensis.
Collapse
Affiliation(s)
| | | | | | | | - Defu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management of Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, China; (R.C.); (Y.Z.); (M.W.); (J.Y.)
| |
Collapse
|
3
|
Wang D, Sun L, Shen WT, Haggard A, Yu Y, Zhang JA, Fang RH, Gao W, Zhang L. Neuronal Membrane-Derived Nanodiscs for Broad-Spectrum Neurotoxin Detoxification. ACS NANO 2024; 18:25069-25080. [PMID: 39190873 DOI: 10.1021/acsnano.4c06708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Neurotoxins pose significant challenges in defense and healthcare due to their disruptive effects on nervous tissues. Their extreme potency and enormous structural diversity have hindered the development of effective antidotes. Motivated by the properties of cell membrane-derived nanodiscs, such as their ultrasmall size, disc shape, and inherent cell membrane functions, here, we develop neuronal membrane-derived nanodiscs (denoted "Neuron-NDs") as a countermeasure nanomedicine for broad-spectrum neurotoxin detoxification. We fabricate Neuron-NDs using the plasma membrane of human SH-SY5Y neurons and demonstrate their effectiveness in detoxifying tetrodotoxin (TTX) and botulinum toxin (BoNT), two model toxins with distinct mechanisms of action. Cell-based assays confirm the ability of Neuron-NDs to inhibit TTX-induced ion channel blockage and BoNT-mediated inhibition of synaptic vesicle recycling. In mouse models of TTX and BoNT intoxication, treatment with Neuron-NDs effectively improves survival rates in both therapeutic and preventative settings. Importantly, high-dose administration of Neuron-NDs shows no observable acute toxicity in mice, indicating its safety profile. Overall, our study highlights the facile fabrication of Neuron-NDs and their broad-spectrum detoxification capabilities, offering promising solutions for neurotoxin-related challenges in biodefense and therapeutic applications.
Collapse
Affiliation(s)
- Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Austin Haggard
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Ghosh A, Sharma M, Zhao Y. Cell-penetrating protein-recognizing polymeric nanoparticles through dynamic covalent chemistry and double imprinting. Nat Commun 2024; 15:3731. [PMID: 38702306 PMCID: PMC11068882 DOI: 10.1038/s41467-024-48131-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.
Collapse
Affiliation(s)
- Avijit Ghosh
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Mansi Sharma
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, IA, 50011-3111, USA.
| |
Collapse
|
5
|
Xu X, Xie M, Luo S, Jia X. Revisiting Protein-Copolymer Binding Mechanisms: Insights beyond the "Lock-and-Key" Model. J Phys Chem Lett 2024; 15:773-781. [PMID: 38227953 DOI: 10.1021/acs.jpclett.3c03200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
The "lock-and-key" model that emphasizes the concept of chemical-structural complementary is the key mechanism for explaining the selectivity between small ligands and a larger adsorbent molecule. In this work, concerning the copolymer chain using only the combination of N-isopropylacrylamide (NIPAm) and hydrophobic N-tert-butylacrylamide (TBAm) monomers and by large-scale atomistic molecular dynamics simulations, our results show that the flexible copolymer chain may exhibit strong binding affinity for the biomarker protein epithelial cell adhesion molecule, in the absence of hydrophobic matching and strong structural complementarity. This surprising binding behavior, which cannot be anticipated by the "lock-and-key" model, can be attributed to the preferential interactions established by the copolymer with the protein's hydrophilic exterior. We observe that increasing the fraction of incorporated TBAm monomers leads to a prevalence of interactions with asparagine and glutamine amino acids due to the emerging hydrogen bonding with both NIPAm and TBAm monomers. Our findings suggest the appearance of highly specific and high-affinity binding sites on the protein created by engineering the copolymer composition, which motivates the applications of copolymers as protein affinity reagents.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Menghan Xie
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Shejia Luo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| | - Xu Jia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing 210094, P. R. China
| |
Collapse
|
6
|
Li B, Zhao Y, Wu X, Wu H, Tang W, Yu X, Mou J, Tan W, Jin M, Li W, Zhang Q, Liu M. Abiotic Synthetic Antibody Inhibitor with Broad-Spectrum Neutralization and Antiviral Efficacy against Escaping SARS-CoV-2 Variants. ACS NANO 2023; 17:7017-7034. [PMID: 36971310 PMCID: PMC10074723 DOI: 10.1021/acsnano.3c02050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 03/23/2023] [Indexed: 06/18/2023]
Abstract
The rapid emergence and spread of vaccine/antibody-escaping variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed serious challenges to our efforts in combating corona virus disease 2019 (COVID-19) pandemic. A potent and broad-spectrum neutralizing reagent against these escaping mutants is extremely important for the development of strategies for the prevention and treatment of SARS-CoV-2 infection. We herein report an abiotic synthetic antibody inhibitor as a potential anti-SARS-CoV-2 therapeutic agent. The inhibitor, Aphe-NP14, was selected from a synthetic hydrogel polymer nanoparticle library created by incorporating monomers with functionalities complementary to key residues of the SARS-CoV-2 spike glycoprotein receptor binding domain (RBD) involved in human angiotensin-converting enzyme 2 (ACE2) binding. It has high capacity, fast adsorption kinetics, strong affinity, and broad specificity in biologically relevant conditions to both the wild type and the current variants of concern, including Beta, Delta, and Omicron spike RBD. The Aphe-NP14 uptake of spike RBD results in strong blockage of spike RBD-ACE2 interaction and thus potent neutralization efficacy against these escaping spike protein variant pseudotyped viruses. It also inhibits live SARS-CoV-2 virus recognition, entry, replication, and infection in vitro and in vivo. The Aphe-NP14 intranasal administration is found to be safe due to its low in vitro and in vivo toxicity. These results establish a potential application of abiotic synthetic antibody inhibitors in the prevention and treatment of the infection of emerging or possibly future SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Bingxue Li
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Ya Zhao
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Xuefan Wu
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan 430071, China
- University of Chinese Academy of
Sciences, Beijing 100049, China
| | - Haiyan Wu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Weicheng Tang
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Jianqiong Mou
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| | - Meilin Jin
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
- College of Veterinary Medicine, Huazhong
Agricultural University, Wuhan 430070, China
- Key Laboratory of Development of Veterinary Diagnostic
Products, Ministry of Agriculture, Wuhan 430070,
China
| | - Wei Li
- State Key Laboratory of Virology, Wuhan
Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of
Sciences, Wuhan 430071, China
| | - Qiang Zhang
- National Key Laboratory of Agricultural Microbiology,
Huazhong Agricultural University, Wuhan 430070,
China
- College of Biomedicine and Health,
Huazhong Agricultural University, Wuhan 430070,
China
- Hubei Jiangxia Laboratory,
Wuhan 430200, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and
Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key
Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection
Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment,
Huazhong Agricultural University, Wuhan 430070,
China
| |
Collapse
|
7
|
Jneid R, Loudhaief R, Zucchini-Pascal N, Nawrot-Esposito MP, Fichant A, Rousset R, Bonis M, Osman D, Gallet A. Bacillus thuringiensis toxins divert progenitor cells toward enteroendocrine fate by decreasing cell adhesion with intestinal stem cells in Drosophila. eLife 2023; 12:e80179. [PMID: 36847614 PMCID: PMC9977296 DOI: 10.7554/elife.80179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/05/2023] [Indexed: 03/01/2023] Open
Abstract
Bacillus thuringiensis subsp. kurstaki (Btk) is a strong pathogen toward lepidopteran larvae thanks to specific Cry toxins causing leaky gut phenotypes. Hence, Btk and its toxins are used worldwide as microbial insecticide and in genetically modified crops, respectively, to fight crop pests. However, Btk belongs to the B. cereus group, some strains of which are well known human opportunistic pathogens. Therefore, ingestion of Btk along with food may threaten organisms not susceptible to Btk infection. Here we show that Cry1A toxins induce enterocyte death and intestinal stem cell (ISC) proliferation in the midgut of Drosophila melanogaster, an organism non-susceptible to Btk. Surprisingly, a high proportion of the ISC daughter cells differentiate into enteroendocrine cells instead of their initial enterocyte destiny. We show that Cry1A toxins weaken the E-Cadherin-dependent adherens junction between the ISC and its immediate daughter progenitor, leading the latter to adopt an enteroendocrine fate. Hence, although not lethal to non-susceptible organisms, Cry toxins can interfere with conserved cell adhesion mechanisms, thereby disrupting intestinal homeostasis and endocrine functions.
Collapse
Affiliation(s)
- Rouba Jneid
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | | | | | | | - Arnaud Fichant
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | | | - Mathilde Bonis
- Laboratory for Food Safety, University Paris-Est, French Agency for Food, Environmental and Occupational Health & SafetyMaisons-AlfortFrance
| | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese UniversityTripoliLebanon
| | - Armel Gallet
- Universite Cote d'Azur, CNRS, INRAESophia AntipolisFrance
| |
Collapse
|
8
|
Zhou Z, Kai M, Wang S, Wang D, Peng Y, Yu Y, Gao W, Zhang L. Emerging nanoparticle designs against bacterial infections. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1881. [PMID: 36828801 DOI: 10.1002/wnan.1881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/03/2023] [Accepted: 01/06/2023] [Indexed: 02/26/2023]
Abstract
The rise of antibiotic resistance has caused the prevention and treatment of bacterial infections to be less effective. Therefore, researchers turn to nanomedicine for novel and effective antibacterial therapeutics. The effort resulted in the first-generation antibacterial nanoparticles featuring the ability to improve drug tolerability, circulation half-life, and efficacy. Toward developing the next-generation antibacterial nanoparticles, researchers have integrated design elements that emphasize physical, broad-spectrum, biomimetic, and antivirulence mechanisms. This review highlights four emerging antibacterial nanoparticle designs: inorganic antibacterial nanoparticles, responsive antibacterial nanocarriers, virulence nanoscavengers, and antivirulence nanovaccines. Examples in each design category are selected and reviewed, and their structure-function relationships are discussed. These emerging designs open the door to nontraditional antibacterial nanomedicines that rely on mechano-bactericidal, function-driven, nature-inspired, or virulence-targeting mechanisms to overcome antibiotic resistance for more effective antibacterial therapy. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease.
Collapse
Affiliation(s)
- Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Mingxuan Kai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Shuyan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yifei Peng
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Yiyan Yu
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
9
|
He P, Yang G, Zhu D, Kong H, Corrales-Ureña YR, Colombi Ciacchi L, Wei G. Biomolecule-mimetic nanomaterials for photothermal and photodynamic therapy of cancers: Bridging nanobiotechnology and biomedicine. J Nanobiotechnology 2022; 20:483. [PMID: 36384717 PMCID: PMC9670580 DOI: 10.1186/s12951-022-01691-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022] Open
Abstract
Nanomaterial-based phototherapy has become an important research direction for cancer therapy, but it still to face some obstacles, such as the toxic side effects and low target specificity. The biomimetic synthesis of nanomaterials using biomolecules is a potential strategy to improve photothermal therapy (PTT) and photodynamic therapy (PDT) techniques due to their endowed biocompatibility, degradability, low toxicity, and specific targeting. This review presents recent advances in the biomolecule-mimetic synthesis of functional nanomaterials for PTT and PDT of cancers. First, we introduce four biomimetic synthesis methods via some case studies and discuss the advantages of each method. Then, we introduce the synthesis of nanomaterials using some biomolecules such as DNA, RNA, protein, peptide, polydopamine, and others, and discuss in detail how to regulate the structure and functions of the obtained biomimetic nanomaterials. Finally, potential applications of biomimetic nanomaterials for both PTT and PDT of cancers are demonstrated and discussed. We believe that this work is valuable for readers to understand the mechanisms of biomimetic synthesis and nanomaterial-based phototherapy techniques, and will contribute to bridging nanotechnology and biomedicine to realize novel highly effective cancer therapies.
Collapse
Affiliation(s)
- Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Guozheng Yang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Hao Kong
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Yendry Regina Corrales-Ureña
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany.
| | - Lucio Colombi Ciacchi
- Hybrid Materials Interfaces Group, Faculty of Production Engineering, University of Bremen, 28359, Bremen, Germany
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, People's Republic of China.
| |
Collapse
|
10
|
Optimized aptamer functionalization for enhanced anticancer efficiency in vivo. Int J Pharm 2022; 628:122330. [DOI: 10.1016/j.ijpharm.2022.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022]
|
11
|
Xu X, Zhang T, Angioletti-Uberti S, Lv Y. Binding of Proteins to Copolymers of Varying Charges and Hydrophobicity: A Molecular Mechanism and Computational Strategies. Biomacromolecules 2022; 23:4118-4129. [PMID: 36166427 DOI: 10.1021/acs.biomac.2c00521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because of their ability to selectively bind to a target protein, copolymer nanoparticles (NPs) containing a selected combination of hydrophobic and charged groups have been frequently reported as potent antibody-like analogues. However, due to the intrinsic disorder of the copolymer NP in terms of its random monomer sequence and the cross-linked copolymer matrix, the copolymer NP is indeed strikingly different from a well-folded protein antibody and the complexation between the copolymer NP and a target protein is likely not due to a lock-key type of interaction but possibly due to a novel and unexplored molecular mechanism. Here, we study a key biomarker protein, vimentin, interacting with a set of random copolymer chains using implicit-water explicit-ion coarse-grained (CG) molecular dynamics (MD) simulations along with biolayer interferometry (BLI) analysis. Due to the charge and hydrophobicity anisotropy on the vimentin dimer (VD) surface, a set of bound copolymers are found inhomogenously adsorbed on the VD, with energetic heterogeneity for different binding sites and cooperative effect in the adsorption. Increasing the charge or hydrophobicity of the copolymer may have different consequences on the adsorption. In this study, we found that with more copolymer charges, the protein coverage increases for copolymers of low hydrophobicity and decreases of high hydrophobicity, which is explained by the distribution and size of various functional patches on the VD in loading those copolymers. Employing a coverage-dependent Langmuir model, we propose a simulation protocol to address the full profile of the copolymer binding free energy through the fit to the simulated binding isotherm. The obtained results correlate well with those from the BLI experiment, indicating the significance of this method for the rational design of the copolymer NP with engineered protein binding affinity.
Collapse
Affiliation(s)
- Xiao Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei, Nanjing210094, P. R. China
| | - Tong Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Stefano Angioletti-Uberti
- Department of Materials, Imperial College London, LondonSW7 2AZ, U.K.,Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, LondonSW7 2AZ, U.K
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing100029, P. R. China
| |
Collapse
|
12
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence‐Specific Peptide Recognition. Angew Chem Int Ed Engl 2022; 61:e202206456. [DOI: 10.1002/anie.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yusuke Saito
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Ryutaro Honda
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Masanori Nagao
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| | - Yu Hoshino
- Department of Applied Chemistry Kyushu University 744 Motooka Fukuoka 819-0395 Japan
| |
Collapse
|
13
|
Saito Y, Honda R, Akashi S, Takimoto H, Nagao M, Miura Y, Hoshino Y. Polymer Nanoparticles with Uniform Monomer Sequences for Sequence Specific Peptide Recognition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yusuke Saito
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Ryutaro Honda
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Sotaro Akashi
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Hinata Takimoto
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Masanori Nagao
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering JAPAN
| | - Yoshiko Miura
- Kyushu University: Kyushu Daigaku Department of Chemical Engineering 744 MotookaNishi-kuFukuoka 8190001 JAPAN
| | - Yu Hoshino
- Kyushu University Department of Chemical Engineering 744 Motooka 819-0395 Fukuoka JAPAN
| |
Collapse
|
14
|
Cheng Q, Yu X, Xiong Z, Wan Z, Li Y, Ma W, Tan W, Liu M, Shea KJ. Abiotic Synthetic Antibodies to Target a Specific Protein Domain and Inhibit Its Function. ACS APPLIED MATERIALS & INTERFACES 2022; 14:19178-19191. [PMID: 35442625 DOI: 10.1021/acsami.2c02287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Bacillus thuringiensis (Bt) Cry proteins are widely used in insect pest control. Despite their economic benefits, remaining concerns over potential ecological and health risks warrant their ongoing surveillance. Affinity reagents, most often antibodies, protein scaffolds, and aptamers, are the traditional tools used for protein binding and detection. We report a synthetic antibody (SA) alternative to traditional biological affinity reagents for binding Bt Cry proteins. Analysis of hotspots of the Bt Cry protein-insect midgut cadherin-like receptor complexes was used for the design of the SA. The SA was selected from a small focused library of hydrogel copolymers containing functional monomers complementary to key exposed hotspots of Bt Cry proteins. A directed chemical evolution identified a SA, APhe-NP23, with affinity and selectivity for Bt Cry1Ab/Ac proteins. The putative intermolecular polymer-protein interfaces were identified by the SA's uptake of Bt Cry1Ac pepsin hydrolysates, binding epitope mutation studies, and protein-protein inhibition studies of the toxin binding to its native insect receptor binding domains. The SA inhibitor binds to the same protein domains as the insect's cadherin-like receptors, Bt-R1 and SeCad1b. The SA binds rapidly to Bt Cry1Ab/Ac with high capacity, is pH-responsive, and is synthesized reproducibly. We believe that a hotspot-directed approach is general for creation of abiotic protein affinity reagents that target functional protein domains. Affinity ligands are typically high-information content biologicals. Their structure and function are determined from their amino acid or oligo sequence. In contract, the SA described in this work is a statistical copolymer that lacks sequence specificity. These results are an important contribution to the concept that randomness and biospecificity are not mutually exclusive.
Collapse
Affiliation(s)
- Qiaolian Cheng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zhouxuan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Zihao Wan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Yuxin Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Weihua Ma
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Kenneth J Shea
- Department of Chemistry, University of California-Irvine, Irvine, California 92697, United States
| |
Collapse
|
15
|
Lee S, Kang TW, Hwang IJ, Kim HI, Jeon SJ, Yim D, Choi C, Son W, Kim H, Yang CS, Lee H, Kim JH. Transition-Metal Dichalcogenide Artificial Antibodies with Multivalent Polymeric Recognition Phases for Rapid Detection and Inactivation of Pathogens. J Am Chem Soc 2021; 143:14635-14645. [PMID: 34410692 DOI: 10.1021/jacs.1c05458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Antibodies are recognition molecules that can bind to diverse targets ranging from pathogens to small analytes with high binding affinity and specificity, making them widely employed for sensing and therapy. However, antibodies have limitations of low stability, long production time, short shelf life, and high cost. Here, we report a facile approach for the design of luminescent artificial antibodies with nonbiological polymeric recognition phases for the sensitive detection, rapid identification, and effective inactivation of pathogenic bacteria. Transition-metal dichalcogenide (TMD) nanosheets with a neutral dextran phase at the interfaces selectively recognized S. aureus, whereas the nanosheets bearing a carboxymethylated dextran phase selectively recognized E. coli O157:H7 with high binding affinity. The bacterial binding sites recognized by the artificial antibodies were thoroughly identified by experiments and molecular dynamics simulations, revealing the significance of their multivalent interactions with the bacterial membrane components for selective recognition. The luminescent WS2 artificial antibodies could rapidly detect the bacteria at a single copy from human serum without any purification and amplification. Moreover, the MoSe2 artificial antibodies selectively killed the pathogenic bacteria in the wounds of infected mice under light irradiation, leading to effective wound healing. This work demonstrates the potential of TMD artificial antibodies as an alternative to antibodies for sensing and therapy.
Collapse
Affiliation(s)
- Sin Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Tae Woog Kang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - In-Jun Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hye-In Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Su-Ji Jeon
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - DaBin Yim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Wooic Son
- Department of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 15588, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
16
|
Gu J, Ye R, Xu Y, Yin Y, Li S, Chen H. A historical overview of analysis systems for Bacillus thuringiensis (Bt) Cry proteins. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Kang TW, Hwang IJ, Lee S, Jeon SJ, Choi C, Han J, So Y, Son W, Kim H, Yang CS, Park JH, Lee H, Kim JH. Multivalent Nanosheet Antibody Mimics for Selective Microbial Recognition and Inactivation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101376. [PMID: 33890691 DOI: 10.1002/adma.202101376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Antibodies are widely used as recognition elements in sensing and therapy, but they suffer from poor stability, long discovery time, and high cost. Herein, a facile approach to create antibody mimics with flexible recognition phases and luminescent rigid scaffolds for the selective recognition, detection, and inactivation of pathogenic bacteria is reported. Tripeptides with a nitriloacetate-Cu group are spontaneously assembled on transition metal dichalcogenide (TMD) nanosheets via coordination bonding, providing a diversity of TMD-tripeptide assembly (TPA) antibody mimics. TMD-TPA antibody mimics can selectively recognize various pathogenic bacteria with nanomolar affinities. The bacterial binding sites for TMD-TPA are identified by experiments and molecular dynamics simulations, revealing that the dynamic and multivalent interactions of artificial antibodies play a crucial role for their recognition selectivity and affinity. The artificial antibodies allow the rapid and selective detection of pathogenic bacteria at single copy in human serum and urine, and their effective inactivation for therapy of infected mice. This work demonstrates the potential of TMD-TPA antibody mimics as an alternative to natural antibodies for sensing and therapy.
Collapse
Affiliation(s)
- Tae Woog Kang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - In-Jun Hwang
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sin Lee
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Su-Ji Jeon
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Chanhee Choi
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Juhee Han
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Yoonhee So
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| | - Wooic Son
- Department of Molecular and Life Science, and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, 04763, Republic of Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, and Center for Bionano Intelligence Education and Research, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Hyoung Park
- Department of Electronics and Electrical Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin, 16890, Republic of Korea
| | - Jong-Ho Kim
- Department of Materials Science and Chemical Engineering, Hanyang University, Ansan, 15588, Republic of Korea
| |
Collapse
|
18
|
Honda R, Gyobu T, Shimahara H, Miura Y, Hoshino Y. Electrostatic Interactions between Acid-/Base-Containing Polymer Nanoparticles and Proteins: Impact of Polymerization pH. ACS APPLIED BIO MATERIALS 2020; 3:3827-3834. [DOI: 10.1021/acsabm.0c00390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ryutaro Honda
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomohiro Gyobu
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hideto Shimahara
- Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa 923-1211, Japan
| | - Yoshiko Miura
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yu Hoshino
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
19
|
Zhang H, Zhang Y, Wang H, Wen H, Yan Z, Huang A, Bie Z, Chen Y. Preparing molecularly imprinted nanoparticles of saponins via cooperative imprinting strategy. J Sep Sci 2020; 43:2162-2171. [DOI: 10.1002/jssc.202000019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Hao Zhang
- School of PharmacyBengbu Medical University Bengbu P. R. China
- Department of PharmacyFirst Affiliated Hospital of Bengbu Medical University Bengbu P. R. China
| | - Yanan Zhang
- School of PharmacyBengbu Medical University Bengbu P. R. China
| | - Hailing Wang
- School of PharmacyBengbu Medical University Bengbu P. R. China
| | - Han Wen
- School of PharmacyBengbu Medical University Bengbu P. R. China
| | - Zhifeng Yan
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| | - Ailan Huang
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| | - Zijun Bie
- School of PharmacyBengbu Medical University Bengbu P. R. China
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| | - Yang Chen
- School of PharmacyBengbu Medical University Bengbu P. R. China
- Department of ChemistryBengbu Medical University Bengbu P. R. China
| |
Collapse
|
20
|
Hoshino Y, Taniguchi S, Takimoto H, Akashi S, Katakami S, Yonamine Y, Miura Y. Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angew Chem Int Ed Engl 2019; 59:679-683. [DOI: 10.1002/anie.201910558] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shohei Taniguchi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sho Katakami
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yusuke Yonamine
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
21
|
Hoshino Y, Taniguchi S, Takimoto H, Akashi S, Katakami S, Yonamine Y, Miura Y. Homogeneous Oligomeric Ligands Prepared via Radical Polymerization that Recognize and Neutralize a Target Peptide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yu Hoshino
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Shohei Taniguchi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Hinata Takimoto
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sotaro Akashi
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Sho Katakami
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yusuke Yonamine
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| | - Yoshiko Miura
- Department of Chemical Engineering Kyushu University 744 Motooka Nishi-ku Fukuoka 819-0395 Japan
| |
Collapse
|
22
|
Cheng X, Sun L, Li R, Huang Y, Xu H, Wang Z, Li ZL, Jiang H, Ma J. Organic polymer dot-based fluorometric determination of the activity of horseradish peroxidase and of the concentrations of glucose and the insecticidal protein toxin Cry1Ab/Ac. Mikrochim Acta 2019; 186:731. [DOI: 10.1007/s00604-019-3831-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/14/2019] [Indexed: 01/27/2023]
|
23
|
Synthesis and Characterization of Cry2Ab-AVM Bioconjugate: Enhanced Affinity to Binding Proteins and Insecticidal Activity. Toxins (Basel) 2019; 11:toxins11090497. [PMID: 31461921 PMCID: PMC6783867 DOI: 10.3390/toxins11090497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 12/23/2022] Open
Abstract
Bacillus thuringiensis insecticidal proteins (Bt toxins) have been widely used in crops for agricultural pest management and to reduce the use of chemical insecticides. Here, we have engineered Bt toxin Cry2Ab30 and bioconjugated it with 4"-O-succinyl avermectin (AVM) to synthesize Cry2Ab-AVM bioconjugate. It was found that Cry2Ab-AVM showed higher insecticidal activity against Plutella xylostella, up to 154.4 times compared to Cry2Ab30. The binding results showed that Cry2Ab-AVM binds to the cadherin-like binding protein fragments, the 10th and 11th cadherin repeat domains in the P. xylostella cadherin (PxCR10-11), with a much higher affinity (dissociation equilibrium constant KD = 3.44 nM) than Cry2Ab30 (KD = 28.7 nM). Molecular docking suggested that the macrolide lactone group of Cry2Ab-AVM ligand docking into the PxCR10-11 is a potential mechanism to enhance the binding affinity of Cry2Ab-AVM to PxCR10-11. These findings offer scope for the engineering of Bt toxins by bioconjugation for improved pest management.
Collapse
|
24
|
Chen Y, Zhang Y, Zhuang J, Lee JH, Wang L, Fang RH, Gao W, Zhang L. Cell-Membrane-Cloaked Oil Nanosponges Enable Dual-Modal Detoxification. ACS NANO 2019; 13:7209-7215. [PMID: 31117372 DOI: 10.1021/acsnano.9b02773] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The lack of pharmaceutical antidotes for deadly toxicants has motivated tremendous research interests in seeking synthetic nanoscavengers to absorb and neutralize harmful biological or chemical agents. Herein, we report a cell-membrane-cloaked oil nanosponge formulation capable of dual-modal detoxification. The biomimetic oil nanosponge consists of an olive oil nanodroplet wrapped by a red blood cell membrane. In such a construct, the oil core can nonspecifically soak up toxicants through physical partition and the cell membrane shell can specifically absorb and neutralize toxicants through biological binding. The dual-modal detoxification capability of the oil nanosponges was validated using three distinct organophosphates (OPs), including paraoxon, diisopropyl fluorophosphate, and dichlorvos. By inhibiting acetylcholinesterase, OPs cause the accumulation of acetylcholine, which leads to neuromuscular disorders and even death. In mouse models of OP poisoning, the oil nanosponges reduced clinical signs of OP intoxication, lowered OP concentration in tissues, and greatly enhanced mouse survival in both the therapeutic regimen and the prophylactic regimen. Overall, oil nanosponges combine the merits of both cell membrane and oil nanodroplets for safe and effective detoxification, which also serve as a prototype of multimodal detoxification platforms.
Collapse
Affiliation(s)
- Yijie Chen
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Yue Zhang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Jia Zhuang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Joo Hee Lee
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Licheng Wang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Ronnie H Fang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Weiwei Gao
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| | - Liangfang Zhang
- Department of Nanoengineering, Chemical Engineering Program, and Moores Cancer Center , University of California San Diego , La Jolla , California 92093 , United States
| |
Collapse
|