1
|
Degirmenci A, Sanyal R, Sanyal A. Metal-Free Click-Chemistry: A Powerful Tool for Fabricating Hydrogels for Biomedical Applications. Bioconjug Chem 2024; 35:433-452. [PMID: 38516745 PMCID: PMC11036366 DOI: 10.1021/acs.bioconjchem.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/23/2024]
Abstract
Increasing interest in the utilization of hydrogels in various areas of biomedical sciences ranging from biosensing and drug delivery to tissue engineering has necessitated the synthesis of these materials using efficient and benign chemical transformations. In this regard, the advent of "click" chemistry revolutionized the design of hydrogels and a range of efficient reactions was utilized to obtain hydrogels with increased control over their physicochemical properties. The ability to apply the "click" chemistry paradigm to both synthetic and natural polymers as hydrogel precursors further expanded the utility of this chemistry in network formation. In particular, the ability to integrate clickable handles at predetermined locations in polymeric components enables the formation of well-defined networks. Although, in the early years of "click" chemistry, the copper-catalyzed azide-alkyne cycloaddition was widely employed, recent years have focused on the use of metal-free "click" transformations, since residual metal impurities may interfere with or compromise the biological function of such materials. Furthermore, many of the non-metal-catalyzed "click" transformations enable the fabrication of injectable hydrogels, as well as the fabrication of microstructured gels using spatial and temporal control. This review article summarizes the recent advances in the fabrication of hydrogels using various metal-free "click" reactions and highlights the applications of thus obtained materials. One could envision that the use of these versatile metal-free "click" reactions would continue to revolutionize the design of functional hydrogels geared to address unmet needs in biomedical sciences.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Bebek, Istanbul 34342, Türkiye
| |
Collapse
|
2
|
Khan A. Thiol-epoxy 'click' chemistry: a focus on molecular attributes in the context of polymer chemistry. Chem Commun (Camb) 2023; 59:11028-11044. [PMID: 37642518 DOI: 10.1039/d3cc02555a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Base-catalyzed ring-opening reaction of epoxides with the thiol nucleophiles is useful in the preparation and post-polymerization modification of synthetic polymers. Due to its many beneficial characteristics, this process is referred to as the thiol-epoxy 'click' reaction. In this article, our aim is to discuss the fundamental attributes of this process by tracing our own steps in the field. We initially address the aspects of efficiency, regio-selectivity, stoichiometry, and reaction conditions with the help of linear, hyperbranched, graft, dendritic, and cross-linked poly(β-hydroxy thioether)s. A special emphasis is placed on hydrogel synthesis and photopolymerization on surfaces. Subsequently, quenching of the alkoxide anion is considered which is a critical step in the formation of the β-hydroxy thioether linkage upon completion of reaction. The amenability of further reaction on the hydroxy and thioether groups through esterification and sulfur alkylation is then discussed. Initially, post-gelation/fabrication modification of sulfide linkages is considered to obtain cationic sulfonium hydrogels and zwitterionic photopatterned networks with antibacterial and antibiofouling properties, respectively. A post-synthesis functionalization strategy is then described to access same centered and segregated main-chain poly(β-hydroxy sulfonium)s as potent antibacterial materials. In side-chain polysulfides, the sequential post-synthesis modifications involving poly(glycidyl methacrylate) scaffolds can lead to the formation of amphiphilic homopolymers. The application of such materials is discussed in the arena of siRNA delivery. Finally, concerns relating to the formation of disulfide defects and open research goals such as study of the orthogonality of the reaction are addressed.
Collapse
Affiliation(s)
- Anzar Khan
- Department of Molecules and Materials, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
3
|
Chafran L, Carfagno A, Altalhi A, Bishop B. Green Hydrogel Synthesis: Emphasis on Proteomics and Polymer Particle-Protein Interaction. Polymers (Basel) 2022; 14:4755. [PMID: 36365747 PMCID: PMC9656617 DOI: 10.3390/polym14214755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 08/26/2023] Open
Abstract
The field of drug discovery has seen significant progress in recent years. These advances drive the development of new technologies for testing compound's effectiveness, as well as their adverse effects on organs and tissues. As an auxiliary tool for drug discovery, smart biomaterials and biopolymers produced from biodegradable monomers allow the manufacture of multifunctional polymeric devices capable of acting as biosensors, of incorporating bioactives and biomolecules, or even mimicking organs and tissues through self-association and organization between cells and biopolymers. This review discusses in detail the use of natural monomers for the synthesis of hydrogels via green routes. The physical, chemical and morphological characteristics of these polymers are described, in addition to emphasizing polymer-particle-protein interactions and their application in proteomics studies. To highlight the diversity of green synthesis methodologies and the properties of the final hydrogels, applications in the areas of drug delivery, antibody interactions, cancer therapy, imaging and biomarker analysis are also discussed, as well as the use of hydrogels for the discovery of antimicrobial and antiviral peptides with therapeutic potential.
Collapse
Affiliation(s)
- Liana Chafran
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| | | | | | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA 20110 , USA
| |
Collapse
|
4
|
Development of cationic sulfonium-based gels with inherent antibacterial, excellent antibiofilm, and tunable swelling properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Tomadoni B, Fabra MJ, López-Rubio A. Electrohydrodynamic processing of phycocolloids for food-related applications: Recent advances and future prospects. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Hong SM, Hwang SH. Synthesis and Characterization of Multifunctional Secondary Thiol Hardeners Using 3-Mercaptobutanoic Acid and Their Thiol-Epoxy Curing Behavior. ACS OMEGA 2022; 7:21987-21993. [PMID: 35785300 PMCID: PMC9245090 DOI: 10.1021/acsomega.2c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
3-Mercaptobutanoic acid (3-MBA) was synthesized by the less odorous Michael addition pathway using an isothiouronium salt intermediate. Using the synthesized 3-MBA, multifunctional secondary thiol (sec-thiol) compounds were obtained and applied to thiol-epoxy curing systems as hardeners. As the functionality of the sec-thiol hardeners increased, the purity of the product obtained after distillation decreased. The equivalent epoxy mixtures with multifunctional sec-thiol hardeners were evaluated based on their impact on the curing behavior in thiol-epoxy click reactions by differential scanning calorimetry. The thermal features of sec-thiol-epoxy click reactions in the presence of a base catalyst were assessed according to the functionality of the sec-thiol hardeners. Our results showed that sec-thiol hardeners with less reactivity to the epoxy group provide long-term storage stability for the formulated epoxy resin, promising for industrial applications.
Collapse
|
7
|
Kaur P, Rajput JK, Singh K, Khullar P, Bakshi MS. Ag and Au Nanoparticles as Color Indicators for Monomer/Micelle-Nanoparticle Interactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7802-7814. [PMID: 35710100 DOI: 10.1021/acs.langmuir.2c00853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ag and Au nanoparticles (NPs) were used as color indicators to determine the monomer/micelle adsorption on the NP surface. A simple methodology based on the color change of Ag/Au NPs upon interacting with surface-active molecules was developed. A contrasting color change occurred when NPs interact with the monomer/micelle. This was demonstrated by monitoring the adsorption behavior of a series of Gemini surfactants. UV-visible measurements showed a large change in the intensity and wavelength of Ag/Au NP absorbance upon the surface adsorption of the monomer/micelle of Gemini surfactants. The mechanism of surface adsorption and molecular orientation on the solid-liquid interface of NPs was determined by performing the FT-IR and XPS measurements. Results demonstrated that sharp color changes from yellow to red for Ag NPs and red to purple for Au NPs happened when the Gemini surfactant monomer/micelle adsorbs on the NP surface. This colorimeter-based methodology highlighted the applicability of Ag/Au NPs in complex media where such NPs frequently encounter surface-active molecules.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay, 2420 Nicolet Drive, Green Bay, Wisconsin 54311-7001, United States
- Department of Chemistry, B.B.K. D.A.V. College for Women, Amritsar 143005, Punjab, India
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Jaspreet Kaur Rajput
- Department of Chemistry, Dr. B.R. Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India
| | - Kultar Singh
- Department of Chemistry, Khalsa College, G. T. Road, Amritsar 143002, Punjab, India
| | - Poonam Khullar
- Department of Chemistry, B.B.K. D.A.V. College for Women, Amritsar 143005, Punjab, India
| | - Mandeep Singh Bakshi
- Department of Chemistry, Natural and Applied Sciences, University of Wisconsin-Green Bay, 2420 Nicolet Drive, Green Bay, Wisconsin 54311-7001, United States
| |
Collapse
|
8
|
Xu C, Wu X, Xiong Y, Li Z, Tang H. A class of azocarbazole‐based carboxylates: High‐efficiency ionic unimolecular photobase generators for thiol‐epoxy click polymerization under blue light. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Can Xu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences, Wuhan University Wuhan China
| | - Xiang Wu
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences, Wuhan University Wuhan China
| | - Ying Xiong
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences, Wuhan University Wuhan China
| | - Zhen Li
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences, Wuhan University Wuhan China
| | - Hongding Tang
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, Sauvage Center for Molecular Sciences College of Chemistry and Molecular Sciences, Wuhan University Wuhan China
| |
Collapse
|
9
|
Hong SM, Kim OY, Hwang SH. Optimization of synthetic parameters of high-purity trifunctional mercaptoesters and their curing behavior for the thiol-epoxy click reaction. RSC Adv 2021; 11:34263-34268. [PMID: 35497273 PMCID: PMC9042355 DOI: 10.1039/d1ra05981e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 10/12/2021] [Indexed: 01/04/2023] Open
Abstract
The direct esterification reaction between 3-mercaptopropionic acid (3-MPA) and trimethylolpropane (TMP) was conducted in the presence of various catalyst concentrations of p-toluenesulfonic acid (p-TSA) to examine the optimized synthetic conditions needed to produce high-purity trimethylolpropane-tris(3-mercaptopropionate) (TMPMP). The purity of the desired TMPMP and uncompleted side-product reduced as the acid catalyst concentration in this esterification reaction increased while the generation of thioester-based side-product increased. The equivalent ratio between epoxy and the manufactured TMPMP was maintained at 1 : 1 to monitor the curing behavior of the thiol–epoxy click reaction using the DSC technique. The thermal features of the base-catalyzed TMPMP-cured epoxy resin were assessed according to the purity of the TMPMP curing agent. The direct esterification reaction between 3-mercaptopropionic acid and trimethylolpropane was conducted in the presence of various catalyst concentrations to find a synthetic route for high-purity trimethylolpropane-tris(3-mercaptopropionate).![]()
Collapse
Affiliation(s)
- Seung-Mo Hong
- Materials Chemistry & Engineering Laboratory, School of Polymer System Engineering, Dankook University Yongin Gyeonggi-do 16890 Republic of Korea
| | - Oh Young Kim
- Materials Chemistry & Engineering Laboratory, School of Polymer System Engineering, Dankook University Yongin Gyeonggi-do 16890 Republic of Korea
| | - Seok-Ho Hwang
- Materials Chemistry & Engineering Laboratory, School of Polymer System Engineering, Dankook University Yongin Gyeonggi-do 16890 Republic of Korea
| |
Collapse
|
10
|
Stuparu MC, Khan A. Poly(ß-hydroxy thioether)s: synthesis through thiol-epoxy ‘click’ reaction and post-polymerization modification to main-chain polysulfonium salts. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1984849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| |
Collapse
|
11
|
Oh J, Khan A. Main-Chain Polysulfonium Salts: Development of Non-Ammonium Antibacterial Polymers Similar in Their Activity to Antibiotic Drugs Vancomycin and Kanamycin. Biomacromolecules 2021; 22:3534-3542. [PMID: 34251178 DOI: 10.1021/acs.biomac.1c00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Typically, quaternary ammonium polymers are employed for antibacterial purposes. However, a century of use has led bacteria to develop resistance to such materials. Therefore, attention is now turning toward other cationic moieties. In this context, the present work explores sulfur-based main-chain cationic polymers. The results indicate that sulfonium polymers with a β-hydroxy motif do not suffer from structural instability issues as is commonly observed in cationic polythioethers. Furthermore, they can be highly effective toward important Gram-positive bacterial strains such as Mycobacterium smegmatis, a model organism to develop drugs against rapidly spreading tuberculosis infections. More importantly, however, more challenging Gram-negative strains such as Escherichia coli can also be targeted by the polysulfoniums with equal effectiveness. Interestingly, side-chain sulfonium polyelectrolytes are observed to be devoid of any significant antibacterial activity. Finally, a comparison with kanamycin and vancomycin suggests the present polymers to be similarly effective as the bactericidal antibiotic drugs. Overall, these results indicate the effectiveness of the main-chain trivalent β-hydroxy sulfonium motif for the development of novel antibacterial polymers with a non-ammonium structure.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, South Korea
| |
Collapse
|
12
|
Barát V, Eom T, Khan A, Stuparu MC. Buckybowl polymers: synthesis of corannulene-containing polymers through post-polymerization modification strategy. Polym Chem 2021. [DOI: 10.1039/d1py00664a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In this study, we explore the synthesis of methacrylate polymers carrying buckybowl corannulene as the polymer side-chain.
Collapse
Affiliation(s)
- Viktor Barát
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Taejun Eom
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-Ro, Seongbuk-Gu, 02841 Seoul, Korea
| | - Mihaiela C. Stuparu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
13
|
Selenium-Epoxy ‘Click’ Reaction and Se-Alkylation—Efficient Access to Organo-Selenium and Selenonium Compounds. CHEMISTRY-SWITZERLAND 2020. [DOI: 10.3390/chemistry2040054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work establishes the ‘click’ nature of the base-catalyzed oxirane ring opening reaction by the selenolate nucleophile. The ‘click’-generated ß-hydroxy selenide can be alkylated to afford cationic selenium species. Hemolytic studies suggest that selenonium cations do not lyse red blood cells even at high concentrations. Overall, these results indicate the future applicability of the developed organo-selenium chemistry in the preparation of a new class of cationic materials based on the seleno-ether motif.
Collapse
|
14
|
Chen L, Zheng Y, Meng X, Wei G, Dietliker K, Li Z. Delayed Thiol-Epoxy Photopolymerization: A General and Effective Strategy to Prepare Thick Composites. ACS OMEGA 2020; 5:15192-15201. [PMID: 32637792 PMCID: PMC7331066 DOI: 10.1021/acsomega.0c01170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 06/10/2020] [Indexed: 05/08/2023]
Abstract
Photoinduced thiol-epoxy click polymerization possesses both the characteristics and advantages of photopolymerization and click reactions. However, the photopolymerization of pigmented or highly filled thiol-epoxy thick composites still remains a great challenge due to the light screening effect derived from the competitive absorption, reflection, and scattering of the pigments or functional fillers. In this article, we present a simple and versatile strategy to prepare thick composites via delayed thiol-epoxy photopolymerization. The irradiation of a small area with a light-emitting diode (LED) point light source at room temperature leads to the decomposition of a photobase generator and the released active basic species can uniformly disperse throughout the whole system, including unirradiated areas, via mechanical stirring. No polymerization was observed at room temperature and therefore the liquid formulations can be further processed with molds of arbitrary size and desired shapes. It is only by increasing the temperature that base-catalyzed thiol-epoxy polymerization occurs and controllable preparation of thick thiol-epoxy materials can be achieved. The formed networks display excellent uniformity in different radii and depths with comparable functionality conversions, similar T g values, and thermal decomposition temperatures. The presented strategy can be applied to prepare thick composites with glass fibers possessing improved mechanical properties and dark composites containing 2 wt % carbon nanotubes.
Collapse
Affiliation(s)
- Li Chen
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Changzhou
Radiation Curing Material Engineering Technology Research Center, Jiangsu Kailin Ruiyang Chemical Co., Ltd., Liyang 213364, China
| | - Yuanjian Zheng
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaoyan Meng
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International
Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guo Wei
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- Changzhou
Radiation Curing Material Engineering Technology Research Center, Jiangsu Kailin Ruiyang Chemical Co., Ltd., Liyang 213364, China
| | - Kurt Dietliker
- International
Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
- Department
of Chemistry and Applied Biosciences, Laboratory of Inorganic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Zhiquan Li
- Key
Laboratory of Synthetic and Biological Colloids, Ministry of Education,
School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- International
Research Center for Photoresponsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
15
|
Gevrek TN, Degirmenci A, Sanyal R, Sanyal A. Multifunctional and Transformable 'Clickable' Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment. Polymers (Basel) 2020; 12:E1211. [PMID: 32466521 PMCID: PMC7362003 DOI: 10.3390/polym12061211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/03/2023] Open
Abstract
Multifunctionalizable hydrogel coatings on titanium interfaces are useful in a wide range of biomedical applications utilizing titanium-based materials. In this study, furan-protected maleimide groups containing multi-clickable biocompatible hydrogel layers are fabricated on a titanium surface. Upon thermal treatment, the masked maleimide groups within the hydrogel are converted to thiol-reactive maleimide groups. The thiol-reactive maleimide group allows facile functionalization of these hydrogels through the thiol-maleimide nucleophilic addition and Diels-Alder cycloaddition reactions, under mild conditions. Additionally, the strained alkene unit in the furan-protected maleimide moiety undergoes radical thiol-ene reaction, as well as the inverse-electron-demand Diels-Alder reaction with tetrazine containing molecules. Taking advantage of photo-initiated thiol-ene 'click' reactions, we demonstrate spatially controlled immobilization of the fluorescent dye thiol-containing boron dipyrromethene (BODIPY-SH). Lastly, we establish that the extent of functionalization on hydrogels can be controlled by attachment of biotin-benzyl-tetrazine, followed by immobilization of TRITC-labelled ExtrAvidin. Being versatile and practical, we believe that the described multifunctional and transformable 'clickable' hydrogels on titanium-based substrates described here can find applications in areas involving modification of the interface with bioactive entities.
Collapse
Affiliation(s)
- Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey; (T.N.G.); (R.S.)
| | - Aysun Degirmenci
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey;
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey; (T.N.G.); (R.S.)
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey;
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey; (T.N.G.); (R.S.)
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey;
| |
Collapse
|
16
|
Konuray O, Fernández-Francos X, De la Flor S, Ramis X, Serra À. The Use of Click-Type Reactions in the Preparation of Thermosets. Polymers (Basel) 2020; 12:E1084. [PMID: 32397509 PMCID: PMC7285069 DOI: 10.3390/polym12051084] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022] Open
Abstract
Click chemistry has emerged as an effective polymerization method to obtain thermosets with enhanced properties for advanced applications. In this article, commonly used click reactions have been reviewed, highlighting their advantages in obtaining homogeneous polymer networks. The basic concepts necessary to understand network formation via click reactions, together with their main characteristics, are explained comprehensively. Some of the advanced applications of thermosets obtained by this methodology are also reviewed.
Collapse
Affiliation(s)
- Osman Konuray
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Xavier Fernández-Francos
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Silvia De la Flor
- Department of Mechanical Engineering, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Spain;
| | - Xavier Ramis
- Thermodynamics Laboratory, ETSEIB Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain; (O.K.); (X.F.-F.); (X.R.)
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, University Rovira i Virgili, c/ Marcel·lí Domingo 1, 43007 Tarragona, Spain
| |
Collapse
|
17
|
Extremely fast synthesis of polythioether based phase change materials (PCMs) for thermal energy storage. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Daglar O, Cakmakci E, Gunay US, Hizal G, Tunca U, Durmaz H. A Straightforward Method for Fluorinated Polythioether Synthesis. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00548] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ozgun Daglar
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Emrah Cakmakci
- Department of Chemistry, Marmara University, 34722 Istanbul, Turkey
| | - Ufuk Saim Gunay
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Gurkan Hizal
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Umit Tunca
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Hakan Durmaz
- Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
19
|
Yeo H, Khan A. Photoinduced Proton-Transfer Polymerization: A Practical Synthetic Tool for Soft Lithography Applications. J Am Chem Soc 2020; 142:3479-3488. [PMID: 32040308 DOI: 10.1021/jacs.9b11958] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Proton-transfer photopolymerization through the thiol-epoxy "click" reaction is shown to be a versatile new method for the fabrication of micro- and nanosized polymeric patterns. In this approach, complexation of a guanidine base, diazabicycloundecene (DBU), with benzoylphenylpropionic acid (ketoprofen) generates a photolabile salt. Under illumination at a wavelength of 365 nm, the salt undergoes a photodecarboxylation reaction to release DBU as a base. The base-catalyzed ring opening reaction then creates cross-linked poly(β-hydroxyl thio-ether) patterns. The surface chemistry of these patterns can be altered through alkylation of the thio-ether linkages. For example, a reaction with bromoacetic acid produces a hitherto unknown sulfonium/carboxylate-based zwitterionic motif that endows antibiofouling capacity to the micropatterns.
Collapse
Affiliation(s)
- Hyunki Yeo
- Department of Chemical and Biological Engineering , Korea University , 02841 Seoul , South Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering , Korea University , 02841 Seoul , South Korea
| |
Collapse
|
20
|
Hong J, Oh J, Khan A. Deconstructing poloxamer and poloxamine block copolymers to access poly(ethylene glycol) and poly(propylene oxide)-based thermoresponsive polymers. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2020. [DOI: 10.1080/10601325.2020.1724055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jeonghui Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
21
|
Daglar O, Gungor B, Guric G, Gunay US, Hizal G, Tunca U, Durmaz H. Rapid Hyperbranched Polythioether Synthesis Through Thiol‐Michael Addition Reaction. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190279] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ozgun Daglar
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Begum Gungor
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Gulce Guric
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Ufuk Saim Gunay
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Gurkan Hizal
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Umit Tunca
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| | - Hakan Durmaz
- Department of ChemistryIstanbul Technical University 34469 Maslak, Istanbul Turkey
| |
Collapse
|
22
|
Cengiz N. Glutathione-responsive multifunctionalizable hydrogels via amine-epoxy “click” chemistry. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109441] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Lai H, Zhang J, Xing F, Xiao P. Recent advances in light-regulated non-radical polymerisations. Chem Soc Rev 2020; 49:1867-1886. [DOI: 10.1039/c9cs00731h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
This review summarises recent advances in light-regulated non-radical polymerisations as well as the applications in materials science.
Collapse
Affiliation(s)
- Haiwang Lai
- Department of Immunobiology
- College of Life Science and Technology
- Jinan University
- Guangzhou 510632
- China
| | - Jing Zhang
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
- Department of Chemical Engineering
| | - Feiyue Xing
- Department of Immunobiology
- College of Life Science and Technology
- Jinan University
- Guangzhou 510632
- China
| | - Pu Xiao
- Research School of Chemistry
- The Australian National University
- Canberra
- Australia
| |
Collapse
|
24
|
Xin F, Han J, Pan H, Sun F. Surface microstructures and properties of thiol-epoxy/thiol-Si-methacrylate hybrid polymer networks prepared by UV-induced polymerization. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1698965] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Fuhua Xin
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Junyi Han
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - He Pan
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Fang Sun
- College of Chemistry, Beijing University of Chemical Technology, Beijing, People’s Republic of China
- Anqing Research Institute, Beijing University of Chemical Technology, High-Tech District, Anqing City, Anhui, China
| |
Collapse
|
25
|
Oh J, Jung KI, Jung HW, Khan A. A Modular and Practical Synthesis of Zwitterionic Hydrogels through Sequential Amine-Epoxy "Click" Chemistry and N-Alkylation Reaction. Polymers (Basel) 2019; 11:E1491. [PMID: 31547408 PMCID: PMC6780745 DOI: 10.3390/polym11091491] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 02/03/2023] Open
Abstract
In this work, the amine-epoxy "click" reaction is shown to be a valuable general tool in the synthesis of reactive hydrogels. The practicality of this reaction arises due to its catalyst-free nature, its operation in water, and commercial availability of a large variety of amine and epoxide molecules that can serve as hydrophilic network precursors. Therefore, hydrogels can be prepared in a modular fashion through a simple mixing of the precursors in water and used as produced (without requiring any post-synthesis purification step). The gelation behavior and final hydrogel properties depend upon the molecular weight of the precursors and can be changed as per the requirement. A post-synthesis modification through alkylation at the nitrogen atom of the newly formed β-hydroxyl amine linkages allows for functionalizing the hydrogels. For example, ring-opening reaction of cyclic sulfonic ester gives rise to surfaces with a zwitterionic character. Finally, the established gelation chemistry can be combined with soft lithography techniques such as micromolding in capillaries (MIMIC) to obtain hydrogel microstructures.
Collapse
Affiliation(s)
- Junki Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Kevin Injoe Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Hyun Wook Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| | - Anzar Khan
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Korea.
| |
Collapse
|
26
|
Cengiz N. Fabrication of Multifunctional Stimuli‐Responsive Hydrogels Susceptible to both pH and Metal Cation for Visual Detections. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900212] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Nergiz Cengiz
- Department of Chemistry Tekirdag Namik Kemal University Degirmenalti 59030 Tekirdag Turkey
| |
Collapse
|
27
|
Zivic N, Kuroishi PK, Dumur F, Gigmes D, Dove AP, Sardon H. Recent Advances and Challenges in the Design of Organic Photoacid and Photobase Generators for Polymerizations. Angew Chem Int Ed Engl 2019; 58:10410-10422. [DOI: 10.1002/anie.201810118] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Nicolas Zivic
- POLYMATUniversity of the Basque Country UPV/EHUJose Mari Korta Center Avda Tolosa 72 20018 Donostia-San Sebastian Spain
| | - Paula K. Kuroishi
- Department of ChemistryUniversity of Warwick Coventry CV4 7AL UK
- School of ChemistryUniversity of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR7273 13397 Marseille France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR UMR7273 13397 Marseille France
| | - Andrew P. Dove
- School of ChemistryUniversity of Birmingham, Edgbaston Birmingham B15 2TT UK
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHUJose Mari Korta Center Avda Tolosa 72 20018 Donostia-San Sebastian Spain
| |
Collapse
|
28
|
Zivic N, Kuroishi PK, Dumur F, Gigmes D, Dove AP, Sardon H. Organische Photosäuren‐ und Photobasenbildner für Polymerisationen: Jüngste Fortschritte und Herausforderungen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Nicolas Zivic
- POLYMATUniversity of the Basque Country UPV/EHUJose Mari Korta Center Avda Tolosa 72 20018 Donostia-San Sebastian Spanien
| | - Paula K. Kuroishi
- Department of ChemistryUniversity of Warwick Coventry CV4 7AL Großbritannien
- School of ChemistryUniversity of Birmingham, Edgbaston Birmingham B15 2TT Großbritannien
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, ICR UMR7273 13397 Marseille Frankreich
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR UMR7273 13397 Marseille Frankreich
| | - Andrew P. Dove
- School of ChemistryUniversity of Birmingham, Edgbaston Birmingham B15 2TT Großbritannien
| | - Haritz Sardon
- POLYMATUniversity of the Basque Country UPV/EHUJose Mari Korta Center Avda Tolosa 72 20018 Donostia-San Sebastian Spanien
| |
Collapse
|
29
|
Mai VD, Shin SR, Lee DS, Kang I. Thermal Healing, Reshaping and Ecofriendly Recycling of Epoxy Resin Crosslinked with Schiff Base of Vanillin and Hexane-1,6-Diamine. Polymers (Basel) 2019; 11:polym11020293. [PMID: 30960277 PMCID: PMC6419216 DOI: 10.3390/polym11020293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/08/2019] [Accepted: 02/08/2019] [Indexed: 11/16/2022] Open
Abstract
A bio-derived dihydroxylimine hardener, Van2HMDA, for the curing of epoxy resin was prepared from vanillin (Van) and hexamethylene-1,6-diamine (HMDA) by Schiff base formation. The epoxy resin of diglycidyl ether of bisphenol A was cured with Van2HMDA in the presence of the catalyst, 2-ethyl-4-methylimidazole (EMI). The crosslinked epoxy resin showed thermal-healing properties at elevated temperatures. Moreover, the crosslinked epoxy resin can be reshaped by heating via imine metathesis of the hardener units. The imine metathesis of Van2HMDA was confirmed experimentally. Stress-relaxation properties of the epoxy resin crosslinked with Van2HMDA were investigated, and the activation energy obtained from Arrhenius plots of the relaxation times was 44 kJ/mol. The imine bonds in the epoxy polymer matrix did not undergo hydrolysis after immersing in water at room temperature for one week. However, in the presence of acid, the crosslinked polymer was easily decomposed due to the hydrolysis of imine bonds. The hydrolysis of imine bonds was used for the ecofriendly recycling of crosslinked polymer. It is inferred that thermal-healing, reshaping, and reprocessing properties can be implemented in the various crosslinked epoxy resins with the bio-derived dihydroxylimine hardener, albeit the recycled epoxy resin is of inevitably lower quality than the original material.
Collapse
Affiliation(s)
- Van-Dung Mai
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Deokjin-gu, Jeonju, Chonbuk 54896, Korea.
| | - Se-Ra Shin
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Deokjin-gu, Jeonju, Chonbuk 54896, Korea.
| | - Dai-Soo Lee
- Division of Semiconductor and Chemical Engineering, Chonbuk National University, Baekjedaero 567, Deokjin-gu, Jeonju, Chonbuk 54896, Korea.
| | - Ilho Kang
- Research Center, NEPES AMC, 99 Seokam-ro, Iksan, Chonbuk 54587, Korea.
| |
Collapse
|