1
|
Deshmukh SH, Yadav S, Chowdhury T, Pathania A, Sapra S, Bagchi S. Probing surface interactions in CdSe quantum dots with thiocyanate ligands. NANOSCALE 2024; 16:14922-14931. [PMID: 39042097 DOI: 10.1039/d4nr01507j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Surface chemistry dictates the optoelectronic properties of semiconductor quantum dots (QDs). Tailoring these properties relies on the meticulous selection of surface ligands for efficient passivation. While long-chain organic ligands boast a well-understood passivation mechanism, the intricacies of short inorganic ionic ligands remain largely unexplored. This study sheds light on the surface-passivation mechanism of short inorganic ligands, particularly focusing on SCN- ions on CdSe QDs. Employing steady-state and time-resolved infrared spectroscopic techniques, we elucidated the surface-ligand interactions and coordination modes of SCN--capped CdSe QDs. Comparative analysis with studies on CdS QDs unveils intriguing insights into the coordination behavior and passivation efficacy of SCN- ions on Cd2+ rich QD surfaces. Our results reveal the requirement of both surface-bound (strong binding) and weakly-interacting interfacial SCN- ions for effective CdSe QD passivation. Beyond fostering a deeper understanding of surface-ligand interactions and highlighting the importance of a comprehensive exploration of ligand chemistries, this study holds implications for optimizing QD performance across diverse applications.
Collapse
Affiliation(s)
- Samadhan H Deshmukh
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sushma Yadav
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tubai Chowdhury
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Akhil Pathania
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sameer Sapra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sayan Bagchi
- Physical and Materials Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune - 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
2
|
Felsted RG, Graham TR, Zhao Y, Bazak JD, Nienhuis ET, Pauzauskie PJ, Joly AG, Pearce CI, Wang Z, Rosso KM. Anionic Effects on Concentrated Aqueous Lithium Ion Dynamics. J Phys Chem Lett 2024:5076-5087. [PMID: 38708887 DOI: 10.1021/acs.jpclett.4c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
The dynamics, orientational anisotropy, diffusivity, viscosity, and density were measured for concentrated lithium salt solutions, including lithium chloride (LiCl), lithium bromide (LiBr), lithium nitrite (LiNO2), and lithium nitrate (LiNO3), with methyl thiocyanate as an infrared vibrational probe molecule, using two-dimensional infrared spectroscopy (2D IR), nuclear magnetic resonance (NMR) spectroscopy, and viscometry. The 2D IR, NMR, and viscosity results show that LiNO2 exhibits longer correlation times, lower diffusivity, and nearly 4 times greater viscosity compared to those of the other lithium salt solutions of the same concentration, suggesting that nitrite anions may strongly facilitate structure formation via strengthening water-ion network interactions, directly impacting bulk solution properties at sufficiently high concentrations. Additionally, the LiNO2 and LiNO3 solutions show significantly weakened chemical interactions between the lithium cations and the methyl thiocyanate when compared with those of the lithium halide salts.
Collapse
Affiliation(s)
- Robert G Felsted
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Trent R Graham
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yatong Zhao
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - J David Bazak
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Emily T Nienhuis
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Peter J Pauzauskie
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Materials Science and Engineering Department, University of Washington, Seattle, Washington 98195, United States
| | - Alan G Joly
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Zheming Wang
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
3
|
Yang Z, Zhu R, Lai J, Pei Q, Tan J, Ye S. Orientation of Thiocyanate Ions Tuning the Electron-Phonon Interactions in Pseudohalide Perovskites. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1326-1332. [PMID: 38143329 DOI: 10.1021/acsami.3c14579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
Although the importance of electron-phonon interactions on the optoelectronic properties of perovskites has been well documented, the structural origin of electron-phonon interactions remains largely unexplored. In this study, using pseudohalide perovskites Cs2Pb(SCN)2I2(1-x)Br2x as a model, we have revealed how the orientation of SCN- anions tunes the electron-phonon interactions and the effective charge-carrier mobility by utilizing femtosecond sum frequency generation vibrational spectroscopy, supplemented by photoluminescence spectroscopy and femtosecond optical-pump terahertz-probe spectroscopy. The coupling between neighboring SCN- anions decreases as the Br content (x) increases but does not have a significant effect on the electron-phonon interactions. In contrast, the orientation angle of SCN- anions has a strong correlation with the electron-phonon interaction and effective charge-carrier mobility, that is, a more parallel orientation of SCN- anions leads to a higher electron-phonon interaction and lower effective charge-carrier mobility. This finding provides a molecule-level understanding of the inorganic lattice structure in tuning electron-phonon interactions and may offer valuable guidance for optimizing the optoelectronic properties of perovskites.
Collapse
Affiliation(s)
- Zhe Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Jing Lai
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
4
|
Armstrong ZT, Forlano KM, Roy CR, Bohlmann Kunz M, Farrell K, Pan D, Wright JC, Jin S, Zanni MT. Spatial Heterogeneity of Biexcitons in Two-Dimensional Ruddlesden-Popper Lead Iodide Perovskites. J Am Chem Soc 2023; 145:18568-18577. [PMID: 37565990 DOI: 10.1021/jacs.3c05533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Quantum confinement in two-dimensional (2D) Ruddlesden-Popper (RP) perovskites leads to the formation of stable quasi-particles, including excitons and biexcitons, the latter of which may enable lasing in these materials. Due to their hybrid organic-inorganic structures and the solution phase synthesis, microcrystals of 2D RP perovskites can be quite heterogeneous, with variations in excitonic and biexcitonic properties between crystals from the same synthesis and even within individual crystals. Here, we employ one- and two-quantum two-dimensional white-light microscopy to systematically study the spatial variations of excitons and biexcitons in microcrystals of a series of 2D RP perovskites BA2MAn-1PbnI3n+1 (n = 2-4, BA= butylammonium, MA = methylammonium). We find that the average biexciton binding energy of around 60 meV is essentially independent of the perovskite layer thickness (n). We also resolve spatial variations of the exciton and biexciton energies on micron length scales within individual crystals. By comparing the one-quantum and two-quantum spectra at each pixel, we conclude that biexcitons are more sensitive to their environments than excitons. These results shed new light on the ways disorder can modify the energetic landscape of excitons and biexcitons in RP perovskites and how biexcitons can be used as a sensitive probe of the microscopic environment of a semiconductor.
Collapse
Affiliation(s)
- Zachary T Armstrong
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kristel M Forlano
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Chris R Roy
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Kieran Farrell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Dongxu Pan
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - John C Wright
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
5
|
Qiu L, Si G, Bao X, Liu J, Guan M, Wu Y, Qi X, Xing G, Dai Z, Bao Q, Li G. Interfacial engineering of halide perovskites and two-dimensional materials. Chem Soc Rev 2023; 52:212-247. [PMID: 36468561 DOI: 10.1039/d2cs00218c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Recently, halide perovskites (HPs) and layered two-dimensional (2D) materials have received significant attention from industry and academia alike. HPs are emerging materials that have exciting photoelectric properties, such as a high absorption coefficient, rapid carrier mobility and high photoluminescence quantum yields, making them excellent candidates for various optoelectronic applications. 2D materials possess confined carrier mobility in 2D planes and are widely employed in nanostructures to achieve interfacial modification. HP/2D material interfaces could potentially reveal unprecedented interfacial properties, including light absorbance with desired spectral overlap, tunable carrier dynamics and modified stability, which may lead to several practical applications. In this review, we attempt to provide a comprehensive perspective on the development of interfacial engineering of HP/2D material interfaces. Specifically, we highlight the recent progress in HP/2D material interfaces considering their architectures, electronic energetics tuning and interfacial properties, discuss the potential applications of these interfaces and analyze the challenges and future research directions of interfacial engineering of HP/2D material interfaces. This review links the fields of HPs and 2D materials through interfacial engineering to provide insights into future innovations and their great potential applications in optoelectronic devices.
Collapse
Affiliation(s)
- Lei Qiu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Guangyuan Si
- Melbourne Center for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, Victoria 3168, Australia
| | - Xiaozhi Bao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Jun Liu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Mengyu Guan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Yiwen Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China.
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR 999078, China
| | - Zhigao Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China. .,Shenzhen Institute, China University of Geosciences, Shenzhen 518057, China
| | - Qiaoliang Bao
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.,Nanjing kLight Laser Technology Co. Ltd., Nanjing, Jiangsu 210032, China.
| | - Guogang Li
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China. .,Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
6
|
Nanoscale heterogeneity of ultrafast many-body carrier dynamics in triple cation perovskites. Nat Commun 2022; 13:6582. [PMID: 36323659 PMCID: PMC9630529 DOI: 10.1038/s41467-022-33935-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
In high fluence applications of lead halide perovskites for light-emitting diodes and lasers, multi-polaron interactions and associated Auger recombination limit the device performance. However, the relationship of the ultrafast and strongly lattice coupled carrier dynamics to nanoscale heterogeneities has remained elusive. Here, in ultrafast visible-pump infrared-probe nano-imaging of the photoinduced carrier dynamics in triple cation perovskite films, a ~20 % variation in sub-ns relaxation dynamics with spatial disorder on tens to hundreds of nanometer is resolved. We attribute the non-uniform relaxation dynamics to the heterogeneous evolution of polaron delocalization and increasing scattering time. The initial high-density excitation results in faster relaxation due to strong many-body interactions, followed by extended carrier lifetimes at lower densities. These results point towards the missing link between the optoelectronic heterogeneity and associated carrier dynamics to guide synthesis and device engineering for improved perovskites device performance. The optoelectronic performance of lead halide perovskite in highfluence applications are hindered by heterogeneous multi-polaron interactions in the nanoscale. Here, Nishda et al. spatially resolve sub-ns relaxation dynamics on the nanometer scale by ultrafast infrared pumpprobe nanoimaging.
Collapse
|
7
|
Wang Y, Liu C, Ren Y, Zuo X, Canton SE, Zheng K, Lu K, Lü X, Yang W, Zhang X. Visualizing Light-Induced Microstrain and Phase Transition in Lead-Free Perovskites Using Time-Resolved X-Ray Diffraction. J Am Chem Soc 2022; 144:5335-5341. [PMID: 35302742 DOI: 10.1021/jacs.1c11747] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal halide perovskites have emerged as promising materials for optoelectronic applications in the last decade. A large amount of effort has been made to investigate the interplay between the crystalline lattice and photoexcited charge carriers as it is vital to their optoelectronic performance. Among them, ultrafast laser spectroscopy has been intensively utilized to explore the charge carrier dynamics of perovskites, from which the local structural information can only be extracted indirectly. Here, we have applied a time-resolved X-ray diffraction technique to investigate the structural dynamics of prototypical two-dimensional lead-free halide perovskite Cs3Bi2Br9 nanoparticles across temporal scales from 80 ps to microseconds. We observed a quick recoverable (a few ns) photoinduced microstrain up to 0.15% and a long existing lattice expansion (∼a few hundred nanoseconds) at mild laser fluence. Once the laser flux exceeds 1.4 mJ/cm2, the microstrain saturates and the crystalline phase partially transfers into a disordered phase. This photoinduced transient structural change can recover within the nanosecond time scale. These results indicate that photoexcitation of charge carriers couples with lattice distortion, which fundamentally affects the dielectric environment and charge carrier transport.
Collapse
Affiliation(s)
- Yingqi Wang
- Center for High Pressure Science & Technology Advanced Research, 1690 Cailun Rd, Pudong, Shanghai 201203, China
| | - Cunming Liu
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Yang Ren
- Department of Physics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon 999077, Hong Kong, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | | | - Kaibo Zheng
- Department of Chemical Physics and Nanolund, Lund University, Box 124, 22100 Lund, Sweden
| | - Kuangda Lu
- Biomedical Engineering Department, Peking University, Beijing 100871, China
| | - Xujie Lü
- Center for High Pressure Science & Technology Advanced Research, 1690 Cailun Rd, Pudong, Shanghai 201203, China
| | - Wenge Yang
- Center for High Pressure Science & Technology Advanced Research, 1690 Cailun Rd, Pudong, Shanghai 201203, China
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| |
Collapse
|
8
|
Yu S, Geng Y, Liang D, Li H, Liu X. Double-quantum-zero-quantum 2D coherent spectroscopy reveals quantum coherence between collective states in an atomic vapor. OPTICS LETTERS 2022; 47:997-1000. [PMID: 35167578 DOI: 10.1364/ol.449365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
We report a novel, to the best of our knowledge, double-quantum-zero-quantum two-dimensional coherent spectroscopy (2DCS) that allows direct detection of the quantum coherence between multiparticle collective states. Through correlating the double-quantum coherence and the zero-quantum coherence, signatures for coherence between collective states can be well isolated as side peaks and readily identified in the 2D spectrum. The experiment is implemented in a vapor of rubidium atoms in a collinear 2DCS setup. Good agreement with a theoretical simulation using density matrix confirms the essential role of the interatomic correlation effect in generating the side peak signals. This 2D spectrum technique paves a new avenue for studying the coherent coupling of highly excited states and many-body properties.
Collapse
|
9
|
Limits in the Enhancement Factor in Near-Brewster Angle Reflection Pump-Probe Two-Dimensional Infrared Spectroscopy. CHINESE J CHEM PHYS 2022. [DOI: 10.1063/1674-0068/cjcp2111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
10
|
Matheu R, Vigil JA, Crace EJ, Karunadasa HI. The halogen chemistry of halide perovskites. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2021.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Mondal S, Kang J, Park K, Lim JM, Ha JH, Kwak K, Cho M. Adsorbed Water Structure on Acrylate-Based Biocompatible Polymer Surface. J Phys Chem Lett 2021; 12:9275-9282. [PMID: 34534434 DOI: 10.1021/acs.jpclett.1c02491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The role of water in the excellent biocompatibility of the acrylate-based polymers widely used for antibiofouling coating material has been realized previously. Here, we report femtosecond mid-infrared pump-probe spectroscopy of the OD stretch band of HOD molecule adsorbed on highly biocompatible poly(2-methoxyethyl) acrylate [PMEA] and poorly biocompatible poly(2-phenoxyethyl) acrylate [PPEA], both of which reveal that there are two water species with significantly different vibrational lifetime. PMEA interacts more strongly with water than PPEA through the H-bonding interaction between carbonyl (C═O) and water. The vibrational lifetime of the OD stretch in PPEA is notably longer by factors of 3 and 7 than those in PMEA and bulk water, respectively. The IR-pump visible-probe photothermal imaging further unravels substantial spatial overlap between polymer CO group and water for hydrated PMEA and a significant difference in surface morphology than those in PPEA, which exhibits the underlying relationships among polymer-water interaction, surface morphology, and biocompatibility.
Collapse
Affiliation(s)
- Saptarsi Mondal
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jooyoun Kang
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kwanghee Park
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jong Min Lim
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jeong-Hyon Ha
- Korea Basic Science Institute, Natural Science Campus, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Kyungwon Kwak
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS), 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Carter-Fenk KA, Carter-Fenk K, Fiamingo ME, Allen HC, Herbert JM. Vibrational exciton delocalization precludes the use of infrared intensities as proxies for surfactant accumulation on aqueous surfaces. Chem Sci 2021; 12:8320-8332. [PMID: 34221313 PMCID: PMC8221057 DOI: 10.1039/d1sc01276b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Surface-sensitive vibrational spectroscopy is a common tool for measuring molecular organization and intermolecular interactions at interfaces. Peak intensity ratios are typically used to extract molecular information from one-dimensional spectra but vibrational coupling between surfactant molecules can manifest as signal depletion in one-dimensional spectra. Through a combination of experiment and theory, we demonstrate the emergence of vibrational exciton delocalization in infrared reflection–absorption spectra of soluble and insoluble surfactants at the air/water interface. Vibrational coupling causes a significant decrease in peak intensities corresponding to C–F vibrational modes of perfluorooctanoic acid molecules. Vibrational excitons also form between arachidic acid surfactants within a compressed monolayer, manifesting as signal reduction of C–H stretching modes. Ionic composition of the aqueous phase impacts surfactant intermolecular distance, thereby modulating vibrational coupling strength between surfactants. Our results serve as a cautionary tale against employing alkyl and fluoroalkyl vibrational peak intensities as proxies for concentration, although such analysis is ubiquitous in interface science. Coupling between surfactant molecules at the air/water interface bleeds intensity into a diffuse background, such that single-wavelength vibrational intensity is effectively depleted at high surface coverage.![]()
Collapse
Affiliation(s)
| | - Kevin Carter-Fenk
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| | - Michelle E Fiamingo
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| | - Heather C Allen
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| | - John M Herbert
- Department of Chemistry & Biochemistry, The Ohio State University Columbus OH USA
| |
Collapse
|
13
|
Yamamoto T, Oswald IWH, Savory CN, Ohmi T, Koegel AA, Scanlon DO, Kageyama H, Neilson JR. Structure and Optical Properties of Layered Perovskite (MA) 2PbI 2-xBr x(SCN) 2 (0 ≤ x < 1.6). Inorg Chem 2020; 59:17379-17384. [PMID: 33232604 DOI: 10.1021/acs.inorgchem.0c02686] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The layered perovskite (MA)2PbI2(SCN)2 (MA = CH3NH3+) is a member of an emerging series of compounds derived from hybrid organic-inorganic perovskites. Here, we successfully synthesized (MA)2PbI2-xBrx(SCN)2 (0 ≤ x < 1.6) by using a solid-state reaction. Despite smaller bromide substitution for iodine, 1% linear expansion along the a axis was observed at x ∼ 0.4 due to a change of the orientation of the SCN- anions. Diffuse reflectance spectra reveal that the optical band gap increases by the bromide substitution, which is supported by the DFT calculations. Curiously, bromine-rich compounds where x ≥ 0.8 are light sensitive, leading to partial decomposition after ∼24 h. This study demonstrates that the layered perovskite (MA)2PbI2(SCN)2 tolerates a wide range of bromide substitution toward tuning the band gap energy.
Collapse
Affiliation(s)
- Takafumi Yamamoto
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan.,Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Iain W H Oswald
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - Christopher N Savory
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom.,Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Takuya Ohmi
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Alexandra A Koegel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| | - David O Scanlon
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, United Kingdom.,Thomas Young Centre, University College London, Gower Street, London WC1E 6BT, United Kingdom.,Diamond Light Source Ltd., Diamond House, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,CREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - James R Neilson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, United States
| |
Collapse
|
14
|
Munoz MF, Medina A, Autry TM, Moody G, Siemens ME, Bristow AD, Cundiff ST, Li H. Fast phase cycling in non-collinear optical two-dimensional coherent spectroscopy. OPTICS LETTERS 2020; 45:5852-5855. [PMID: 33057301 DOI: 10.1364/ol.405196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
As optical two-dimensional coherent spectroscopy (2DCS) is extended to a broader range of applications, it is critical to improve the detection sensitivity of optical 2DCS. We developed a fast phase-cycling scheme in a non-collinear optical 2DCS implementation by using liquid crystal phase retarders to modulate the phases of two excitation pulses. The background in the signal can be eliminated by combining either two or four interferograms measured with a proper phase configuration. The effectiveness of this method was validated in optical 2DCS measurements of an atomic vapor. This fast phase-cycling scheme will enable optical 2DCS in novel emerging applications that require enhanced detection sensitivity.
Collapse
|
15
|
Thomaz JE, Lindquist KP, Karunadasa HI, Fayer MD. Single Ensemble Non-exponential Photoluminescent Population Decays from a Broadband White-Light-Emitting Perovskite. J Am Chem Soc 2020; 142:16622-16631. [PMID: 32909430 DOI: 10.1021/jacs.0c05636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The mechanism of white-light emission from layered Pb-X (X = Cl or Br) perovskites following UV excitation has generated considerable interest. Prior time-dependent studies indicated that the broadband photoluminescence (PL) from (110) perovskites arises from a distribution of self-trapped excitonic sites emitting in different regions of the visible spectrum with different decay dynamics. Here, using time-correlated single photon counting to study single crystals, we show that the white-light emission decay from the (110) perovskite (EDBE)PbBr4 (EDBE = 2,2'-(ethylenedioxy)bis(ethylammonium)) behaves as a single ensemble. Following the rapid decay (0.6 ns) of a small spectral side band, the broad emission line shape is constant to 100 ns. We propose that rapid local structural fluctuations cause the self-trapped excitons (STEs) to experience a wide range of energies, resulting in the very broad PL. The STEs sample fluctuating local environments on time scales fast compared to the PL, which averages the PL decay at all emission wavelengths, yielding single ensemble PL dynamics. Although emission occurs from a very wide, inhomogeneously broadened spectral line with time-averaged single ensemble luminescence dynamics, the decay is tri-exponential. Two heuristic models for the tri-exponential decay involving defects are discussed. Spin-coated films show faster non-exponential decays with the slowest component of the crystal PL absent. Like the crystals, the film PL decays as a single ensemble. These results demonstrate that the broadband emission decay of (EDBE)PbBr4 arises from a time-averaged single ensemble and not from a set of excited states emitting with distinct luminescence decays at different wavelengths.
Collapse
Affiliation(s)
- Joseph E Thomaz
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Kurt P Lindquist
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Hemamala I Karunadasa
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
16
|
Duan HG, Tiwari V, Jha A, Berdiyorov GR, Akimov A, Vendrell O, Nayak PK, Snaith HJ, Thorwart M, Li Z, Madjet ME, Miller RJD. Photoinduced Vibrations Drive Ultrafast Structural Distortion in Lead Halide Perovskite. J Am Chem Soc 2020; 142:16569-16578. [PMID: 32869985 PMCID: PMC7586332 DOI: 10.1021/jacs.0c03970] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The success of organic–inorganic
perovskites in optoelectronics
is dictated by the complex interplay between various underlying microscopic
phenomena. The structural dynamics of organic cations and the inorganic
sublattice after photoexcitation are hypothesized to have a direct
effect on the material properties, thereby affecting the overall device
performance. Here, we use ultrafast heterodyne-detected two-dimensional
(2D) electronic spectroscopy to reveal impulsively excited vibrational
modes of methylammonium (MA) lead iodide perovskite, which drive the
structural distortion after photoexcitation. Vibrational analysis
of the measured data allows us to monitor the time-evolved librational
motion of the MA cation along with the vibrational coherences of the
inorganic sublattice. Wavelet analysis of the observed vibrational
coherences reveals the coherent generation of the librational motion
of the MA cation within ∼300 fs complemented with the coherent
evolution of the inorganic skeletal motion. To rationalize this observation,
we employed the configuration interaction singles (CIS), which support
our experimental observations of the coherent generation of librational
motions in the MA cation and highlight the importance of the anharmonic
interaction between the MA cation and the inorganic sublattice. Moreover,
our advanced theoretical calculations predict the transfer of the
photoinduced vibrational coherence from the MA cation to the inorganic
sublattice, leading to reorganization of the lattice to form a polaronic
state with a long lifetime. Our study uncovers the interplay of the
organic cation and inorganic sublattice during formation of the polaron,
which may lead to novel design principles for the next generation
of perovskite solar cell materials.
Collapse
Affiliation(s)
- Hong-Guang Duan
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Vandana Tiwari
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,Department of Chemistry, University of Hamburg, Martin-Luther-King Platz 6, Hamburg 20146, Germany
| | - Ajay Jha
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Golibjon R Berdiyorov
- Qatar Environment and Energy Research Institute, Qatar Foundation, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Alexey Akimov
- Department of Chemistry, State University of New York at Buffalo, Buffalo New York 14260, United States
| | - Oriol Vendrell
- Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg 69120, Germany
| | - Pabitra K Nayak
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom.,TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad 500046, India
| | - Henry J Snaith
- Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstrasse 9, Hamburg 20355, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany
| | - Zheng Li
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Mohamed E Madjet
- Qatar Environment and Energy Research Institute, Qatar Foundation, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - R J Dwayne Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Luruper Chaussee 149, Hamburg 22761, Germany.,The Hamburg Center for Ultrafast Imaging, Luruper Chaussee 149, Hamburg 22761, Germany.,The Departments of Chemistry and Physics, University of Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
17
|
Dang Y, Liu G, Song J, Meng L, Sun Y, Hu W, Tao X. Layered Perovskite (CH 3NH 3) 2Pb(SCN) 2I 2 Single Crystals: Phase Transition and Moisture Stability. ACS APPLIED MATERIALS & INTERFACES 2020; 12:37713-37721. [PMID: 32814401 DOI: 10.1021/acsami.0c09251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To study stability issues of three-dimensional perovskites, there is a strategy to introduce the thiocyanate ion (SCN-) into CH3NH3PbI3 (MAPbI3) to solve these problems. Here, we report the bulk growth of layered perovskite MA2Pb(SCN)2I2 single crystals by different growth methods in an ambient atmosphere. We also investigate the structural determination and refinements, band gap, and photoluminescence of MA2Pb(SCN)2I2 single crystals. More importantly, the phase transition and stability of MA2Pb(SCN)2I2 are systematically demonstrated. MA2Pb(SCN)2I2 undergo the reversible single-crystal to single-crystal phase transition in the orthorhombic systems from the space group Pmmn (no. 59) to the space group Pmn21 (no. 31) at low temperature. Moreover, the temperature-dependent recovery behaviors of MA2Pb(SCN)2I2 single crystals, powders, and thin films at high temperature are studied in detail. Besides, the moisture stability of MA2Pb(SCN)2I2 is described when exposed to moisture condition by the experiment and theoretical calculations. It would be interesting to not only conduct a comprehensive study on the crystal structures and the phase transition processes of layered perovskites but also provide guidance for further optoelectronic applications of these perovskite materials.
Collapse
Affiliation(s)
- Yangyang Dang
- State Key Laboratory of Crystal Materials & Institute of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan 250100, P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences & Department of Chemistry, School of Sciences, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Guokui Liu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jiewu Song
- State Key Laboratory of Crystal Materials & Institute of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan 250100, P. R. China
| | - Lingqiang Meng
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P.R. China
| | - Yajing Sun
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences & Department of Chemistry, School of Sciences, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences & Department of Chemistry, School of Sciences, & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - Xutang Tao
- State Key Laboratory of Crystal Materials & Institute of Crystal Materials, Shandong University, No. 27 Shanda South Road, Jinan 250100, P. R. China
| |
Collapse
|
18
|
Tunable exciton binding energy in 2D hybrid layered perovskites through donor-acceptor interactions within the organic layer. Nat Chem 2020; 12:672-682. [PMID: 32632185 DOI: 10.1038/s41557-020-0488-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 05/13/2020] [Indexed: 11/08/2022]
Abstract
The strength of electrostatic interactions within semiconductors strongly affects their performance in optoelectronic devices. An important target is the tuning of a material's exciton binding energy-the energy binding an electron-hole pair through the electrostatic Coulomb force-independent of its electronic band gap. Here, we report on the doping of a family of two-dimensional hybrid perovskites, in which inorganic lead halide sheets alternate with naphthalene-based organic layers, with tetrachloro-1,2-benzoquinone (TCBQ). For four out of seven n = 1 perovskites, the incorporation of the electron-accepting TCBQ dopant into the organic sublattice containing the electron-donating naphthalene species enabled the tuning of the materials' 1s exciton binding energy. The naphthalene-TCBQ electron donor-acceptor interactions increased the electrostatic screening of the exciton, in turn lowering its binding energy relative to the undoped perovskite-by almost 50% in one system. Structural and optical characterization showed that the inorganic lattice is not significantly perturbed even though the layer-to-layer spacing increases upon molecular dopant incorporation.
Collapse
|
19
|
Hoffman DJ, Fayer MD. CLS Next Gen: Accurate Frequency–Frequency Correlation Functions from Center Line Slope Analysis of 2D Correlation Spectra Using Artificial Neural Networks. J Phys Chem A 2020; 124:5979-5992. [DOI: 10.1021/acs.jpca.0c04313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David J. Hoffman
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D. Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Wu B, Breen JP, Xing X, Fayer MD. Controlling the Dynamics of Ionic Liquid Thin Films via Multilayer Surface Functionalization. J Am Chem Soc 2020; 142:9482-9492. [PMID: 32349470 DOI: 10.1021/jacs.0c03044] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The structural dynamics of planar thin films of an ionic liquid (IL) 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (BmimNTf2) as a function of surface charge density and thickness were investigated using two-dimensional infrared (2D IR) spectroscopy. The films were made by spin coating a methanol solution of the IL on silica substrates that were functionalized with alkyl chains containing head groups that mimic the IL cation. The thicknesses of the ionic liquid films ranged from ∼50 to ∼250 nm. The dynamics of the films are slower than those in the bulk IL, becoming increasingly slow as the films become thinner. Control of the dynamics of the IL films can be achieved by adjusting the charge density on substrates through multilayer network surface functionalization. The charge density of the surface (number of positively charged groups in the network bound to the surface per unit area) is controlled by the duration of the functionalization reaction. As the charge density is increased, the IL dynamics become slower. For comparison, the surface was functionalized with three different neutral groups. Dynamics of the IL films on the functionalized neutral surfaces are faster than on any of the ionic surfaces but still slower than the bulk IL, even for the thickest films. These results can have implications in applications that employ ILs that have electrodes, such as batteries, as the electrode surface charge density will influence properties like diffusion close to the surface.
Collapse
Affiliation(s)
- Boning Wu
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - John P Breen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Xiangyu Xing
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
21
|
Munson KT, Swartzfager JR, Gan J, Asbury JB. Does Dipolar Motion of Organic Cations Affect Polaron Dynamics and Bimolecular Recombination in Halide Perovskites? J Phys Chem Lett 2020; 11:3166-3172. [PMID: 32243757 DOI: 10.1021/acs.jpclett.0c00762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The role of dipolar motion of organic cations in the A-sites of halide perovskites has been debated in an effort to understand why these materials possess such remarkable properties. Here, we show that the dipolar motion of cations such as methylammonium (MA) or formamidinium (FA) versus cesium (Cs) does not influence large polaron binding energies, delocalization lengths, formation times, or bimolecular recombination lifetimes in lead bromide perovskites containing only one type of A-site cation. We directly probe the transient absorption spectra of large polarons throughout the entire mid-infrared and resolve their dynamics on time scales from sub-100 fs to sub-μs using time-resolved mid-infrared spectroscopy. Our findings suggest that the improved optoelectronic properties reported of halide perovskites with mixed A-site cations may result from synergy among the cations and how their mixture modulates the structure and dynamics of the inorganic lattice rather than from the dipolar properties of the cations themselves.
Collapse
Affiliation(s)
- Kyle T Munson
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John R Swartzfager
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jianing Gan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - John B Asbury
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
22
|
Muller EA, Gray TP, Zhou Z, Cheng X, Khatib O, Bechtel HA, Raschke MB. Vibrational exciton nanoimaging of phases and domains in porphyrin nanocrystals. Proc Natl Acad Sci U S A 2020; 117:7030-7037. [PMID: 32170023 PMCID: PMC7132254 DOI: 10.1073/pnas.1914172117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Much of the electronic transport, photophysical, or biological functions of molecular materials emerge from intermolecular interactions and associated nanoscale structure and morphology. However, competing phases, defects, and disorder give rise to confinement and many-body localization of the associated wavefunction, disturbing the performance of the material. Here, we employ vibrational excitons as a sensitive local probe of intermolecular coupling in hyperspectral infrared scattering scanning near-field optical microscopy (IR s-SNOM) with complementary small-angle X-ray scattering to map multiscale structure from molecular coupling to long-range order. In the model organic electronic material octaethyl porphyrin ruthenium(II) carbonyl (RuOEP), we observe the evolution of competing ordered and disordered phases, in nucleation, growth, and ripening of porphyrin nanocrystals. From measurement of vibrational exciton delocalization, we identify coexistence of ordered and disordered phases in RuOEP that extend down to the molecular scale. Even when reaching a high degree of macroscopic crystallinity, identify significant local disorder with correlation lengths of only a few nanometers. This minimally invasive approach of vibrational exciton nanospectroscopy and -imaging is generally applicable to provide the molecular-level insight into photoresponse and energy transport in organic photovoltaics, electronics, or proteins.
Collapse
Affiliation(s)
- Eric A Muller
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309;
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
| | - Thomas P Gray
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
| | - Zhou Zhou
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinbin Cheng
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Omar Khatib
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
- Advanced Light Source Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
| | - Hans A Bechtel
- Advanced Light Source Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720
| | - Markus B Raschke
- Department of Physics, University of Colorado Boulder, Boulder, CO 80309;
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309
- JILA, University of Colorado Boulder, Boulder, CO 80309
| |
Collapse
|
23
|
Straus DB, Hurtado Parra S, Iotov N, Zhao Q, Gau MR, Carroll PJ, Kikkawa JM, Kagan CR. Tailoring Hot Exciton Dynamics in 2D Hybrid Perovskites through Cation Modification. ACS NANO 2020; 14:3621-3629. [PMID: 32119528 DOI: 10.1021/acsnano.0c00037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We report a family of two-dimensional hybrid perovskites (2DHPs) based on phenethylammonium lead iodide ((PEA)2PbI4) that show complex structure in their low-temperature excitonic absorption and photoluminescence (PL) spectra as well as hot exciton PL. We replace the 2-position (ortho) H on the phenyl group of the PEA cation with F, Cl, or Br to systematically increase the cation's cross-sectional area and mass and study changes in the excitonic structure. These single atom substitutions substantially change the observable number of and spacing between discrete resonances in the excitonic absorption and PL spectra and drastically increase the amount of hot exciton PL that violates Kasha's rule by over an order of magnitude. To fit the progressively larger cations, the inorganic framework distorts and is strained, reducing the Pb-I-Pb bond angles and increasing the 2DHP band gap. Correlation between the 2DHP structure and steady-state and time-resolved spectra suggests the complex structure of resonances arises from one or two manifolds of states, depending on the 2DHP Pb-I-Pb bond angle (as)symmetry, and the resonances within a manifold are regularly spaced with an energy separation that decreases as the mass of the cation increases. The uniform separation between resonances and the dynamics that show excitons can only relax to the next-lowest state are consistent with a vibronic progression caused by a vibrational mode on the cation. These results demonstrate that simple changes to the cation can be used to tailor the properties and dynamics of the confined excitons without directly modifying the inorganic framework.
Collapse
Affiliation(s)
- Daniel B Straus
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| | - Sebastian Hurtado Parra
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| | - Natasha Iotov
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| | - Qinghua Zhao
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| | - James M Kikkawa
- Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| | - Cherie R Kagan
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19130, United States
| |
Collapse
|
24
|
Titze M, Fei C, Munoz M, Wang X, Wang H, Li H. Ultrafast Carrier Dynamics of Dual Emissions from the Orthorhombic Phase in Methylammonium Lead Iodide Perovskites Revealed by Two-Dimensional Coherent Spectroscopy. J Phys Chem Lett 2019; 10:4625-4631. [PMID: 31283883 DOI: 10.1021/acs.jpclett.9b01583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The fundamental understanding of photoexcitation landscape and dynamics in hybrid organic-inorganic perovskites is essential for improving their performance in solar cells and other applications. The dual emission features from the orthorhombic phase in perovskites have been the focus of numerous recent studies, and yet their underlying molecular origin remains elusive. We use optical two-dimensional coherent spectroscopy to study the carrier dynamics and coupling of the dual emissions in a methylammonium lead iodide film at 115 K. The two-dimensional spectra reveal an ultrafast redistribution of the photoexcited carriers into the two emission resonances within 250 fs. The high-energy resonance is a short-lived transient state, and the low-energy emission state interacts with coherent phonons. The observed carrier dynamics provide important experimental evidence that can be compared with potential theoretical models and contribute to the understanding of the dual emissions as well as the overall energy level structure in hybrid organic-inorganic perovskites.
Collapse
Affiliation(s)
- Michael Titze
- Department of Physics , Florida International University , Miami , Florida 33199 , United States
- Sandia National Laboratories , Albuquerque , New Mexico 87185 , United States
| | - Chengbin Fei
- Department of Physics , University of Miami , Coral Gables , Florida 33146 , United States
| | - Maria Munoz
- Department of Physics , Florida International University , Miami , Florida 33199 , United States
| | - Xuewen Wang
- Department of Physics , Florida International University , Miami , Florida 33199 , United States
| | - He Wang
- Department of Physics , University of Miami , Coral Gables , Florida 33146 , United States
| | - Hebin Li
- Department of Physics , Florida International University , Miami , Florida 33199 , United States
| |
Collapse
|
25
|
|
26
|
Zheng X, Yu P, Wang J. Ultrafast intramolecular vibrational energy transfer in carbon nitride hydrocolloid examined by femtosecond two-dimensional infrared spectroscopy. J Chem Phys 2019; 150:194703. [PMID: 31117771 DOI: 10.1063/1.5093542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In this work, ultrafast vibrational and structural processes in a graphitic carbon nitride hydrocolloid system were studied using a combination of linear infrared and nonlinear two-dimensional infrared (2D IR) spectroscopies. The experimentally observed three IR line shapes in the C=N stretching vibration frequency region were analyzed and attributed to the rigid and conjugated molecular frame of the prepared g-CN molecular species, which is believed to be a dimeric tris-s-triazine, as well as attributed to insignificant solvent influence on the delocalized C=N vibrations. Vibrational transition density cubes were also computed for the proposed g-CN dimer, confirming the heterocyclic C=N stretching nature of the three IR absorption peaks. Intramolecular vibrational energy transfer dynamics and spectral diffusion of the g-CN system were characterized by examining a series of time-dependent 2D IR spectra. A picosecond intramolecular vibrational energy redistribution process was found to occur among these delocalized C=N stretching modes, acting as an efficient vibrational energy transfer channel. This work reasonably connects the experimentally observed IR signature to a specific g-CN structure and also provides the first report on the ultrafast intramolecular processes of such carbon nitride systems. The obtained results are fundamentally important for understanding the molecular mechanisms of such carbon-nitride based functional materials.
Collapse
Affiliation(s)
- Xuan Zheng
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengyun Yu
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianping Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
27
|
Straus DB, Iotov N, Gau MR, Zhao Q, Carroll PJ, Kagan CR. Longer Cations Increase Energetic Disorder in Excitonic 2D Hybrid Perovskites. J Phys Chem Lett 2019; 10:1198-1205. [PMID: 30807175 DOI: 10.1021/acs.jpclett.9b00247] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We synthesize and characterize derivatives of the two-dimensional hybrid perovskite (2DHP) phenethylammonium lead iodide ((PEA)2PbI4) in which the para H on the cation is replaced with F, Cl, CH3, or Br. These substitutions increase the length of the cation but leave the cross-sectional area unchanged, resulting in structurally similar PbI42- frameworks with increasing interlayer spacing. Longer cations result in broader, blue-shifted excitonic absorption spectra with reduced or eliminated structure, indicating greater energetic disorder. Photoluminescence spectra are largely invariant and insensitive to cation length, suggesting polaron formation stabilizes a structural and electronic minimum. Temperature-dependent line width analysis reveals excitons couple to a vibration on the organic framework that is weakly sensitive to these cation substitutions, and Raman spectra and electronic structure calculations support the presence of such a cationic mode. Despite carriers being confined to the inorganic framework, the length of the organic cation alters the optical and electronic properties of 2DHPs.
Collapse
|
28
|
Smith MD, Connor BA, Karunadasa HI. Tuning the Luminescence of Layered Halide Perovskites. Chem Rev 2019; 119:3104-3139. [DOI: 10.1021/acs.chemrev.8b00477] [Citation(s) in RCA: 379] [Impact Index Per Article: 63.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew D. Smith
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bridget A. Connor
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | |
Collapse
|