1
|
Zhan Q, Shi C, Jiang Y, Gao X, Lin Y. Efficient splicing of the CPE intein derived from directed evolution of the Cryptococcus neoformans PRP8 intein. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1310-1318. [PMID: 37489009 PMCID: PMC10448054 DOI: 10.3724/abbs.2023135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/19/2023] [Indexed: 07/26/2023] Open
Abstract
Intein-mediated protein splicing has been widely used in protein engineering; however, the splicing efficiency and extein specificity usually limit its further application. Thus, there is a demand for more general inteins that can overcome these limitations. Here, we study the trans-splicing of CPE intein obtained from the directed evolution of Cne PRP8, which shows that its splicing rate is ~29- fold higher than that of the wild-type. When the +1 residue of C-extein is changed to cysteine, CPE also shows high splicing activity. Faster association and higher affinity may contribute to the high splicing rate compared with wild-type intein. These findings have important implications for the future engineering of inteins and provide clues for fundamental studies of protein structure and folding.
Collapse
Affiliation(s)
- Qin Zhan
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Changhua Shi
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yu Jiang
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Xianling Gao
- Shandong Guoli Biotechnology Co.Ltd.Jinan250101China
| | - Ying Lin
- College of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| |
Collapse
|
2
|
Pasch T, Schröder A, Kattelmann S, Eisenstein M, Pietrokovski S, Kümmel D, Mootz HD. Structural and biochemical analysis of a novel atypically split intein reveals a conserved histidine specific to cysteine-less inteins. Chem Sci 2023; 14:5204-5213. [PMID: 37206380 PMCID: PMC10189870 DOI: 10.1039/d3sc01200j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/23/2023] [Indexed: 05/21/2023] Open
Abstract
Protein trans-splicing mediated by a split intein reconstitutes a protein backbone from two parts. This virtually traceless autoprocessive reaction provides the basis for numerous protein engineering applications. Protein splicing typically proceeds through two thioester or oxyester intermediates involving the side chains of cysteine or serine/threonine residues. A cysteine-less split intein has recently attracted particular interest as it can splice under oxidizing conditions and is orthogonal to disulfide or thiol bioconjugation chemistries. Here, we report the split PolB16 OarG intein, a second such cysteine-independent intein. As a unique trait, it is atypically split with a short intein-N precursor fragment of only 15 amino acids, the shortest characterized to date, which was chemically synthesized to enable protein semi-synthesis. By rational engineering we obtained a high-yielding, improved split intein mutant. Structural and mutational analysis revealed the dispensability of the usually crucial conserved motif N3 (block B) histidine as an obvious peculiar property. Unexpectedly, we identified a previously unnoticed histidine in hydrogen-bond forming distance to the catalytic serine 1 as critical for splicing. This histidine has been overlooked so far in multiple sequence alignments and is highly conserved only in cysteine-independent inteins as a part of a newly discovered motif NX. The motif NX histidine is thus likely of general importance to the specialized environment in the active site required in this intein subgroup. Together, our study advances the toolbox as well as the structural and mechanistic understanding of cysteine-less inteins.
Collapse
Affiliation(s)
- Tim Pasch
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Alexander Schröder
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Sabrina Kattelmann
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Miriam Eisenstein
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science Rehovot 76100 Israel
| | - Daniel Kümmel
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| | - Henning D Mootz
- Institute of Biochemistry, University of Münster Corrensstr. 36 48149 Münster Germany
| |
Collapse
|
3
|
Bhagawati M, Hoffmann S, Höffgen KS, Piehler J, Busch KB, Mootz HD. In Cellulo Protein Semi‐Synthesis from Endogenous and Exogenous Fragments Using the Ultra‐Fast Split Gp41‐1 Intein. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maniraj Bhagawati
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Simon Hoffmann
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Katharina S. Höffgen
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics University of Osnabrück Barbarastrasse 11 49076 Osnabrück Germany
| | - Karin B. Busch
- Institute of Molecular Cell Biology University of Münster Schlossplatz 5 48149 Münster Germany
| | - Henning D. Mootz
- Department of Chemistry and Pharmacy Institute of Biochemistry, University of Münster Corrensstrasse 36 48149 Münster Germany
| |
Collapse
|
4
|
Bhagawati M, Hoffmann S, Höffgen KS, Piehler J, Busch KB, Mootz HD. In Cellulo Protein Semi-Synthesis from Endogenous and Exogenous Fragments Using the Ultra-Fast Split Gp41-1 Intein. Angew Chem Int Ed Engl 2020; 59:21007-21015. [PMID: 32777124 PMCID: PMC7693240 DOI: 10.1002/anie.202006822] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Indexed: 12/19/2022]
Abstract
Protein semi-synthesis inside live cells from exogenous and endogenous parts offers unique possibilities for studying proteins in their native context. Split-intein-mediated protein trans-splicing is predestined for such endeavors and has seen some successes, but a much larger variety of established split inteins and associated protocols is urgently needed. We characterized the association and splicing parameters of the Gp41-1 split intein, which favorably revealed a nanomolar affinity between the intein fragments combined with the exceptionally fast splicing rate. Following bead-loading of a chemically modified intein fragment precursor into live mammalian cells, we fluorescently labeled target proteins on their N- and C-termini with short peptide tags, thus ensuring minimal perturbation of their structure and function. In combination with a nuclear-entrapment strategy to minimize cytosolic fluorescence background, we applied our technique for super-resolution imaging and single-particle tracking of the outer mitochondrial protein Tom20 in HeLa cells.
Collapse
Affiliation(s)
- Maniraj Bhagawati
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Simon Hoffmann
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Katharina S. Höffgen
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| | - Jacob Piehler
- Department of Biology and Center for Cellular NanoanalyticsUniversity of OsnabrückBarbarastrasse 1149076OsnabrückGermany
| | - Karin B. Busch
- Institute of Molecular Cell BiologyUniversity of MünsterSchlossplatz 548149MünsterGermany
| | - Henning D. Mootz
- Department of Chemistry and PharmacyInstitute of Biochemistry, University of MünsterCorrensstrasse 3648149MünsterGermany
| |
Collapse
|
5
|
Hoffmann S, Terhorst TME, Singh RK, Kümmel D, Pietrokovski S, Mootz HD. Biochemical and Structural Characterization of an Unusual and Naturally Split Class 3 Intein. Chembiochem 2020; 22:364-373. [PMID: 32813312 PMCID: PMC7891396 DOI: 10.1002/cbic.202000509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/19/2020] [Indexed: 12/31/2022]
Abstract
Split inteins are indispensable tools for protein engineering because their ligation and cleavage reactions enable unique modifications of the polypeptide backbone. Three different classes of inteins have been identified according to the nature of the covalent intermediates resulting from the acyl rearrangements in the multistep protein‐splicing pathway. Class 3 inteins employ a characteristic internal cysteine for a branched thioester intermediate. A bioinformatic database search of non‐redundant protein sequences revealed the absence of split variants in 1701 class 3 inteins. We have discovered the first reported split class 3 intein in a metagenomics data set and report its biochemical, mechanistic and structural analysis. The AceL NrdHF intein exhibits low sequence conservation with other inteins and marked deviations in residues at conserved key positions, including a variation of the typical class‐3 WCT triplet motif. Nevertheless, functional analysis confirmed the class 3 mechanism of the intein and revealed excellent splicing yields within a few minutes over a wide range of conditions and with barely detectable cleavage side reactions. A high‐resolution crystal structure of the AceL NrdHF precursor and a mutagenesis study explained the importance and roles of several residues at the key positions. Tolerated substitutions in the flanking extein residues and a high affinity between the split intein fragments further underline the intein's future potential as a ligation tool.
Collapse
Affiliation(s)
- Simon Hoffmann
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Tobias M E Terhorst
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Rohit K Singh
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Daniel Kümmel
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| | - Shmuel Pietrokovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Henning D Mootz
- Institute of Biochemistry, University of Muenster, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
6
|
Dehling E, Rüschenbaum J, Diecker J, Dörner W, Mootz HD. Photo-crosslink analysis in nonribosomal peptide synthetases reveals aberrant gel migration of branched crosslink isomers and spatial proximity between non-neighboring domains. Chem Sci 2020; 11:8945-8954. [PMID: 34123148 PMCID: PMC8163358 DOI: 10.1039/d0sc01969k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are large, multi-modular enzyme templates for the biosynthesis of important peptide natural products. Modules are composed of a set of semi-autonomous domains that facilitate the individual reaction steps. Only little is known about the existence and relevance of a higher-order architecture in these mega-enzymes, for which contacts between non-neighboring domains in three-dimensional space would be characteristic. Similarly poorly understood is the structure of communication-mediating (COM) domains that facilitate NRPS subunit docking at the boundaries between epimerization and condensation domains. We investigated a COM domain pair in a minimal two module NRPS using genetically encoded photo-crosslinking moieties in the N-terminal acceptor COM domain. Crosslinks into the C-terminal donor COM domain of the partner module resulted in protein products with the expected migration behavior on SDS-PAGE gels corresponding to the added molecular weight of the proteins. Additionally, an unexpected apparent high-molecular weight crosslink product was revealed by mass spectrometric analysis to represent a T-form isomer with branched connectivity of the two polypeptide chains. Synthesis of the linear L-form and branched T-form isomers by click chemistry confirmed this designation. Our data revealed a surprising spatial proximity between the acceptor COM domain and the functionally unrelated small subdomain of the preceding adenylation domain. These findings provide an insight into three-dimensional domain arrangements in NRPSs in solution and suggest the described photo-crosslinking approach as a promising tool for the systematic investigation of their higher-order architecture. Photo-crosslink analysis reveals unexpected insights into the higher-order architecture of NRPS and the nature of crosslink isomers.![]()
Collapse
Affiliation(s)
- Eva Dehling
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Jennifer Rüschenbaum
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Julia Diecker
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Wolfgang Dörner
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| | - Henning D Mootz
- Institute of Biochemistry, Department of Chemistry and Pharmacy, University of Muenster D-48149 Münster Germany
| |
Collapse
|
7
|
Chiarolanzio KC, Pusztay JM, Chavez A, Zhao J, Xie J, Wang C, Mills KV. Allosteric Influence of Extremophile Hairpin Motif Mutations on the Protein Splicing Activity of a Hyperthermophilic Intein. Biochemistry 2020; 59:2459-2467. [PMID: 32559373 DOI: 10.1021/acs.biochem.0c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein splicing is a post-translational process mediated by an intein, whereby the intein excises itself from a precursor protein with concomitant ligation of the two flanking polypeptides. The intein that interrupts the DNA polymerase II in the extreme hyperthermophile Pyrococcus abyssi has a β-hairpin that extends the central β-sheet of the intein. This β-hairpin is mostly found in inteins from archaea, as well as halophilic eubacteria, and is thus called the extremophile hairpin (EXH) motif. The EXH is stabilized by multiple favorable interactions, including electrostatic interactions involving Glu29, Glu31, and Arg40. Mutations of these residues diminish the extent of N-terminal cleavage and the extent of protein splicing, likely by interfering with the coordination of the steps of splicing. These same mutations decrease the global stability of the intein fold as measured by susceptibility to thermolysin cleavage. 15N-1H heteronuclear single-quantum coherence demonstrated that these mutations altered the chemical environment of active site residues such as His93 (B-block histidine) and Ser166 (F-block residue 4). This work again underscores the connected and coordinated nature of intein conformation and dynamics, where remote mutations can disturb a finely tuned interaction network to inhibit or enhance protein splicing.
Collapse
Affiliation(s)
- Kathryn C Chiarolanzio
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jennifer M Pusztay
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Angel Chavez
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| | - Jing Zhao
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Xie
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Chunyu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kenneth V Mills
- Department of Chemistry, College of the Holy Cross, 1 College Street, Worcester, Massachusetts 01610, United States
| |
Collapse
|
8
|
Böcker JK, Dörner W, Mootz HD. Light-control of the ultra-fast Gp41-1 split intein with preserved stability of a genetically encoded photo-caged amino acid in bacterial cells. Chem Commun (Camb) 2019; 55:1287-1290. [PMID: 30633261 DOI: 10.1039/c8cc09204d] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inteins change the structure and function of their host protein in a unique way and the Gp41-1 split intein is the fastest protein trans-splicing intein known to date. To design a photo-activatable variant, we have incorporated ortho-nitrobenzyl-tyrosine (ONBY) at the position of a structurally conserved phenylalanine in the Gp41-1-N fragment. Using irradiation at 365 nm, the splicing reaction was triggered with virtually unchanged rates. The partial cellular reduction of the nitro group in ONBY, previously observed during bacterial protein expression for several photo-caged amino acids, was overcome by periplasmatic expression and by using an E. coli K12(DE3) strain instead of BL21(DE3). Together, our findings provide new tools for the artificial photo-control of proteins.
Collapse
Affiliation(s)
- Jana K Böcker
- Institute of Biochemistry, University of Muenster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany.
| | | | | |
Collapse
|
9
|
Böcker JK, Dörner W, Mootz HD. Rational design of an improved photo-activatable intein for the production of head-to-tail cyclized peptides. Biol Chem 2018; 400:417-427. [DOI: 10.1515/hsz-2018-0367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/31/2018] [Indexed: 01/13/2023]
Abstract
Abstract
Head-to-tail cyclization of genetically encoded peptides and proteins can be achieved with the split intein circular ligation of peptides and proteins (SICLOPPS) method by inserting the desired polypeptide between the C- and N-terminal fragments of a split intein. To prevent the intramolecular protein splicing reaction from spontaneously occurring upon folding of the intein domain, we have previously rendered this process light-dependent in a photo-controllable variant of the M86 intein, using genetically encoded ortho-nitrobenzyltyrosine at a structurally important position. Here, we report improvements on this photo-intein with regard to expression yields and rate of cyclic peptide formation. The temporally defined photo-activation of the purified stable intein precursor enabled a kinetic analysis that identified the final resolution of the branched intermediate as the rate-determining individual reaction of the three steps catalyzed by the intein. With this knowledge, we prepared an R143H mutant with a block F histidine residue. This histidine is conserved in most inteins and helps catalyze the third step of succinimide formation. The engineered intein formed the cyclic peptide product up to 3-fold faster within the first 15 min after irradiation, underlining the potential of protein splicing pathway engineering. The broader utility of the intein was also shown by formation of the 14-mer sunflower trypsin inhibitor 1.
Collapse
Affiliation(s)
- Jana K. Böcker
- Department of Chemistry and Pharmacy, Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Str. 2 , D-48149 Münster , Germany
| | - Wolfgang Dörner
- Department of Chemistry and Pharmacy, Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Str. 2 , D-48149 Münster , Germany
| | - Henning D. Mootz
- Department of Chemistry and Pharmacy, Institute of Biochemistry , University of Münster , Wilhelm-Klemm-Str. 2 , D-48149 Münster , Germany
| |
Collapse
|
10
|
Friedel K, Popp MA, Matern JCJ, Gazdag EM, Thiel IV, Volkmann G, Blankenfeldt W, Mootz HD. A functional interplay between intein and extein sequences in protein splicing compensates for the essential block B histidine. Chem Sci 2018; 10:239-251. [PMID: 30713635 PMCID: PMC6333167 DOI: 10.1039/c8sc01074a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/03/2018] [Indexed: 01/28/2023] Open
Abstract
Steric bulk can compensate for a catalytically critical histidine in an intein's active site and promote the N–S acyl shift.
Inteins remove themselves from a precursor protein by protein splicing. Due to the concomitant structural changes of the host protein, this self-processing reaction has enabled many applications in protein biotechnology and chemical biology. We show that the evolved M86 mutant of the Ssp DnaB intein displays a significantly improved tolerance towards non-native amino acids at the N-terminally flanking (–1) extein position compared to the parent intein, in the form of both an artificially trans-splicing split intein and the cis-splicing mini-intein. Surprisingly, side chains with increased steric bulk compared to the native Gly(–1) residue, including d-amino acids, were found to compensate for the essential block B histidine in His73Ala mutants in the initial N–S acyl shift of the protein splicing pathway. In the case of the M86 intein, large (–1) side chains can even rescue protein splicing activity as a whole. With the comparison of three crystal structures, namely of the M86 intein as well as of its Gly(–1)Phe and Gly(–1)Phe/His73Ala mutants, our data supports a model in which the intein's active site can exert a strain by varying mechanisms on the different angles of the scissile bond at the extein–intein junction to effect a ground-state destabilization. The compensatory mechanism of the block B histidine is the first example for the direct functional role of an extein residue in protein splicing. It sheds new light on the extein–intein interplay and on possible consequences of their co-evolution as well as on the laboratory engineering of improved inteins.
Collapse
Affiliation(s)
- Kristina Friedel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Monika A Popp
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Julian C J Matern
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Emerich M Gazdag
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany
| | - Ilka V Thiel
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Gerrit Volkmann
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| | - Wulf Blankenfeldt
- Structure and Function of Proteins , Helmholtz Centre for Infection Research , Inhoffenstraße 7 , 38124 , Braunschweig , Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics , Technische Universität Braunschweig , Spielmannstraße 7 , 38106 Braunschweig , Germany
| | - Henning D Mootz
- Institute of Biochemistry , University of Muenster , Wilhelm-Klemm-Str. 2 , 48149 Münster , Germany .
| |
Collapse
|