1
|
Kaster SHM, Zhu L, Lyon WL, Ma R, Ammann SE, White MC. Palladium-catalyzed cross-coupling of alcohols with olefins by positional tuning of a counteranion. Science 2024; 385:1067-1076. [PMID: 39236162 DOI: 10.1126/science.ado8027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/31/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
Transition metal-catalyzed cross-couplings have great potential to furnish complex ethers; however, challenges in the C(sp3)-O functionalization step have precluded general methods. Here, we describe computationally guided transition metal-ligand design that positions a hydrogen-bond acceptor anion at the reactive site to promote functionalization. A general cross-coupling of primary, secondary, and tertiary aliphatic alcohols with terminal olefins to furnish >130 ethers is achieved. The mild conditions tolerate functionality that is prone to substitution, elimination, and epimerization and achieve site selectivity in polyol settings. Mechanistic studies support the hypothesis that the ligand's geometry and electronics direct positioning of the phosphate anion at the π-allyl-palladium terminus, facilitating the phosphate's hydrogen-bond acceptor role toward the alcohol. Ligand-directed counteranion positioning in cationic transition metal catalysis has the potential to be a general strategy for promoting challenging bimolecular reactivity.
Collapse
Affiliation(s)
- Sven H M Kaster
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Lei Zhu
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - William L Lyon
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Rulin Ma
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - Stephen E Ammann
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| | - M Christina White
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, USA
| |
Collapse
|
2
|
Wu Z, Yang X, Zhang F, Liu Y, Feng X. Tandem catalytic allylic C-H amination and asymmetric [2,3]-rearrangement via bimetallic relay catalysis. Chem Sci 2024; 15:13299-13305. [PMID: 39183897 PMCID: PMC11339977 DOI: 10.1039/d4sc03315a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/11/2024] [Indexed: 08/27/2024] Open
Abstract
A bimetallic relay catalysis protocol for tandem allylic C-H amination and asymmetric [2,3]-sigmatropic rearrangement has been developed with the use of an achiral Pd0 catalyst and a chiral N,N'-dioxide-MgII complex in a one-pot operation. A series of anti-α-amino derivatives containing two stereogenic centers were prepared from readily available allylbenzenes and glycine pyrazolamide with good yields and high stereoselectivities. Moreover, the synthetic potential of this protocol was further demonstrated by the product transformations, and a catalytic cycle was proposed to illustrate the reaction process.
Collapse
Affiliation(s)
- Zhenwei Wu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xi Yang
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Fangqing Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
| | - Yangbin Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School Shenzhen Guangdong 518055 P. R. China
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
| | - Xiaoming Feng
- Institute of Chemical Biology, Shenzhen Bay Laboratory Shenzhen 518055 P. R. China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
3
|
Wang R, Zhang L, Luo S. Aerobic Asymmetric Allylic C-H Alkylation by Synergistic Chiral Primary Amine-Palladium-Hydroquinone Catalysis. Chemistry 2024; 30:e202304316. [PMID: 38179799 DOI: 10.1002/chem.202304316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A synergistic chiral primary amine/palladium /p-hydroquinone catalysis was developed to facilitate oxidative asymmetric allylic C-H alkylation under aerobic conditions. The ternary synergistic catalysis enables a facile allylic C-H activation and alkylation with oxygen so that stoichiometric utilization of benzoquinone can be avoided. The identified optimal catalytic system allows for terminal addition to allyl arenes with α-branched β-ketocarbonyls to afford allylic adducts bearing all-carbon quaternary centers with high regio- and enantioselectivity. This work provides new insights for further studies on the aerobically oxidative C-H alkylation reaction.
Collapse
Affiliation(s)
- Rui Wang
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Long Zhang
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Sciences (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
4
|
Richard F, Clark P, Hannam A, Keenan T, Jean A, Arseniyadis S. Pd-Catalysed asymmetric allylic alkylation of heterocycles: a user's guide. Chem Soc Rev 2024; 53:1936-1983. [PMID: 38206332 DOI: 10.1039/d3cs00856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
This review provides an in-depth analysis of recent advances and strategies employed in the Pd-catalysed asymmetric allylic alkylation (Pd-AAA) of nucleophilic prochiral heterocycles. The review is divided into sections each focused on a specific family of heterocycle, where optimisation data and reaction scope have been carefully analysed in order to bring forward specific reactivity and selectivity trends. The review eventually opens on how computer-based technologies could be used to predict an ideally matched catalytic system for any given substrate. This user-guide targets chemists from all horizons interested in running a Pd-AAA reaction for the preparation of highly enantioenriched heterocyclic compounds.
Collapse
Affiliation(s)
- François Richard
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Paul Clark
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Al Hannam
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Thomas Keenan
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| | - Alexandre Jean
- Industrial Research Centre, Oril Industrie, 13 rue Desgenétais, 76210, Bolbec, France
| | - Stellios Arseniyadis
- Queen Mary University of London, Department of Chemistry, Mile End Road, E1 4NS, London, UK.
| |
Collapse
|
5
|
Nong ZS, Chen XR, Wang PS, Hong X, Gong LZ. Enantioconvergent Palladium-Catalyzed Alkylation of Tertiary Allylic C-H Bonds. Angew Chem Int Ed Engl 2023; 62:e202312547. [PMID: 37752890 DOI: 10.1002/anie.202312547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 09/28/2023]
Abstract
Enantioconvergent catalysis enables the conversion of racemic molecules into a single enantiomer in perfect yield and is considered an ideal approach for asymmetric synthesis. Despite remarkable advances in this field, enantioconvergent transformations of inert tertiary C-H bonds remain largely unexplored due to the high bond dissociation energy and the surrounding steric repulsion that pose unparalleled constraints on bond cleavage and formation. Here, we report an enantioconvergent Pd-catalyzed alkylation of racemic tertiary allylic C-H bonds of α-alkenes, providing a unique approach to access a broad range of enantioenriched γ,δ-unsaturated carbonyl compounds featuring quaternary carbon stereocenters. Mechanistic studies reveal that a stereoablative event occurs through the rate-limiting cleavage of tertiary allylic C-H bonds to generate σ-allyl-Pd species, and the achieved E/Z-selectivity of σ-allyl-Pd species effectively regulates the diastereoselectivity via a nucleophile coordination-enabled SN 2'-allylation pathway.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin-Ran Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, Hangzhou, 310027, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
- Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Hefei, 230026, China
| |
Collapse
|
6
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
7
|
de Ceuninck van Capelle LA, Wales SM, Macdonald JM, Kruger M, Richardson C, Gardiner MG, Hyland CJT. Synthesis and Atropisomeric Properties of Benzoazepine-Fused Isoindoles. J Org Chem 2023. [PMID: 37326851 DOI: 10.1021/acs.joc.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Atropisomeric, bench-stable benzoazepine-fused isoindoles were synthesized via oxidation from isoindoline precursors. Using the isoindoles 5d-f as models, the stereochemistry and conformational folding of the systems were examined. Chiral UHPLC was used to analyze the rate of racemization and calculate the Gibbs free energy of enantiomerization (ΔG‡Enant). X-ray crystallography, 1H NMR spectroscopy, and DFT calculations were used to elucidate the three axes of chirality and clarify the structural factors contributing to ΔG‡Enant. Tandem rotation around the axes of chirality precludes the formation of diastereomers, with rotational restriction of the Caryl-Nsulfonamide bond determined as the moderator of atropisomeric stability in the system, affected primarily by steric hindrance as well as by π-stacking interactions facilitated by the folded conformation of the sulfonamide over the isoindole moiety.
Collapse
Affiliation(s)
- Lillian A de Ceuninck van Capelle
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Steven M Wales
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - James M Macdonald
- CSIRO Manufacturing, Biomedical Manufacturing Program, Bag 10, Clayton South, Melbourne, Victoria 3168, Australia
| | - Megan Kruger
- CSIRO Manufacturing, Materials Characterisation and Modelling Program, Bag 10, Clayton South, Melbourne, Victoria 3168, Australia
| | - Christopher Richardson
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Michael G Gardiner
- School of Physical Sciences-Chemistry, University of Tasmania, Hobart, Tasmania 7001, Australia
- Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Christopher J T Hyland
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
8
|
Wen Y, Zheng J, Evans AH, Zhang Q. Palladium Catalyzed Allylic C-H Oxidation Enabled by Bicyclic Sulfoxide Ligands. ORGANICS 2023; 4:289-296. [PMID: 39605929 PMCID: PMC11601123 DOI: 10.3390/org4020023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The activation of C-H bonds is a potent tool for modifying molecular structures in chemistry. This article details the steps involved in a novel ligand bearing a bicyclic [3.3.1]-nonane framework and bissulfoxide moiety. A palladium catalyzed allylic C-H oxidation method enables a direct benzyl-allylic functionalization with the bissulfoxide ligand. Bissulfoixde ligand possesses a rapidly constructed bicyclic [3.3.1] framework and it proved to be effective for enabling both N-and C-alkylation. A total of 13 C-H activation productions were reported with good to excellent yields. This report validated that it is necessary to include bissulfoxide as a ligand for superior reactivities. Naftifine was produced utilizing developed C-H functionalization methodology in good overall yields.
Collapse
Affiliation(s)
- Yuming Wen
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Jianfeng Zheng
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Alex H. Evans
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Qiang Zhang
- Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
9
|
Yang Y, Liu S, Li S, Liu Z, Liao P, Sivaguru P, Lu Y, Gao J, Bi X. Site-Selective C-H Allylation of Alkanes: Facile Access to Allylic Quaternary sp 3 -Carbon Centers. Angew Chem Int Ed Engl 2023; 62:e202214519. [PMID: 36428220 DOI: 10.1002/anie.202214519] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The construction of allylic quaternary sp3 -carbon centers has long been a formidable challenge in transition-metal-catalyzed alkyl-allyl coupling reactions due to the severe steric hindrance. Herein, we report an effective carbene strategy that employs well-defined vinyl-N-triftosylhydrazones as a versatile allylating reagent to enable direct assembly of these medicinally desirable structural elements from low-cost alkane feedstocks. The reaction exhibited excellent site selectivity for tertiary C-H bonds, broad scope (>60 examples and >20 : 1:0 r. r.) and good efficiency, even on a gram-scale, making it a convenient alternative to the well-known Trost-Tsuji allylation reaction for the formation of alkyl-allyl bonds. Combined experimental and computational studies were employed to unravel the mechanism and origin of site- and chemoselectivity of the reaction.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Shuang Li
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | | | | | - Ying Lu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Jiaojiao Gao
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Xihe Bi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
10
|
Liu J, Zhou M, Deng R, Zheng P, Chi YR. Chalcogen bond-guided conformational isomerization enables catalytic dynamic kinetic resolution of sulfoxides. Nat Commun 2022; 13:4793. [PMID: 35970848 PMCID: PMC9378665 DOI: 10.1038/s41467-022-32428-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Conformational isomerization can be guided by weak interactions such as chalcogen bonding (ChB) interactions. Here we report a catalytic strategy for asymmetric access to chiral sulfoxides by employing conformational isomerization and chalcogen bonding interactions. The reaction involves a sulfoxide bearing two aldehyde moieties as the substrate that, according to structural analysis and DFT calculations, exists as a racemic mixture due to the presence of an intramolecular chalcogen bond. This chalcogen bond formed between aldehyde (oxygen atom) and sulfoxide (sulfur atom), induces a conformational locking effect, thus making the symmetric sulfoxide as a racemate. In the presence of N-heterocyclic carbene (NHC) as catalyst, the aldehyde moiety activated by the chalcogen bond selectively reacts with an alcohol to afford the corresponding chiral sulfoxide products with excellent optical purities. This reaction involves a dynamic kinetic resolution (DKR) process enabled by conformational locking and facile isomerization by chalcogen bonding interactions.
Collapse
Affiliation(s)
- Jianjian Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Mali Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Rui Deng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Pengcheng Zheng
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Yonggui Robin Chi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China.
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore.
| |
Collapse
|
11
|
Liu Y, Chen ZH, Li Y, Qian J, Li Q, Wang H. Boryl-Dictated Site-Selective Intermolecular Allylic and Propargylic C-H Amination. J Am Chem Soc 2022; 144:14380-14387. [PMID: 35895901 DOI: 10.1021/jacs.2c06117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For internal alkenes possessing two or more sets of electronically and sterically similar allylic protons, the site-selectivity for allylic C-H functionalization is fundamentally challenging. Previously, the negative inductive effect from an electronegative atom has been demonstrated to be effective for several inspiring regioselective C-H functionalization reactions. Yet, the use of an electropositive atom for a similar purpose remains to be developed. α-Aminoboronic acids and their derivatives have found widespread applications. Their current syntheses rely heavily on functional group manipulations. Herein we report a boryl-directed intermolecular C-H amination of allyl N-methyliminodiacetyl boronates (B(MIDA)s) and propargylic B(MIDA)s to give α-amino boronates with an exceptionally high level of site-selectivities (up to 300:1). A wide variety of highly functionalized secondary and tertiary α-amino boronates are formed in generally good to excellent yields, thanks to the mildness of the reaction conditions. The unsaturated double and triple bonds within the product leave room for further decorations. Mechanistic studies reveal that the key stabilization effect of the B(MIDA) moiety on its adjacent developing positive charge is responsible for the high site-selectivity and that a closed transition state might be involved, as the reaction is fully stereoretentive. An activation effect of B(MIDA) is also found.
Collapse
Affiliation(s)
- Yuan Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi-Hao Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiasheng Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
12
|
Dong MY, Han CY, Li DS, Hong Y, Liu F, Deng HP. Hydrogen-Evolution Allylic C(sp 3)–H Alkylation with Protic C(sp 3)–H Bonds via Triplet Synergistic Brønsted Base/Cobalt/Photoredox Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Meng-Yuan Dong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Chun-Yu Han
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Dong-Sheng Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Yang Hong
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| | - Hong-Ping Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
| |
Collapse
|
13
|
Muzart J. Allylic C(
sp
3
)−C(
sp
3
) Bond Formation Through Pd‐Catalyzed C(
sp
3
)−H Activation of Alkenes and 1,4‐Dienes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jacques Muzart
- Institut de Chimie Moléculaire de Reims, UMR 7312 CNRS – Université de Reims Champagne-Ardenne B.P. 1039 51687 Reims Cedex 2 France
| |
Collapse
|
14
|
Ali SZ, Budaitis BG, Fontaine DFA, Pace AL, Garwin JA, White MC. Allylic C-H amination cross-coupling furnishes tertiary amines by electrophilic metal catalysis. Science 2022; 376:276-283. [PMID: 35420962 DOI: 10.1126/science.abn8382] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Intermolecular cross-coupling of terminal olefins with secondary amines to form complex tertiary amines-a common motif in pharmaceuticals-remains a major challenge in chemical synthesis. Basic amine nucleophiles in nondirected, electrophilic metal-catalyzed aminations tend to bind to and thereby inhibit metal catalysts. We reasoned that an autoregulatory mechanism coupling the release of amine nucleophiles with catalyst turnover could enable functionalization without inhibiting metal-mediated heterolytic carbon-hydrogen cleavage. Here, we report a palladium(II)-catalyzed allylic carbon-hydrogen amination cross-coupling using this strategy, featuring 48 cyclic and acyclic secondary amines (10 pharmaceutically relevant cores) and 34 terminal olefins (bearing electrophilic functionality) to furnish 81 tertiary allylic amines, including 12 drug compounds and 10 complex drug derivatives, with excellent regio- and stereoselectivity (>20:1 linear:branched, >20:1 E:Z).
Collapse
Affiliation(s)
- Siraj Z Ali
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Brenna G Budaitis
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Devon F A Fontaine
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Andria L Pace
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - Jacob A Garwin
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| | - M Christina White
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
15
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C-H Alkylation via a Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022; 61:e202115715. [PMID: 35040550 DOI: 10.1002/anie.202115715] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 01/08/2023]
Abstract
An asymmetric allylic C-H functionalization has been developed by making use of transient chiral nucleophiles, as well as bimetallic synergistic catalysis with an achiral Pd0 catalyst and a chiral N,N'-dioxide-CoII complex. A variety of β-ketoesters and N-Boc oxindoles coupled with allylbenzenes and aliphatic terminal alkenes were well tolerated, furnishing the desired allylic alkylation products in high yields (up to 99 %) with excellent regioselectivities and enantioselectivities (up to 99 % ee).
Collapse
Affiliation(s)
- Hongkai Wang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China.,Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Yang Xu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Fangqing Zhang
- Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yangbin Liu
- Shenzhen Bay Laboratory, Shenzhen, 518055, China
| | - Xiaoming Feng
- Shenzhen Bay Laboratory, Shenzhen, 518055, China.,Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
16
|
Yamashita Y, Sato I, Fukuyama R, Kobayashi S. Brønsted base-catalyzed imino-ene-type allylation reactions of simple alkenes as unactivated allyl compounds. Chem Commun (Camb) 2022; 58:2866-2869. [PMID: 35144278 DOI: 10.1039/d1cc06983g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic imino-ene-type allylation reactions of unactivated allyl compounds were achieved. In the presence of a catalytic amount of a strongly basic KOtBu-LiTMP or NaOtBu-LiTMP mixed system, the desired reactions proceeded smoothly at low temperature. Notably, a gaseous alkene, propylene, could also be used in this reaction system.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Io Sato
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Ryota Fukuyama
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Shū Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
17
|
Liu MS, Du HW, Shu W. Metal-free allylic C-H nitrogenation, oxygenation, and carbonation of alkenes by thianthrenation. Chem Sci 2022; 13:1003-1008. [PMID: 35211265 PMCID: PMC8790768 DOI: 10.1039/d1sc06577g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
Selective functionalization of allylic C–H bonds into other chemical bonds is among the most straightforward and attractive, yet challenging transformations. Herein, a transition-metal-free protocol for direct allylic C–H nitrogenation, oxygenation, and carbonation of alkenes by thianthrenation was developed. This operationally simple protocol allows for the unified allylic C–H amination, esterification, etherification, and arylation of vinyl thianthrenium salts. Notably, the reaction furnishes multialkyl substituted allylic amines, ammonium salts, sulfonyl amides, esters, and ethers in good yields. The reaction proceeds under mild conditions with excellent functional group tolerance and could be applied to late-stage allylation of natural products, drug molecules and peptides with excellent chemoselectivity. Diverse functionalizations of allylic C–H bonds of alkenes by thianthrenation have been demonstrated, featuring Z-selectivity to afford multi-alkyl substituted allylic esters, thioesters, ethers, amines, amides and arenes under metal-free conditions.![]()
Collapse
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
18
|
Wang H, Xu Y, Zhang F, Liu Y, Feng X. Bimetallic Palladium/Cobalt Catalysis for Enantioselective Allylic C−H Alkylation via Transient Chiral Nucleophile Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hongkai Wang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yang Xu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Fangqing Zhang
- Peking University Shenzhen Graduate School School of Chemical Biology and Biotechnology CHINA
| | - Yangbin Liu
- Shenzhen Bay Laboratory Chemical Biology CHINA
| | - Xiaoming Feng
- Sichuan University College of Chemistry 29 Wangjiang Road, Jiuyan Bridge 610064 Chengdu CHINA
| |
Collapse
|
19
|
Liu L, Guo K, Tian Y, Yang C, Gu Q, Li Z, Ye L, Liu X. Copper‐Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp
3
)−H/C(sp)−H Cross‐Coupling with Rationally Designed Oxazoline‐Derived N,N,P(O)‐Ligands. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lin Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Kai‐Xin Guo
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Chang‐Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| | - Qiang‐Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Zhong‐Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry Southern University of Science and Technology Shenzhen 518055 China
| | - Xin‐Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry Guangdong Provincial Key Laboratory of Catalysis Southern University of Science and Technology Shenzhen 518055 China
| |
Collapse
|
20
|
Liu L, Guo KX, Tian Y, Yang CJ, Gu QS, Li ZL, Ye L, Liu XY. Copper-Catalyzed Intermolecular Enantioselective Radical Oxidative C(sp 3 )-H/C(sp)-H Cross-Coupling with Rationally Designed Oxazoline-Derived N,N,P(O)-Ligands. Angew Chem Int Ed Engl 2021; 60:26710-26717. [PMID: 34606167 DOI: 10.1002/anie.202110233] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/20/2021] [Indexed: 12/14/2022]
Abstract
The intermolecular asymmetric radical oxidative C(sp3 )-C(sp) cross-coupling of C(sp3 )-H bonds with readily available terminal alkynes is a promising method to forge chiral C(sp3 )-C(sp) bonds because of the high atom and step economy, but remains underexplored. Here, we report a copper-catalyzed asymmetric C(sp3 )-C(sp) cross-coupling of (hetero)benzylic and (cyclic)allylic C-H bonds with terminal alkynes that occurs with high to excellent enantioselectivity. Critical to the success is the rational design of chiral oxazoline-derived N,N,P(O)-ligands that not only tolerate the strong oxidative conditions which are requisite for intermolecular hydrogen atom abstraction (HAA) processes but also induce the challenging enantiocontrol. Direct access to a range of synthetically useful chiral benzylic alkynes and 1,4-enynes, high site-selectivity among similar C(sp3 )-H bonds, and facile synthesis of enantioenriched medicinally relevant compounds make this approach very attractive.
Collapse
Affiliation(s)
- Lin Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kai-Xin Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang-Jiang Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Ye
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
21
|
Zhou QQ, Cheng M, Liu Q, Qu BQ, Huang XY, Yang F, Ji K, Chen ZS. Cooperative Rh(II)/Pd(0) Dual Catalysis: Synthesis of Highly Substituted 3(2 H)-Furanones with a C2-Quaternary Center via a Cyclization/Allylic Alkylation Cascade of α-Diazo-δ-keto-esters. Org Lett 2021; 23:9151-9156. [PMID: 34780172 DOI: 10.1021/acs.orglett.1c03469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cooperative Rh(II)/Pd(0) dual-catalysis strategy that promotes a cyclization/allylic alkylation cascade of stable α-diazo-δ-keto-esters has been developed. Highly substituted 3(2H)-furanones with a C2-quaternary center can be obtained efficiently under mild conditions via one-pot synthesis. Remarkably, this binary catalytic system shows high chemo-, regio-, and stereoselectivity and excellent tolerance to various functionalities.
Collapse
Affiliation(s)
- Qian-Qian Zhou
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Ming Cheng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Qing Liu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Bing-Qian Qu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Xiao-Yan Huang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Fang Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Kegong Ji
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| | - Zi-Sheng Chen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, P. R. China
| |
Collapse
|
22
|
Velasco-Rubio Á, Varela JA, Saá C. Pd-Catalyzed allylic C-H activation to seven-membered N, O-heterocycles. Chem Commun (Camb) 2021; 57:10915-10918. [PMID: 34590628 DOI: 10.1039/d1cc04056a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pd-catalyzed allylic C-H activation of simple olefins allows an easy entry to seven-membered N,O-heterocycles such as 1,4-benzoxazepines (1,4-BZOs), 1,4-benzodiazepinones (1,4-BZDs) and 1,4-oxazepanes in good to excellent yields. Straightforward derivatization of the olefinated 1,4-BZO shows the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Álvaro Velasco-Rubio
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Jesús A Varela
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Carlos Saá
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Palladium-catalyzed regio- and enantioselective migratory allylic C(sp 3)-H functionalization. Nat Commun 2021; 12:5626. [PMID: 34561444 PMCID: PMC8463607 DOI: 10.1038/s41467-021-25978-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/10/2021] [Indexed: 11/12/2022] Open
Abstract
Transition metal-catalyzed asymmetric allylic substitution with a suitably pre-stored leaving group in the substrate is widely used in organic synthesis. In contrast, the enantioselective allylic C(sp3)-H functionalization is more straightforward but far less explored. Here we report a catalytic protocol for the long-standing challenging enantioselective allylic C(sp3)-H functionalization. Through palladium hydride-catalyzed chain-walking and allylic substitution, allylic C-H functionalization of a wide range of acyclic nonconjugated dienes is achieved in high yields (up to 93% yield), high enantioselectivities (up to 98:2 er), and with 100% atom efficiency. Exploring the reactivity of substrates with varying pKa values uncovers a reasonable scope of nucleophiles and potential factors controlling the reaction. A set of efficient downstream transformations to enantiopure skeletons showcase the practical value of the methodology. Mechanistic experiments corroborate the PdH-catalyzed asymmetric migratory allylic substitution process. Alkene isomerizations and asymmetric C–H functionalizations have been independently studied, but their combination in one protocol is uncommon. Here the authors show a palladium-catalyzed method to iteratively “walk” a terminal alkene along a carbon chain to a position next to styrenes where a soft nucleophile is added asymmetrically.
Collapse
|
24
|
Liu W, Ke J, He C. Sulfur stereogenic centers in transition-metal-catalyzed asymmetric C-H functionalization: generation and utilization. Chem Sci 2021; 12:10972-10984. [PMID: 34522294 PMCID: PMC8386673 DOI: 10.1039/d1sc02614c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/07/2021] [Indexed: 11/21/2022] Open
Abstract
Transition-metal-catalyzed enantioselective C–H functionalization has emerged as a powerful tool for the synthesis of enantioenriched compounds in chemical and pharmaceutical industries. Sulfur-based functionalities are ubiquitous in many of the biologically active compounds, medicinal agents, functional materials, chiral auxiliaries and ligands. This perspective highlights recent advances in sulfur functional group enabled transition-metal-catalyzed enantioselective C–H functionalization for the construction of sulfur stereogenic centers, as well as the utilization of chiral sulfoxides to realize stereoselective C–H functionalization. This perspective highlights sulfur functional groups enabled enantioselective C–H functionalization for the construction of sulfur stereogenic centers, and the utilization of chiral sulfoxide to realize stereoselective C–H functionalization.![]()
Collapse
Affiliation(s)
- Wentan Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jie Ke
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Chuan He
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
25
|
Wang K, Lin X, Liu Y, Li C. Palladium-Catalyzed Asymmetric Allylic C–H Functionalization for the Synthesis of Hydroquinolines through Intermolecular [4+2] Cycloadditions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kai Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiangfeng Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yan Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
26
|
Connon R, Roche B, Rokade BV, Guiry PJ. Further Developments and Applications of Oxazoline-Containing Ligands in Asymmetric Catalysis. Chem Rev 2021; 121:6373-6521. [PMID: 34019404 PMCID: PMC8277118 DOI: 10.1021/acs.chemrev.0c00844] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/27/2022]
Abstract
The chiral oxazoline motif is present in many ligands that have been extensively applied in a series of important metal-catalyzed enantioselective reactions. This Review aims to provide a comprehensive overview of the most significant applications of oxazoline-containing ligands reported in the literature starting from 2009 until the end of 2018. The ligands are classified not by the reaction to which their metal complexes have been applied but by the nature of the denticity, chirality, and donor atoms involved. As a result, the continued development of ligand architectural design from mono(oxazolines), to bis(oxazolines), to tris(oxazolines) and tetra(oxazolines) and variations thereof can be more easily monitored by the reader. In addition, the key transition states of selected asymmetric transformations will be given to illustrate the features that give rise to high levels of asymmetric induction. As a further aid to the reader, we summarize the majority of schemes with representative examples that highlight the variation in % yields and % ees for carefully selected substrates. This Review should be of particular interest to the experts in the field but also serve as a useful starting point to new researchers in this area. It is hoped that this Review will stimulate both the development/design of new ligands and their applications in novel metal-catalyzed asymmetric transformations.
Collapse
Affiliation(s)
- Robert Connon
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Brendan Roche
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
| | - Balaji V. Rokade
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| | - Patrick J. Guiry
- Synthesis
and Solid State Pharmaceutical Centre, Centre for Synthesis and Chemical
Biology, School of Chemistry, University
College Dublin, Dublin
4, Ireland
- BiOrbic
Research Centre, Centre for Synthesis and Chemical Biology, School
of Chemistry, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
27
|
Zhang YA, Milkovits A, Agarawal V, Taylor CA, Snyder SA. Total Synthesis of the Meroterpenoid Manginoid A as Fueled by a Challenging Pinacol Coupling and Bicycle-forming Etherification. Angew Chem Int Ed Engl 2021; 60:11127-11132. [PMID: 33644941 DOI: 10.1002/anie.202016178] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/17/2021] [Indexed: 12/17/2022]
Abstract
The manginoids are a unique collection of bioactive natural products whose structures fuse an oxa-bridged spirocyclohexanedione with a heavily substituted trans-hydrindane framework. Herein, we show that such architectures can be accessed through a strategy combining a challenging pinacol coupling and bicycle-forming etherification with several additional chemo- and regioselective reactions. The success of these key events proved to be highly substrate and condition specific, affording insights for their application to other targets. As a result, not only has a 19-step total synthesis of manginoid A been achieved, but a potential roadmap to access other members of the family and related natural products has also been identified.
Collapse
Affiliation(s)
- Yu-An Zhang
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Amanda Milkovits
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Valay Agarawal
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Cooper A Taylor
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| | - Scott A Snyder
- Department of Chemistry, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL, 60637, USA
| |
Collapse
|
28
|
Abstract
![]()
Palladium-catalyzed oxidations involving cascade processes provide
a versatile platform for streamlined conversion of simple feedstocks
into functional molecules with high atom and step economy. However,
the achievement of high palladium efficiency and selectivity in Pd-catalyzed
oxidative cascade reactions is still challenging in many cases, as
a result of the aggregation of active palladium species to Pd black
and the possible side reactions during each bond-forming step. The
two current solutions for addressing these issues are either to utilize
oxidant-stable ligands or to use electron transfer mediators (ETMs).
The former solution, which includes the use of amines, pyridines,
sulfoxides, and carbene derivatives, inhibits aggregation of Pd0 during the catalytic cycle, while the latter solution facilitates
reoxidation of Pd0 to PdII to improve the activity
and selectivity. Following our long-standing interest in Pd-catalyzed
oxidations, very recently we developed heterogeneous catalysts to
resolve the issues mentioned above in oxidative cascade reactions.
The heterogeneous palladium catalysts (Pd-AmP-MCF or Pd-AmP-CNC) comprise
palladium nanoclusters (1–2 nm) immobilized on amino-functionalized
siliceous mesocellular foam (MCF) or on crystalline nanocellulose
(CNC), exhibiting high activity, selectivity as well as excellent
recycling ability. In this Account, we will discuss the synthesis
and characterizations
of the heterogeneous palladium catalysts, as well as their catalytic
behaviors, and the mechanisms involved in their reactions. An important
aspect of these catalysts in oxidation reactions is the generation
of active Pd(II) species within the heterogeneous phase. Typical oxidative
cascade reactions of our recent research on this topic include oxidative
carbocyclization-carbonylation, oxidative carbocyclization-borylation,
oxidative alkynylation-cyclization, oxidative carbonylation-cyclization,
and oxidative carbocyclization-alkynylation. These reactions provide
access to important compounds attractive in medicinal chemistry and
functional materials, such as γ-lactone/γ-lactam-based
poly rings, cyclobutenols, highly substituted furans, and oxaboroles.
During these processes, the heterogeneous catalysts exhibited much
higher turnover numbers (TONs) than their homogeneous counterparts
(e.g., Pd(OAc)2) as well as unique selectivity that cannot
be achieved by homogeneous palladium catalysts. The origin of the
high efficiency and unique selectivity of the heterogeneous catalysts
was also investigated. Asymmetric syntheses for the construction of
optically pure compounds were realized based on the excellent selectivity
in these heterogeneous processes. Kinetic studies revealed that the
rate and yield of the reactions were essentially maintained during
recycling, which demonstrates that Pd-AmP-MCF and Pd-AmP-CNC are robust
and highly active in these oxidative cascade reactions. In addition,
inductively coupled plasma optical emisson spectroscopy (ICP-OES)
analysis and hot filtration test suggest that these processes most
likely proceed via a heterogeneous pathway. Recent progress
in our group has shown that the activity of Pd-AmP-MCF
and Pd-AmP-CNC could be improved even further by the addition of Ag+ to generate cationic Pd(II). Furthermore, intriguing solvent
effects were observed in a Pd-AmP-MCF-catalyzed oxidative cascade
process, and solvent-controlled chemoselective transformations were
developed based on this property of the catalyst. The heterogeneous
strategy of this Account provides solutions to palladium deactivation
and selectivity issues in Pd(II)-catalyzed oxidative cascade reactions
and enables efficient catalyst recycling, which will open up new opportunities
in oxidative cascade reactions.
Collapse
Affiliation(s)
- Man-Bo Li
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P.R. China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230601, P.R. China
| | - Jan-E. Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, SE-85170 Sundsvall, Sweden
| |
Collapse
|
29
|
Pàmies O, Margalef J, Cañellas S, James J, Judge E, Guiry PJ, Moberg C, Bäckvall JE, Pfaltz A, Pericàs MA, Diéguez M. Recent Advances in Enantioselective Pd-Catalyzed Allylic Substitution: From Design to Applications. Chem Rev 2021; 121:4373-4505. [PMID: 33739109 PMCID: PMC8576828 DOI: 10.1021/acs.chemrev.0c00736] [Citation(s) in RCA: 235] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Indexed: 12/30/2022]
Abstract
This Review compiles the evolution, mechanistic understanding, and more recent advances in enantioselective Pd-catalyzed allylic substitution and decarboxylative and oxidative allylic substitutions. For each reaction, the catalytic data, as well as examples of their application to the synthesis of more complex molecules, are collected. Sections in which we discuss key mechanistic aspects for high selectivity and a comparison with other metals (with advantages and disadvantages) are also included. For Pd-catalyzed asymmetric allylic substitution, the catalytic data are grouped according to the type of nucleophile employed. Because of the prominent position of the use of stabilized carbon nucleophiles and heteronucleophiles, many chiral ligands have been developed. To better compare the results, they are presented grouped by ligand types. Pd-catalyzed asymmetric decarboxylative reactions are mainly promoted by PHOX or Trost ligands, which justifies organizing this section in chronological order. For asymmetric oxidative allylic substitution the results are grouped according to the type of nucleophile used.
Collapse
Affiliation(s)
- Oscar Pàmies
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Jèssica Margalef
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| | - Santiago Cañellas
- Discovery
Sciences, Janssen Research and Development, Janssen-Cilag, S.A. Jarama 75A, 45007, Toledo, Spain
| | - Jinju James
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric Judge
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patrick J. Guiry
- Centre
for Synthesis and Chemical Biology, School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Moberg
- KTH
Royal Institute of Technology, Department of Chemistry, Organic Chemistry, SE 100 44 Stockholm, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE 106 91 Stockholm, Sweden
| | - Andreas Pfaltz
- Department
of Chemistry, University of Basel. St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Miquel A. Pericàs
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament
de Química Inorgànica i Orgànica, Universitat de Barcelona. 08028 Barcelona, Spain
| | - Montserrat Diéguez
- Universitat
Rovira i Virgili, Departament de
Química Física i Inorgànica, C/Marcel·lí Domingo, 1, 43007 Tarragona, Spain
| |
Collapse
|
30
|
Lee E, Hwang Y, Kim YB, Kim D, Chang S. Enantioselective Access to Spirolactams via Nitrenoid Transfer Enabled by Enhanced Noncovalent Interactions. J Am Chem Soc 2021; 143:6363-6369. [DOI: 10.1021/jacs.1c02550] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Euijae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Yeongyu Hwang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Yeong Bum Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
31
|
Zhang Y, Milkovits A, Agarawal V, Taylor CA, Snyder SA. Total Synthesis of the Meroterpenoid Manginoid A as Fueled by a Challenging Pinacol Coupling and Bicycle‐forming Etherification. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yu‐An Zhang
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Amanda Milkovits
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Valay Agarawal
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Cooper A. Taylor
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| | - Scott A. Snyder
- Department of Chemistry University of Chicago 5735 S. Ellis Avenue Chicago IL 60637 USA
| |
Collapse
|
32
|
Dalton T, Faber T, Glorius F. C-H Activation: Toward Sustainability and Applications. ACS CENTRAL SCIENCE 2021; 7:245-261. [PMID: 33655064 PMCID: PMC7908034 DOI: 10.1021/acscentsci.0c01413] [Citation(s) in RCA: 311] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Indexed: 05/14/2023]
Abstract
Since the definition of the "12 Principles of Green Chemistry" more than 20 years ago, chemists have become increasingly mindful of the need to conserve natural resources and protect the environment through the judicious choice of synthetic routes and materials. The direct activation and functionalization of C-H bonds, bypassing intermediate functional group installation is, in abstracto, step and atom economic, but numerous factors still hinder the sustainability of large-scale applications. In this Outlook, we highlight the research areas seeking to overcome the sustainability challenges of C-H activation: the pursuit of abundant metal catalysts, the avoidance of static directing groups, the replacement of metal oxidants, and the introduction of bioderived solvents. We close by examining the progress made in the subfield of aryl C-H borylation from its origins, through highly efficient but precious Ir-based systems, to emerging 3d metal catalysts. The future growth of this field will depend on industrial uptake, and thus we urge researchers to strive toward sustainable C-H activation.
Collapse
Affiliation(s)
- Toryn Dalton
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| | - Teresa Faber
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany
| |
Collapse
|
33
|
Bunno Y, Tsukimawashi Y, Kojima M, Yoshino T, Matsunaga S. Metal-Containing Schiff Base/Sulfoxide Ligands for Pd(II)-Catalyzed Asymmetric Allylic C–H Aminations. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05261] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Youka Bunno
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Yuta Tsukimawashi
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Masahiro Kojima
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Tatsuhiko Yoshino
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
| | - Shigeki Matsunaga
- Faculty of Pharmaceutical Science, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
34
|
Liu J, Pan J, Luo X, Qiu X, Zhang C, Jiao N. Selective Dealkenylative Functionalization of Styrenes via C-C Bond Cleavage. RESEARCH 2020; 2020:7947029. [PMID: 33274339 PMCID: PMC7676249 DOI: 10.34133/2020/7947029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 10/08/2020] [Indexed: 02/01/2023]
Abstract
As a readily available feedstock, styrene with about 25 million tons of global annual production serves as an important building block and organic synthon for the synthesis of fine chemicals, polystyrene plastics, and elastomers. Thus, in the past decades, many direct transformations of this costless styrene feedstock were disclosed for the preparation of high-value chemicals, which to date, generally performed on the functionalization of styrenes through the allylic C-H bond, C(sp2)-H bond, or the C=C double bond cleavage. However, the dealkenylative functionalization of styrenes via the direct C-C single bond cleavage is so far challenging and still unknown. Herein, we report the novel and efficient C-C amination and hydroxylation reactions of styrenes for the synthesis of valuable aryl amines and phenols via the site-selective C(Ar)-C(alkenyl) single bond cleavage. This chemistry unlocks the new transformation and application of the styrene feedstock and provides an efficient protocol for the late-stage modification of substituted styrenes with the site-directed dealkenylative amination and hydroxylation.
Collapse
Affiliation(s)
- Jianzhong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Jun Pan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Xiao Luo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Cheng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, 100191 Beijing, China.,State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
35
|
Manna K, Begam HM, Samanta K, Jana R. Overcoming the Deallylation Problem: Palladium(II)-Catalyzed Chemo-, Regio-, and Stereoselective Allylic Oxidation of Aryl Allyl Ether, Amine, and Amino Acids. Org Lett 2020; 22:7443-7449. [PMID: 32955263 DOI: 10.1021/acs.orglett.0c02465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein a Pd(II)/bis-sulfoxide-catalyzed intramolecular allylic C-H acetoxylation of aryl allyl ether, amine, and amino acids with the retention of a labile allyl moiety. Mechanistically, the reaction proceeds through a distinct double-bond isomerization from the allylic to the vinylic position followed by intramolecular carboxypalladation and the β-hydride elimination pathway. For the first time, C-H oxidation of N-allyl-protected amino acids to furnish five-membered heterocycles through 1,3-syn-addition is established with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Krishanu Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
36
|
Wang YJ, Yuan CH, Chu DZ, Jiao L. Regiocontrol in the oxidative Heck reaction of indole by ligand-enabled switch of the regioselectivity-determining step. Chem Sci 2020; 11:11042-11054. [PMID: 34094351 PMCID: PMC8162380 DOI: 10.1039/d0sc02246b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/13/2020] [Indexed: 11/22/2022] Open
Abstract
Efficient control of regioselectivity is a key concern in transition-metal-catalyzed direct C-H functionalization reactions. Various strategies for regiocontrol have been established by tuning the selectivity of the C-H activation step as a common mode. Herein, we present our study on an alternative mode of regiocontrol, in which the selectivity of the C-H activation step is no longer a key concern. We found that, in a reaction where the C-H activation step exhibits a different regio-preference from the subsequent functionalization step, a ligand-enabled switch of the regioselectivity-determining step could provide efficient regiocontrol. This mode has been exemplified by the Pd(ii)-catalyzed aerobic oxidative Heck reaction of indoles, in which a ligand-controlled C3-/C2-selectivity was achieved for the first time by the development of sulfoxide-2-hydroxypyridine (SOHP) ligands.
Collapse
Affiliation(s)
- Yu-Jie Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - Chen-Hui Yuan
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - De-Zhao Chu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| | - Lei Jiao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University Beijing 10084 China
| |
Collapse
|
37
|
Liu R, Yang S, Chen Z, Kong X, Ding H, Fang X. Lewis-Acid-Catalyzed Asymmetric Alkynylation of Alkynyl 1,2-Diketones: Controllable Formation of 3(2H)-Furanones and α-Hydroxy Ketones. Org Lett 2020; 22:6948-6953. [DOI: 10.1021/acs.orglett.0c02505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rui Liu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Shuang Yang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Zhizhou Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Xiangwen Kong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| | - Houqiang Ding
- The First Affiliated Hospital of Shandong First Medical University, Jinan 250014, China
| | - Xinqiang Fang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, and State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China
| |
Collapse
|
38
|
Lei H, Rovis T. A site-selective amination catalyst discriminates between nearly identical C-H bonds of unsymmetrical disubstituted alkenes. Nat Chem 2020; 12:725-731. [PMID: 32541949 PMCID: PMC7428077 DOI: 10.1038/s41557-020-0470-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
C-H activation reactions enable chemists to unveil new retrosynthetic disconnections and streamline conventional synthetic approaches. A long-standing challenge in C-H activation is the inability to distinguish electronically and sterically similar C-H bonds. Although numerous synergistic combinations of transition-metal complexes and chelating directing groups have been utilized to distinguish C-H bonds, undirected regioselective C-H functionalization strategies remain elusive. Here we report a regioselective C-H activation/amination reaction of various unsymmetrical dialkyl-substituted alkenes. The regioselectivity of C-H activation is correlated to the electronic properties of allylic C-H bonds indicated by the corresponding 1JCH coupling constants. A linear relationship between the difference in the 1JCH coupling constants of the two competing allylic C-H bonds (Δ1JCH) and the C-H activation barriers (ΔΔG‡) has also been determined.
Collapse
Affiliation(s)
- Honghui Lei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
39
|
Cao MY, Ma BJ, Lao ZQ, Wang H, Wang J, Liu J, Xing K, Huang YH, Gan KJ, Gao W, Wang H, Hong X, Lu HH. Optically Active Flavaglines-Inspired Molecules by a Palladium-Catalyzed Decarboxylative Dearomative Asymmetric Allylic Alkylation. J Am Chem Soc 2020; 142:12039-12045. [PMID: 32584568 DOI: 10.1021/jacs.0c05113] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
With the aid of a class of newly discovered Trost-type bisphosphine ligands bearing a chiral cycloalkane framework, the Pd-catalyzed decarboxylative dearomative asymmetric allylic alkylation (AAA) of benzofurans was achieved with high efficiency [0.2-1.0 mol% Pd2(dba)3/L], good generality, and high enantioselectivity (>30 examples, 82-99% yield and 90-96% ee). Moreover, a diversity-oriented synthesis (DOS) of previously unreachable flavaglines is disclosed. It features a reliable and scalable sequence of the freshly developed Tsuji-Trost-Stoltz AAA, a Wacker-Grubbs-Stoltz oxidation, an intra-benzoin condensation, and a conjugate addition, which allows the efficient construction of the challenging and compact cyclopenta[b]benzofuran scaffold with contiguous stereocenters. This strategy offers a new avenue for developing flavagline-based drugs.
Collapse
Affiliation(s)
- Meng-Yue Cao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Bin-Jie Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhi-Qi Lao
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Hongliang Wang
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jing Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Juan Liu
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Kuan Xing
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yu-Hao Huang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Kang-Ji Gan
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Wei Gao
- Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Huaimin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xin Hong
- Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hai-Hua Lu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China.,Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China.,Institute of Advanced Synthesis (IAS), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.,Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
40
|
Nagae H, Xia J, Kirillov E, Higashida K, Shoji K, Boiteau V, Zhang W, Carpentier JF, Mashima K. Asymmetric Allylic Alkylation of β-Ketoesters via C–N Bond Cleavage of N-Allyl-N-methylaniline Derivatives Catalyzed by a Nickel–Diphosphine System. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Jingzhao Xia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Evgueni Kirillov
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kosuke Higashida
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Koya Shoji
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Valentin Boiteau
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jean-François Carpentier
- Institut des Sciences Chimiques de Rennes, Université Rennes, CNRS, ISCR, Université de Rennes 1, Rennes Cedex F-35042, France
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
41
|
Palladium-catalyzed asymmetric allylic C-H alkylation of 1,4-dienes and glycine Schiff bases. Sci China Chem 2020. [DOI: 10.1007/s11426-019-9687-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Fairlamb IJS, Scott NWJ. Pd Nanoparticles in C–H Activation and Cross-coupling Catalysis. TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_41] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
43
|
Dick M, Sarai NS, Martynowycz MW, Gonen T, Arnold FH. Tailoring Tryptophan Synthase TrpB for Selective Quaternary Carbon Bond Formation. J Am Chem Soc 2019; 141:19817-19822. [PMID: 31747522 PMCID: PMC6939453 DOI: 10.1021/jacs.9b09864] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We previously engineered the β-subunit of tryptophan synthase (TrpB), which catalyzes the condensation of l-serine and indole to l-tryptophan, to synthesize a range of noncanonical amino acids from l-serine and indole derivatives or other nucleophiles. Here we employ directed evolution to engineer TrpB to accept 3-substituted oxindoles and form C-C bonds leading to new quaternary stereocenters. Initially, the variants that could use 3-substituted oxindoles preferentially formed N-C bonds on N1 of the substrate. Protecting N1 encouraged evolution toward C-alkylation, which persisted when protection was removed. Six generations of directed evolution resulted in TrpB Pfquat with a 400-fold improvement in activity for alkylation of 3-substituted oxindoles and the ability to selectively form a new, all-carbon quaternary stereocenter at the γ-position of the amino acid products. The enzyme can also alkylate and form all-carbon quaternary stereocenters on structurally similar lactones and ketones, where it exhibits excellent regioselectivity for the tertiary carbon. The configurations of the γ-stereocenters of two of the products were determined via microcrystal electron diffraction (MicroED), and we report the MicroED structure of a small molecule obtained using the Falcon III direct electron detector. Highly thermostable and expressed at >500 mg/L E. coli culture, TrpB Pfquat offers an efficient, sustainable, and selective platform for the construction of diverse noncanonical amino acids bearing all-carbon quaternary stereocenters.
Collapse
Affiliation(s)
- Markus Dick
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Nicholas S. Sarai
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Michael W. Martynowycz
- Howard Hughes Medical Institute, David Geffen School of Medicine, Departments of Biological Chemistry and Physiology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tamir Gonen
- Howard Hughes Medical Institute, David Geffen School of Medicine, Departments of Biological Chemistry and Physiology, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Frances H. Arnold
- Division of Chemistry and Chemical Engineering 210-41, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
44
|
Li MB, Posevins D, Geoffroy A, Zhu C, Bäckvall JE. Efficient Heterogeneous Palladium-Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angew Chem Int Ed Engl 2019; 59:1992-1996. [PMID: 31729824 DOI: 10.1002/anie.201911462] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/06/2019] [Indexed: 12/14/2022]
Abstract
A heterogeneous palladium-catalyzed oxidative cyclization of enallenols has been developed for the construction of highly substituted furan and oxaborole derivatives. The heterogeneous catalyst (Pd-AmP-MCF) exhibits high activity, high site- and stereoselectivity, and efficient palladium recyclability in the transformations.
Collapse
Affiliation(s)
- Man-Bo Li
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden.,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Daniels Posevins
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Antoine Geoffroy
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Can Zhu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| |
Collapse
|
45
|
Li M, Posevins D, Geoffroy A, Zhu C, Bäckvall J. Efficient Heterogeneous Palladium‐Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Man‐Bo Li
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
- Institute of Physical Science and Information TechnologyAnhui University Hefei Anhui 230601 P. R. China
| | - Daniels Posevins
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| | - Antoine Geoffroy
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| | - Can Zhu
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| | - Jan‐E. Bäckvall
- Department of Organic ChemistryArrhenius LaboratoryStockholm University 10691 Stockholm Sweden
| |
Collapse
|
46
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019; 58:16806-16810. [DOI: 10.1002/anie.201908960] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/02/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
47
|
Fan L, Luo S, Chen S, Wang T, Wang P, Gong L. Nucleophile Coordination Enabled Regioselectivity in Palladium‐Catalyzed Asymmetric Allylic C−H Alkylation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Lian‐Feng Fan
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shi‐Wei Luo
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Shu‐Sen Chen
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Tian‐Ci Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Pu‐Sheng Wang
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
| | - Liu‐Zhu Gong
- Hefei National Laboratory for Physical Sciences at the MicroscaleDepartment of ChemistryUniversity of Science and Technology of China Hefei 230026 China
- Center for Excellence in Molecular Synthesis of CAS China
| |
Collapse
|
48
|
Abstract
Background:
α-Aryl substituted nitroalkanes are important synthetic intermediates
for the preparation of pharmaceutical molecules, natural products, and functional
materials. Due to their scare existence in Nature, synthesis of these compounds has attracted
the attention of synthetic and medicinal chemists, rendering α-arylation of nitroalkanes
of an important research topic. This article summarizes the important advances of α-
arylation of nitroalkanes since 1963.
Results:
After a brief introduction of the synthetic application and the reactions of nitroalkanes,
this article reviewed the synthetic methods for the α-arylated aliphatic nitro compound.
The amount of research on α-arylation of nitroalkanes using various arylation reagents
and the discovery of elegant synthetic approaches towards such skeleton have been
discussed. This review described these advances in two sections. One is the arylation of non-activated nitroalkanes,
with an emphasis on the application of diverse arylation reagents; the other focuses on the arylation of
activated nitroalkanes, including dinitroalkanes, trinitroalkanes, α-nitrosulfones, α-nitroesters, α-nitrotoluenes,
and α-nitroketones. The synthetic application of these methods has also been presented in some cases.
Conclusion:
In this review, we described the progress of α-arylation of nitroalkanes. Although the immense
amount of research on α-arylation of aliphatic nitro compounds has been achieved, many potential issues still
need to be addressed, especially the asymmetric transformation and its wide application in organic synthesis.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Yang An
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zuo-Yi Jiao
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730000, China
| | - Zhou-Bao Shi
- Affiliate Hospital of Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
49
|
Sihag P, Jeganmohan M. Iridium(III)-Catalyzed Intermolecular Allylic C–H Amidation of Internal Alkenes with Sulfonamides. J Org Chem 2019; 84:13053-13064. [DOI: 10.1021/acs.joc.9b02047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Pinki Sihag
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
50
|
Kazerouni AM, Nelson TAF, Chen SW, Sharp KR, Blakey SB. Regioselective Cp*Ir(III)-Catalyzed Allylic C–H Sulfamidation of Allylbenzene Derivatives. J Org Chem 2019; 84:13179-13185. [DOI: 10.1021/acs.joc.9b01816] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Amaan M. Kazerouni
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Taylor A. F. Nelson
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Steven W. Chen
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kimberly R. Sharp
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Simon B. Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|