1
|
Yang Z, Ghorai N, Wu S, He S, Lian T. Direct and Indirect Interfacial Electron Transfer at a Plasmonic p-Cu 7S 4/CdS Heterojunction. ACS NANO 2025; 19:1547-1556. [PMID: 39743773 PMCID: PMC11752524 DOI: 10.1021/acsnano.4c14556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/03/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Plasmonic semiconductors exhibit significant potential for harvesting near-IR solar energy, although their mechanisms of plasmon-induced hot electron transfer (HET) are poorly understood. We report a transient absorption study of plasmon-induced HET in p-Cu7S4/CdS type II heterojunctions. Near-IR excitation of the p-Cu7S4 plasmon band at ∼1400 nm leads to ultrafast HET into the CdS conduction band with a time constant of <150 fs and a quantum efficiency of ∼0.054%. The injected hot electrons remain in CdS with an amplitude-weighted average lifetime of 1.9 ± 0.5 ns, significantly longer than that in Au/CdS heterostructures, suggesting that plasmonic semiconductors can slow down charge recombination due to the presence of a bandgap. The excited near-IR plasmon does not decay by coupling to the interfacial charge transfer transition, likely due to its energy mismatch. This study provides a detailed mechanistic understanding and possible directions for improving plasmonic HET in plasmonic semiconductor heterojunctions.
Collapse
Affiliation(s)
- Zhicheng Yang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nandan Ghorai
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Shengxiang Wu
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sheng He
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Li Q, Wu K, Zhu H, Yang Y, He S, Lian T. Charge Transfer from Quantum-Confined 0D, 1D, and 2D Nanocrystals. Chem Rev 2024; 124:5695-5763. [PMID: 38629390 PMCID: PMC11082908 DOI: 10.1021/acs.chemrev.3c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/09/2024]
Abstract
The properties of colloidal quantum-confined semiconductor nanocrystals (NCs), including zero-dimensional (0D) quantum dots, 1D nanorods, 2D nanoplatelets, and their heterostructures, can be tuned through their size, dimensionality, and material composition. In their photovoltaic and photocatalytic applications, a key step is to generate spatially separated and long-lived electrons and holes by interfacial charge transfer. These charge transfer properties have been extensively studied recently, which is the subject of this Review. The Review starts with a summary of the electronic structure and optical properties of 0D-2D nanocrystals, followed by the advances in wave function engineering, a novel way to control the spatial distribution of electrons and holes, through their size, dimension, and composition. It discusses the dependence of NC charge transfer on various parameters and the development of the Auger-assisted charge transfer model. Recent advances in understanding multiple exciton generation, decay, and dissociation are also discussed, with an emphasis on multiple carrier transfer. Finally, the applications of nanocrystal-based systems for photocatalysis are reviewed, focusing on the photodriven charge separation and recombination processes that dictate the function and performance of these materials. The Review ends with a summary and outlook of key remaining challenges and promising future directions in the field.
Collapse
Affiliation(s)
- Qiuyang Li
- Department
of Physics, University of Michigan, 450 Church St, Ann Arbor, Michigan 48109, United States
| | - Kaifeng Wu
- State
Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation
Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiming Zhu
- Department
of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ye Yang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM
(Collaborative Innovation Center of Chemistry for Energy Materials),
College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sheng He
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
3
|
Ghosh P, Alvertis AM, Chowdhury R, Murto P, Gillett AJ, Dong S, Sneyd AJ, Cho HH, Evans EW, Monserrat B, Li F, Schnedermann C, Bronstein H, Friend RH, Rao A. Decoupling excitons from high-frequency vibrations in organic molecules. Nature 2024; 629:355-362. [PMID: 38720042 PMCID: PMC11078737 DOI: 10.1038/s41586-024-07246-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2024] [Indexed: 05/12/2024]
Abstract
The coupling of excitons in π-conjugated molecules to high-frequency vibrational modes, particularly carbon-carbon stretch modes (1,000-1,600 cm-1) has been thought to be unavoidable1,2. These high-frequency modes accelerate non-radiative losses and limit the performance of light-emitting diodes, fluorescent biomarkers and photovoltaic devices. Here, by combining broadband impulsive vibrational spectroscopy, first-principles modelling and synthetic chemistry, we explore exciton-vibration coupling in a range of π-conjugated molecules. We uncover two design rules that decouple excitons from high-frequency vibrations. First, when the exciton wavefunction has a substantial charge-transfer character with spatially disjoint electron and hole densities, we find that high-frequency modes can be localized to either the donor or acceptor moiety, so that they do not significantly perturb the exciton energy or its spatial distribution. Second, it is possible to select materials such that the participating molecular orbitals have a symmetry-imposed non-bonding character and are, thus, decoupled from the high-frequency vibrational modes that modulate the π-bond order. We exemplify both these design rules by creating a series of spin radical systems that have very efficient near-infrared emission (680-800 nm) from charge-transfer excitons. We show that these systems have substantial coupling to vibrational modes only below 250 cm-1, frequencies that are too low to allow fast non-radiative decay. This enables non-radiative decay rates to be suppressed by nearly two orders of magnitude in comparison to π-conjugated molecules with similar bandgaps. Our results show that losses due to coupling to high-frequency modes need not be a fundamental property of these systems.
Collapse
Affiliation(s)
- Pratyush Ghosh
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Antonios M Alvertis
- KBR, Inc., NASA Ames Research Center, Moffett Field, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Petri Murto
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Shengzhi Dong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | | | - Hwan-Hee Cho
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Emrys W Evans
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemistry, Swansea University, Swansea, UK
| | - Bartomeu Monserrat
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | | | - Hugo Bronstein
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Li Y, Wang L, Xiang D, Zhu J, Wu K. Dielectric and Wavefunction Engineering of Electron Spin Lifetime in Colloidal Nanoplatelet Heterostructures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306518. [PMID: 38234238 DOI: 10.1002/advs.202306518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/23/2023] [Indexed: 01/19/2024]
Abstract
Colloidal semiconductor nanoplatelets (NPLs) have emerged as low-cost and free-standing alternates of traditional quantum wells. The giant heavy- and light-hole splitting in NPLs allows for efficient optical spin injection. However, the electron spin lifetimes for prototypical CdSe NPLs are within a few picoseconds, likely limited by strong electron-hole exchange in these quantum- and dielectric-confined materials. Here how this hurdle can be overcome with engineered NPL-heterostructures is demonstrated. By constructing type-I CdSe/ZnS core/shell NPLs, dielectric screening inside the core is strongly enhanced, prolonging the electron spin polarization time (τesp) to over 30 ps (or 60 ps electron spin-flip time). Alternatively, by growing type-II CdSe/CdTe core/crown NPLs to spatially separate electron and hole wavefunctions, the electron-hole exchange is strongly suppressed, resulting in τesp as long as 300 ps at room temperature. This study not only exemplifies how the well-established synthetic chemistry of colloidal heterostructures can aid in spin dynamics control but also establishes the feasibility of room-temperature coherent spin manipulation in colloidal NPLs.
Collapse
Affiliation(s)
- Yulu Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Lifeng Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of the Chinese Academy of Sciences, Beijing, Hebei, 100049, China
| | - Dongmei Xiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
- University of the Chinese Academy of Sciences, Beijing, Hebei, 100049, China
| |
Collapse
|
5
|
Mallik G, Kabiraj A, Swain DK, Dash PP, Kumari P, Rath S. Entropy-driven nonequilibrium phonon-stimulated electron-phonon coupling in tin dioxide nanorods. Phys Rev E 2024; 109:024213. [PMID: 38491670 DOI: 10.1103/physreve.109.024213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 01/15/2024] [Indexed: 03/18/2024]
Abstract
Nonequilibrium (NEQ) phonon fluctuation in a nanosystem has been studied through the statistical assessment of the entropy-production and -consumption events in ultrasmall tin dioxide (SnO_{2}) nanorods. Size- and shape-dependent alteration in free energy leading to modulation of the probability distribution function of the phonon dynamics has been observed from the x-ray diffraction and Raman scattering characterizations. The Gallavotti-Cohen nonequilibrium fluctuation theorem has been utilized to qualitatively describe the aforementioned behaviors under the influence of a global flux. The observation of entropy consumption and thermodynamically favorable entropy-production events indicates the presence of NEQ fluctuations in the phonon modes. The effective energy scale of fluctuation in driven phonon modes, dissipating energy faster than relaxation time, is quantified on the order of nanojoules. From optical absorption and photoluminescence studies, the observation of the electron-phonon coupled state confirms the interaction of the NEQ phonons with electrons. The strength of the coupling has been estimated from the temperature-independent Barry center shift and found to be enhanced to 5.35. Valence band x-ray photoelectron spectroscopy and Fourier transformed infrared spectroscopy analyses reconcile NEQ phonon mediated alteration of the valence band density of states, activation of silent phonon modes, and superior excitonic transitions, suitable for the new generation of ultrafast quantum device applications.
Collapse
Affiliation(s)
- G Mallik
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni-752050, Khordha, Odisha, India
| | - A Kabiraj
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni-752050, Khordha, Odisha, India
| | - D K Swain
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni-752050, Khordha, Odisha, India
| | - P P Dash
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni-752050, Khordha, Odisha, India
| | - P Kumari
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni-752050, Khordha, Odisha, India
| | - S Rath
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Jatni-752050, Khordha, Odisha, India
| |
Collapse
|
6
|
Dzhagan V, Mazur N, Kapush O, Selyshchev O, Karnaukhov A, Yeshchenko OA, Danylenko MI, Yukhymchuk V, Zahn DRT. Core and Shell Contributions to the Phonon Spectra of CdTe/CdS Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:921. [PMID: 36903799 PMCID: PMC10004847 DOI: 10.3390/nano13050921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The parameters of the shell and interface in semiconductor core/shell nanocrystals (NCs) are determinant for their optical properties and charge transfer but are challenging to be studied. Raman spectroscopy was shown earlier to be a suitable informative probe of the core/shell structure. Here, we report the results of a spectroscopic study of CdTe NCs synthesized by a facile route in water, using thioglycolic acid (TGA) as a stabilizer. Both core-level X-ray photoelectron (XPS) and vibrational (Raman and infrared) spectra show that using thiol during the synthesis results in the formation of a CdS shell around the CdTe core NCs. Even though the spectral positions of the optical absorption and photoluminescence bands of such NCs are determined by the CdTe core, the far-infrared absorption and resonant Raman scattering spectra are dominated by the vibrations related with the shell. The physical mechanism of the observed effect is discussed and opposed to the results reported before for thiol-free CdTe Ns as well as CdSe/CdS and CdSe/ZnS core/shell NC systems, where the core phonons were clearly detected under similar experimental conditions.
Collapse
Affiliation(s)
- Volodymyr Dzhagan
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
- Physics Department, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Nazar Mazur
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
| | - Olga Kapush
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
| | - Oleksandr Selyshchev
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Anatolii Karnaukhov
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
| | - Oleg A. Yeshchenko
- Physics Department, Taras Shevchenko National University of Kyiv, 01601 Kyiv, Ukraine
| | - Mykola I. Danylenko
- Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 03142 Kyiv, Ukraine
| | - Volodymyr Yukhymchuk
- V. Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 03028 Kyiv, Ukraine
| | - Dietrich R. T. Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany
- Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
7
|
Shabani F, Martinez PLH, Shermet N, Korkut H, Sarpkaya I, Dehghanpour Baruj H, Delikanli S, Isik F, Durmusoglu EG, Demir HV. Gradient Type-II CdSe/CdSeTe/CdTe Core/Crown/Crown Heteronanoplatelets with Asymmetric Shape and Disproportional Excitonic Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205729. [PMID: 36650974 DOI: 10.1002/smll.202205729] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Characterized by their strong 1D confinement and long-lifetime red-shifted emission spectra, colloidal nanoplatelets (NPLs) with type-II electronic structure provide an exciting ground to design complex heterostructures with remarkable properties. This work demonstrates the synthesis and optical characterization of CdSe/CdSeTe/CdTe core/crown/crown NPLs having a step-wise gradient electronic structure and disproportional wavefunction distribution, in which the excitonic properties of the electron and hole can be finely tuned through adjusting the geometry of the intermediate crown. The first crown with staggered configuration gives rise to a series of direct and indirect transition channels that activation/deactivation of each channel is possible through wavefunction engineering. Moreover, these NPLs allow for switching between active channels with temperature, where lattice contraction directly affects the electron-hole (e-h) overlap. Dominated by the indirect transition channels over direct transitions, the lifetime of the NPLs starts to increase at 9 K, indicative of low dark-bright exciton splitting energy. The charge transfer states from the two type-II interfaces promote a large number of indirect transitions, which effectively increase the absorption of low-energy photons critical for nonlinear properties. As a result, these NPLs demonstrate exceptionally high two-photon absorption cross-sections with the highest value of 12.9 × 106 GM and superlinear behavior.
Collapse
Affiliation(s)
- Farzan Shabani
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Pedro Ludwig Hernandez Martinez
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Nina Shermet
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Hilal Korkut
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Ibrahim Sarpkaya
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Hamed Dehghanpour Baruj
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Savas Delikanli
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Furkan Isik
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
| | - Emek Goksu Durmusoglu
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hilmi Volkan Demir
- UNAM - Institute of Materials Science and Nanotechnology and National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Ankara, 06800, Turkey
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, School of Physical and Materials Sciences, School of Materials Science and Nanotechnology, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
8
|
Diroll BT, Guzelturk B, Po H, Dabard C, Fu N, Makke L, Lhuillier E, Ithurria S. 2D II-VI Semiconductor Nanoplatelets: From Material Synthesis to Optoelectronic Integration. Chem Rev 2023; 123:3543-3624. [PMID: 36724544 DOI: 10.1021/acs.chemrev.2c00436] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The field of colloidal synthesis of semiconductors emerged 40 years ago and has reached a certain level of maturity thanks to the use of nanocrystals as phosphors in commercial displays. In particular, II-VI semiconductors based on cadmium, zinc, or mercury chalcogenides can now be synthesized with tailored shapes, composition by alloying, and even as nanocrystal heterostructures. Fifteen years ago, II-VI semiconductor nanoplatelets injected new ideas into this field. Indeed, despite the emergence of other promising semiconductors such as halide perovskites or 2D transition metal dichalcogenides, colloidal II-VI semiconductor nanoplatelets remain among the narrowest room-temperature emitters that can be synthesized over a wide spectral range, and they exhibit good material stability over time. Such nanoplatelets are scientifically and technologically interesting because they exhibit optical features and production advantages at the intersection of those expected from colloidal quantum dots and epitaxial quantum wells. In organic solvents, gram-scale syntheses can produce nanoparticles with the same thicknesses and optical properties without inhomogeneous broadening. In such nanoplatelets, quantum confinement is limited to one dimension, defined at the atomic scale, which allows them to be treated as quantum wells. In this review, we discuss the synthetic developments, spectroscopic properties, and applications of such nanoplatelets. Covering growth mechanisms, we explain how a thorough understanding of nanoplatelet growth has enabled the development of nanoplatelets and heterostructured nanoplatelets with multiple emission colors, spatially localized excitations, narrow emission, and high quantum yields over a wide spectral range. Moreover, nanoplatelets, with their large lateral extension and their thin short axis and low dielectric surroundings, can support one or several electron-hole pairs with large exciton binding energies. Thus, we also discuss how the relaxation processes and lifetime of the carriers and excitons are modified in nanoplatelets compared to both spherical quantum dots and epitaxial quantum wells. Finally, we explore how nanoplatelets, with their strong and narrow emission, can be considered as ideal candidates for pure-color light emitting diodes (LEDs), strong gain media for lasers, or for use in luminescent light concentrators.
Collapse
Affiliation(s)
- Benjamin T Diroll
- Center for Nanoscale Materials, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Burak Guzelturk
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Hong Po
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Corentin Dabard
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Ningyuan Fu
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Lina Makke
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, 75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| |
Collapse
|
9
|
Anand A, Zaffalon ML, Cova F, Pinchetti V, Khan AH, Carulli F, Brescia R, Meinardi F, Moreels I, Brovelli S. Optical and Scintillation Properties of Record-Efficiency CdTe Nanoplatelets toward Radiation Detection Applications. NANO LETTERS 2022; 22:8900-8907. [PMID: 36331389 PMCID: PMC9706671 DOI: 10.1021/acs.nanolett.2c02975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Colloidal CdTe nanoplatelets featuring a large absorption coefficient and ultrafast tunable luminescence coupled with heavy-metal-based composition present themselves as highly desirable candidates for radiation detection technologies. Historically, however, these nanoplatelets have suffered from poor emission efficiency, hindering progress in exploring their technological potential. Here, we report the synthesis of CdTe nanoplatelets possessing a record emission efficiency of 9%. This enables us to investigate their fundamental photophysics using ultrafast transient absorption, temperature-controlled photoluminescence, and radioluminescence measurements, elucidating the origins of exciton- and defect-related phenomena under both optical and ionizing excitation. For the first time in CdTe nanoplatelets, we report the cumulative effects of a giant oscillator strength transition and exciton fine structure. Simultaneously, thermally stimulated luminescence measurements reveal the presence of both shallow and deep trap states and allow us to disclose the trapping and detrapping dynamics and their influence on the scintillation properties.
Collapse
Affiliation(s)
- Abhinav Anand
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Matteo L. Zaffalon
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Francesca Cova
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Valerio Pinchetti
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | | | - Francesco Carulli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Rosaria Brescia
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30, 16163Genova, Italy
| | - Francesco Meinardi
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
| | - Iwan Moreels
- Department
of Chemistry, Ghent University, 9000Ghent, Belgium
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30, 16163Genova, Italy
| | - Sergio Brovelli
- Dipartimento
di Scienza dei Materiali, Università
degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125Milano, Italy
- Electron
Microscopy Facility, Istituto Italiano di
Tecnologia, Via Morego 30, 16163Genova, Italy
| |
Collapse
|
10
|
Bai H, Huang Z, Zhang L. Ultrathin scroll-like CdSe/CdS core/crown heteronanoplatelets: Colloidal synthesis and properties. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Double-crowned 2D semiconductor nanoplatelets with bicolor power-tunable emission. Nat Commun 2022; 13:5094. [PMID: 36042249 PMCID: PMC9427944 DOI: 10.1038/s41467-022-32713-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Nanocrystals (NCs) are now established building blocks for optoelectronics and their use as down converters for large gamut displays has been their first mass market. NC integration relies on a combination of green and red NCs into a blend, which rises post-growth formulation issues. A careful engineering of the NCs may enable dual emissions from a single NC population which violates Kasha’s rule, which stipulates that emission should occur at the band edge. Thus, in addition to an attentive control of band alignment to obtain green and red signals, non-radiative decay paths also have to be carefully slowed down to enable emission away from the ground state. Here, we demonstrate that core/crown/crown 2D nanoplatelets (NPLs), made of CdSe/CdTe/CdSe, can combine a large volume and a type-II band alignment enabling simultaneously red and narrow green emissions. Moreover, we demonstrate that the ratio of the two emissions can be tuned by the incident power, which results in a saturation of the red emission due to non-radiative Auger recombination that affects this emission much stronger than the green one. Finally, we also show that dual-color, power tunable, emission can be obtained through an electrical excitation. Nanocrystals are desirable light sources for advanced display technologies. Here, the authors report on double-crowned 2D semiconductor nanoplatelets as light downconverters that offer both green and red emissions to achieve a wide color gamut.
Collapse
|
12
|
Mack TG, Spinelli J, Andrews MP, Kambhampati P. Resonance Raman Vibrational Mode Enhancement of Adsorbed Benzenethiols on CdSe Is Predominantly Franck-Condon in Nature and Governed by Symmetry. J Phys Chem Lett 2021; 12:7935-7941. [PMID: 34387493 DOI: 10.1021/acs.jpclett.1c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Here, we report mode-specific resonance Raman enhancements of ligands covalently bound to the surface of colloidal CdSe nanocrystals (NCs). By the systematic comparison of a set of structural derivatives, the extent of resonance Raman enhancement is shown to be directly related to the molecular symmetry of the bound ligands. The enhancement dependence on molecular symmetry is further discussed in terms of Franck-Condon and Herzberg-Teller contributions and their associated selection rules. We further show that resonance Raman may be used to distinguish between possible surface binding motifs of bidentate ligands under continuous wave excitation. More generally, this work demonstrates the usefulness of resonance Raman as a characterization tool when characterizing adsorbed molecular species on semiconductor NC surfaces.
Collapse
Affiliation(s)
- Timothy G Mack
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Juliana Spinelli
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Mark P Andrews
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
13
|
Xiao J, Liu Y, Steinmetz V, Çaǧlar M, Mc Hugh J, Baikie T, Gauriot N, Nguyen M, Ruggeri E, Andaji-Garmaroudi Z, Stranks SD, Legrand L, Barisien T, Friend RH, Greenham NC, Rao A, Pandya R. Optical and Electronic Properties of Colloidal CdSe Quantum Rings. ACS NANO 2020; 14:14740-14760. [PMID: 33044058 DOI: 10.1021/acsnano.0c01752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Luminescent colloidal CdSe nanorings are a recently developed type of semiconductor structure that have attracted interest due to the potential for rich physics arising from their nontrivial toroidal shape. However, the exciton properties and dynamics of these materials with complex topology are not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and single-particle measurements to study these materials. We find that on transformation of CdSe nanoplatelets to nanorings, by perforating the center of platelets, the emission lifetime decreases and the emission spectrum broadens due to ensemble variations in the ring size and thickness. The reduced PL quantum yield of nanorings (∼10%) compared to platelets (∼30%) is attributed to an enhanced coupling between (i) excitons and CdSe LO-phonons at 200 cm-1 and (ii) negatively charged selenium-rich traps, which give nanorings a high surface charge (∼-50 mV). Population of these weakly emissive trap sites dominates the emission properties with an increased trap emission at low temperatures relative to excitonic emission. Our results provide a detailed picture of the nature of excitons in nanorings and the influence of phonons and surface charge in explaining the broad shape of the PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that the excitonic properties of nanorings are not solely a consequence of the toroidal shape but also a result of traps introduced by puncturing the platelet center.
Collapse
Affiliation(s)
- James Xiao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Yun Liu
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Violette Steinmetz
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Mustafa Çaǧlar
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Jeffrey Mc Hugh
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Tomi Baikie
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Nicolas Gauriot
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Malgorzata Nguyen
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Edoardo Ruggeri
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Zahra Andaji-Garmaroudi
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS, Cambridge, United Kingdom
| | - Samuel D Stranks
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, 4 Place Jussieu, F-75005 Paris, France
| | - Laurent Legrand
- Sorbonne Université, CNRS-UMR 7588, Institut des NanoSciences de Paris, INSP, 4 Place Jussieu, F-75005 Paris, France
| | - Thierry Barisien
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Richard H Friend
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | | |
Collapse
|
14
|
Piveteau L, Dirin DN, Gordon CP, Walder BJ, Ong TC, Emsley L, Copéret C, Kovalenko MV. Colloidal-ALD-Grown Core/Shell CdSe/CdS Nanoplatelets as Seen by DNP Enhanced PASS-PIETA NMR Spectroscopy. NANO LETTERS 2020; 20:3003-3018. [PMID: 32078332 PMCID: PMC7227022 DOI: 10.1021/acs.nanolett.9b04870] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ligand exchange and CdS shell growth onto colloidal CdSe nanoplatelets (NPLs) using colloidal atomic layer deposition (c-ALD) were investigated by solid-state nuclear magnetic resonance (NMR) experiments, in particular, dynamic nuclear polarization (DNP) enhanced phase adjusted spinning sidebands-phase incremented echo-train acquisition (PASS-PIETA). The improved sensitivity and resolution of DNP enhanced PASS-PIETA permits the identification and study of the core, shell, and surface species of CdSe and CdSe/CdS core/shell NPLs heterostructures at all stages of c-ALD. The cadmium chemical shielding was found to be proportionally dependent on the number and nature of coordinating chalcogen-based ligands. DFT calculations permitted the separation of the the 111/113Cd chemical shielding into its different components, revealing that the varying strength of paramagnetic and spin-orbit shielding contributions are responsible for the chemical shielding trend of cadmium chalcogenides. Overall, this study points to the roughening and increased chemical disorder at the surface during the shell growth process, which is not readily captured by the conventional characterization tools such as electron microscopy.
Collapse
Affiliation(s)
- Laura Piveteau
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
| | - Dmitry N. Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
| | - Christopher P. Gordon
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Brennan J. Walder
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Ta-Chung Ong
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
| | - Lyndon Emsley
- Institut
des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Christophe Copéret
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- E-mail:
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Vladimir Prelog Weg 1-5, Zurich CH-8093, Switzerland
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, Dübendorf, Überlandstrasse
129, Zurich CH-8600, Switzerland
- E-mail:
| |
Collapse
|
15
|
Deng XZ, Zhang JR, Zhao YQ, Yu ZL, Yang JL, Cai MQ. The energy band engineering for the high-performance infrared photodetectors constructed by CdTe/MoS 2 heterojunction. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:065004. [PMID: 31470426 DOI: 10.1088/1361-648x/ab4013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recently, the traditional infrared photodetectors (PDs) shows limited application in various areas, due to the narrow band-gap, high cost and even complex manufacturing process. In this situation, scientist have paid much attention to achieve the ultra broadband PDs from the deep ultraviolet to the near infrared. The energy band engineering for two-dimensional (2D) van der Waals heterojunction with free chemical dangling bonds is an effective method to fabricate High-performance Photodetectors. In this work, we employ density functional calculation to construct a type-II CdTe/MoS2 heterostructure and calculate its electronic properties. The results reveal that the CdTe/MoS2 has the narrow band gap of 0.64 eV and electrons transfer from the CdTe to MoS2 layer, which promotes the separation of photogenerated carriers and enhance the photoelectron conversion efficiency. Driven by the smaller band gap, it can respond to near infrared, visible and ultraviolet light, demonstrating it the promising application for solar cell. Furthermore, the analysis of molecules adsorption and band edge alignment indicates that the CdTe/MoS2 is prone to capture H2O and release the H2 molecules, which is conductive to the photocatalytic water splitting for hydrogen generation. Our work suggests that the CdTe/MoS2 heterostructure is a potential candidate as a solar cell and even photocatalyst, and also provides a new sight for experimental and theoretical research to design a highly efficient device.
Collapse
Affiliation(s)
- Xi-Zi Deng
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Zhou Q, Cho Y, Yang S, Weiss EA, Berkelbach TC, Darancet P. Large Band Edge Tunability in Colloidal Nanoplatelets. NANO LETTERS 2019; 19:7124-7129. [PMID: 31545615 DOI: 10.1021/acs.nanolett.9b02645] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We study the impact of organic surface ligands on the electronic structure and electronic band edge energies of quasi-two-dimensional (2D) colloidal cadmium selenide nanoplatelets (NPLs) using density functional theory. We show how control of the ligand and ligand-NPL interface dipoles results in large band edge energy shifts, over a range of 5 eV for common organic ligands with a minor effect on the NPL band gaps. Using a model self-energy to account for the dielectric contrast and an effective mass model of the excitons, we show that the band edge tunability of NPLs together with the strong dependence of the optical band gap on NPL thickness can lead to favorable photochemical and optoelectronic properties.
Collapse
Affiliation(s)
- Qunfei Zhou
- Materials Research Science and Engineering Center , Northwestern University , Evanston , Illinois 60208 , United States
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Yeongsu Cho
- Department of Chemistry and James Franck Institute , University of Chicago , Chicago , Illinois 60637 , United States
| | - Shenyuan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors , Chinese Academy of Sciences , Beijing 100083 , China
- Center for Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Emily A Weiss
- Department of Chemistry and Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Timothy C Berkelbach
- Department of Chemistry , Columbia University , New York , New York 10027 , United States
- Center for Computational Quantum Physics , Flatiron Institute , New York , New York 10010 , United States
| | - Pierre Darancet
- Center for Nanoscale Materials , Argonne National Laboratory , Argonne , Illinois 60439 , United States
- Northwestern Argonne Institute of Science and Engineering , Evanston , Illinois 60208 , United States
| |
Collapse
|
17
|
Pandya R, Steinmetz V, Puttisong Y, Dufour M, Chen WM, Chen RYS, Barisien T, Sharma A, Lakhwani G, Mitioglu A, Christianen PCM, Legrand L, Bernardot F, Testelin C, Chin AW, Ithurria S, Chamarro M, Rao A. Fine Structure and Spin Dynamics of Linearly Polarized Indirect Excitons in Two-Dimensional CdSe/CdTe Colloidal Heterostructures. ACS NANO 2019; 13:10140-10153. [PMID: 31490653 DOI: 10.1021/acsnano.9b03252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Heterostructured two-dimensional colloidal nanoplatelets are a class of material that has attracted great interest for optoelectronic applications due to their high photoluminescence yield, atomically tunable thickness, and ultralow lasing thresholds. Of particular interest are laterally heterostructured core-crown nanoplatelets with a type-II band alignment, where the in-plane spatial separation of carriers leads to indirect (or charge transfer) excitons with long lifetimes and bright, highly Stokes shifted emission. Despite this, little is known about the nature of the lowest energy exciton states responsible for emission in these materials. Here, using polarization-controlled, steady-state, and time-resolved photoluminescence measurements, at temperatures down to 1.6 K and magnetic fields up to 30 T, we study the exciton fine structure and spin dynamics of archetypal type-II CdSe/CdTe core-crown nanoplatelets. Complemented by theoretical modeling and zero-field quantum beat measurements, we find the bright-exciton fine structure consists of two linearly polarized states with a fine structure splitting ∼50 μeV and an indirect exciton Landé g-factor of 0.7. In addition, we show the exciton spin lifetime to be in the microsecond range with an unusual B-3 magnetic field dependence. The discovery of linearly polarized exciton states and emission highlights the potential for use of such materials in display and imaging applications without polarization filters. Furthermore, the small exciton fine structure splitting and a long spin lifetime are fundamental advantages when envisaging CdSe/CdTe nanoplatelets as elementary bricks for the next generation of quantum devices, particularly given their ease of fabrication.
Collapse
Affiliation(s)
- Raj Pandya
- Cavendish Laboratory , University of Cambridge , J.J. Thomson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Violette Steinmetz
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Yuttapoom Puttisong
- Functional Electronic Materials, Department of Physics, Chemistry and Biology , Linköping University , 58183 Linköping , Sweden
| | - Marion Dufour
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris , PSL Research University, CNRS , 10 rue Vauquelin , 75005 Paris , France
| | - Weimin M Chen
- Functional Electronic Materials, Department of Physics, Chemistry and Biology , Linköping University , 58183 Linköping , Sweden
| | - Richard Y S Chen
- Cavendish Laboratory , University of Cambridge , J.J. Thomson Avenue , CB3 0HE Cambridge , United Kingdom
| | - Thierry Barisien
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Ashish Sharma
- ARC Centre of Excellence in Exciton Science, School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Girish Lakhwani
- ARC Centre of Excellence in Exciton Science, School of Chemistry , The University of Sydney , Sydney , New South Wales 2006 , Australia
| | - Anatolie Mitioglu
- High Field Magnet Laboratory (HFML - EMFL) , Radboud University , 6525 ED Nijmegen , The Netherlands
| | - Peter C M Christianen
- High Field Magnet Laboratory (HFML - EMFL) , Radboud University , 6525 ED Nijmegen , The Netherlands
| | - Laurent Legrand
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Frédérick Bernardot
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Christophe Testelin
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Alex W Chin
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Etude des Matériaux, ESPCI Paris , PSL Research University, CNRS , 10 rue Vauquelin , 75005 Paris , France
| | - Maria Chamarro
- Sorbonne Université CNRS-UMR 7588, Institut des NanoSciences de Paris , INSP, 4 place Jussieu , F-75005 Paris , France
| | - Akshay Rao
- Cavendish Laboratory , University of Cambridge , J.J. Thomson Avenue , CB3 0HE Cambridge , United Kingdom
| |
Collapse
|
18
|
Li Q, Lian T. Exciton Spatial Coherence and Optical Gain in Colloidal Two-Dimensional Cadmium Chalcogenide Nanoplatelets. Acc Chem Res 2019; 52:2684-2693. [PMID: 31433164 DOI: 10.1021/acs.accounts.9b00252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two-dimensional (2D) cadmium chalcogenide (CdX, X = Se, S, Te) colloidal nanoplatelets (NPLs) make up an emerging class of quantum well materials that exhibit many unique properties including uniform quantum confinement, narrow thickness distribution, large exciton binding energy, giant oscillator strength, long Auger lifetime, and high photoluminescence quantum yield. These properties have led to their great performances in optoelectrical applications such as lasing materials with a low threshold and large gain coefficient. Many of these properties are determined by the structure and dynamics of band-edge excitons in these 2D materials. Motivated by fundamental understanding of both 2D nanomaterials and their applications, the properties of 2D excitons have received intense recent interest. This Account provides an overview of three key properties of 2D excitons: how big is the 2D exciton (i.e., exciton center-of-mass coherent area); how the exciton moves in 2D NPLs (i.e., exciton in-plane transport mechanism); how multiple excitons interact with each other (i.e., biexciton Auger recombination); and their effects on the optical gain mechanism and threshold of colloidal NPLs. After a brief introduction in Section 1, the current understandings of 2D electronic structures of cadmium chalcogenide NPLs, and type-I CdSe/CdS and type-II CdSe/CdTe core/crown NPL heterostructures are summarized in Section 2. Section 3 discusses the direct measurement of exciton center-of-mass coherent area in 2D CdSe NPLs, its dependence on NPL parameters (thickness, lateral area, dielectric environment, and temperature), and the resulting giant oscillator strength transition (GOST) effect in 2D NPLs. 2D exciton diffusive in-plane transport in CdX NPLs and the comparison of exciton transport mechanisms in 2D NPLs and 1D nanorods are reviewed in Section 4. How Auger recombination lifetime depends on nanocrystal dimensions in NPLs, quantum dots, and nanorods is discussed in Section 5. The lateral area and thickness dependent Auger recombination rates of NPLs are shown to be well described by a model that accounts for the different dependence of the Auger recombination rates on the quantum confined and nonconfined dimensions. It is shown that Auger recombination rates do not follow the "universal volume scaling" law in 1D and 2D nanocrystals. Section 6 describes optical gain mechanisms in CdSe NPLs and the dependence of optical gain threshold on NPL lateral size, optical density, and temperature. The differences of optical gain properties in 0D-2D and the bulk materials are also discussed, highlighting the unique gain properties of 2D NPLs. At last, the Account ends with a summary and perspective of key remaining challenges in this field in Section 7.
Collapse
Affiliation(s)
- Qiuyang Li
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| | - Tianquan Lian
- Department of Chemistry, Emory University, 1515 Dickey Drive Northeast, Atlanta, Georgia 30322, United States
| |
Collapse
|
19
|
Scott R, Prudnikau AV, Antanovich A, Christodoulou S, Riedl T, Bertrand GHV, Owschimikow N, Lindner JKN, Hens Z, Moreels I, Artemyev M, Woggon U, Achtstein AW. A comparative study demonstrates strong size tunability of carrier-phonon coupling in CdSe-based 2D and 0D nanocrystals. NANOSCALE 2019; 11:3958-3967. [PMID: 30762858 DOI: 10.1039/c8nr09458f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In a comparative study we investigate the carrier-phonon coupling in CdSe based core-only and hetero 2D as well as 0D nanoparticles. We demonstrate that the coupling can be strongly tuned by the lateral size of nanoplatelets, while, due to the weak lateral confinement, the transition energies are only altered by tens of meV. Our analysis shows that an increase in the lateral platelet area results in a strong decrease in the phonon coupling to acoustic modes due to deformation potential interaction, yielding an exciton deformation potential of 3.0 eV in line with theory. In contrast, coupling to optical modes tends to increase with the platelet area. This cannot be explained by Fröhlich interaction, which is generally dominant in II-VI materials. We compare CdSe/CdS nanoplatelets with their equivalent, spherical CdSe/CdS nanoparticles. Universally, in both systems the introduction of a CdS shell is shown to result in an increase of the average phonon coupling, mainly related to an increase of the coupling to acoustic modes, while the coupling to optical modes is reduced with increasing CdS layer thickness. The demonstrated size and CdS overgrowth tunability has strong implications for applications like tuning carrier cooling and carrier multiplication - relevant for solar energy harvesting applications. Other implications range from transport in nanosystems e.g. for field effect transistors or dephasing control. Our results open up a new toolbox for the design of photonic materials.
Collapse
Affiliation(s)
- Riccardo Scott
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Anatol V Prudnikau
- Research Institute for Physical Chemical Problems of Belarusian State University, 220006, Minsk, Belarus
| | - Artsiom Antanovich
- Research Institute for Physical Chemical Problems of Belarusian State University, 220006, Minsk, Belarus
| | | | - Thomas Riedl
- Department of Physics, Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Guillaume H V Bertrand
- CEA Saclay, 91191 Gif-sur-Yvette, France and Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Nina Owschimikow
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Jörg K N Lindner
- Department of Physics, Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Zeger Hens
- Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium
| | - Iwan Moreels
- Department of Chemistry, Ghent University, Krijgslaan 281 - S3, 9000 Gent, Belgium and Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Mikhail Artemyev
- Research Institute for Physical Chemical Problems of Belarusian State University, 220006, Minsk, Belarus
| | - Ulrike Woggon
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| | - Alexander W Achtstein
- Institute of Optics and Atomic Physics, Technical University of Berlin, Strasse des 17. Juni 135, 10623 Berlin, Germany.
| |
Collapse
|