1
|
Iwata M, Takami Y, Asanuma H, Hosono K, Ohno H, Yoshikai N, Kanemoto K. A versatile entry to unnatural, disulfide-linked amino acids and peptides through the disulfuration of azlactones. Chem Sci 2025:d4sc07187e. [PMID: 39810996 PMCID: PMC11726236 DOI: 10.1039/d4sc07187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025] Open
Abstract
Despite the evident demand and promising potential of disulfide-functionalized amino acids and peptides in linker chemistry and peptide drug discovery, those disulfurated specifically at the α-position constitute a unique yet rather highly underexplored chemical space. In this study, we have developed a method for preparing SS-linked amino acid/peptide derivatives through a base-catalyzed disulfuration reaction of azlactones, followed by the ring-opening functionalization. The disulfuration reaction proceeds under mild conditions, yielding disulfurated azlactones in excellent yields across a variety of N-dithiophthalimides and diverse azlactones derived from various amino acids and peptides. Leveraging the ready availability of N-dithiophthalimides from several bilateral disulfurating reagents, this method allows for the modular integration of functional molecules and azlactones into SS-linkage in two-step operations. Furthermore, due to the transformability of the azlactone moiety through ring-opening with various nucleophiles, our method provides a wide variety of functional molecule-tagged amino acids and oligopeptides bearing SS-linkages in a modular and time-efficient manner, serving as a valuable tool for linker chemistry and peptide chemistry.
Collapse
Affiliation(s)
- Masaki Iwata
- Graduate School of Pharmaceutical Sciences, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Yuzuki Takami
- Graduate School of Pharmaceutical Sciences, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Hayato Asanuma
- Graduate School of Pharmaceutical Sciences, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Kenya Hosono
- Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga Bunkyo-ku Tokyo 112-8551 Japan
| | - Hibiki Ohno
- Graduate School of Pharmaceutical Sciences, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Naohiko Yoshikai
- Graduate School of Pharmaceutical Sciences, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University 6-3 Aoba, Aramaki, Aoba-ku Sendai 980-8578 Japan
- Faculty of Science and Engineering, Chuo University 1-13-27 Kasuga Bunkyo-ku Tokyo 112-8551 Japan
| |
Collapse
|
2
|
Liang S, Ma L, Guo Z, Liu F, Lin Z, Yi W. Synthesis of Unsymmetrical Trisulfides from S-Substituted Sulphenylthiosulphates. Angew Chem Int Ed Engl 2024; 63:e202404139. [PMID: 38689425 DOI: 10.1002/anie.202404139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
Trisulfide unit is widely found in natural products and has garnered attention due to the unique pharmacological and physiochemical properties. However, despite limited progress, widely applicable approaches for constructing unsymmetrical trisulfides have so far remain scarce. In this work, an easy-to-prepare, solid-state and scalable reagent, S-substituted sulphenylthiosulphate, has been developed for the divergent synthesis of unsymmetrical trisulfides. Alkyl electrophile substrates, including bromides, chlorides, iodides and tosylates, with diverse substituents are smoothly converted to the corresponding trisulfides with S-substituted sulphenylthiosulphates and thiourea as another sulfur source. Furthermore, the late-stage modification of drug molecules was successfully achieved through this method.
Collapse
Affiliation(s)
- Shuaishuai Liang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Liye Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Fanmin Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zijian Lin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Li B, Liu BX, Rao W, Shen SS, Sheng D, Wang SY. Copper-Catalyzed Chemoselective Coupling of N-Dithiophthalimides and Alkyl Halides: Synthesis of Unsymmetrical Disulfides and Sulfides. Org Lett 2024; 26:3634-3639. [PMID: 38660998 DOI: 10.1021/acs.orglett.4c01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In this paper, we report an unprecedented copper-catalyzed disulfides or sulfides coupling reaction involving unactivated alkyl halides and N-dithiophthalimides. This reaction can be conducted under mild conditions using low-cost metal catalysts and exhibits high chemical selectivity and functional group compatibility, enabling the efficient assembly of various sulfides and disulfides.
Collapse
Affiliation(s)
- Bin Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shu-Su Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, P. R. China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
4
|
Yu Q, Bai L, Jiang X. Disulfide Click Reaction for Stapling of S-terminal Peptides. Angew Chem Int Ed Engl 2023; 62:e202314379. [PMID: 37950389 DOI: 10.1002/anie.202314379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/12/2023]
Abstract
A disulfide click strategy is disclosed for stapling to enhance the metabolic stability and cellular permeability of therapeutic peptides. A 17-membered library of stapling reagents with adjustable lengths and angles was established for rapid double/triple click reactions, bridging S-terminal peptides from 3 to 18 amino acid residues to provide 18- to 48-membered macrocyclic peptides under biocompatible conditions. The constrained peptides exhibited enhanced anti-HCT-116 activity with a locked α-helical conformation (IC50 =6.81 μM vs. biological incompetence for acyclic linear peptides), which could be unstapled for rehabilitation of the native peptides under the assistance of tris(2-carboxyethyl)phosphine (TCEP). This protocol assembles linear peptides into cyclic peptides controllably to retain the diverse three-dimensional conformations, enabling their cellular uptake followed by release of the disulfides for peptide delivery.
Collapse
Affiliation(s)
- Qing Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Leiyang Bai
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai, 200062, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| |
Collapse
|
5
|
Asanuma H, Kanemoto K. Amination of N-(Organodithio)phthalimides for the Modular Synthesis of Aminodisulfides. Org Lett 2023. [PMID: 38011033 DOI: 10.1021/acs.orglett.3c03419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Synthetic methods for unsymmetrical aminodisulfides are greatly needed due to their applications in drug discovery, linker chemistry, and materials sciences. In this study, an amination reaction of N-dithiophthalimides has been developed for the divergent synthesis of unsymmetrical aminodisulfides. The reaction proceeds under mild conditions and provides the aminodisulfides in excellent yields without cleavage of the disulfide bond. The N-dithiophthalimides are readily available from several bilateral disulfurating reagents, and the broad substrate scope of this reaction allows for the modular synthesis of a variety of unsymmetrical aminodisulfides in two-step operations.
Collapse
Affiliation(s)
- Hayato Asanuma
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuya Kanemoto
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
- Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
6
|
Söderström M, Matt C, Odell LR. Thioacetalation and Multi-Component Thiomethylative Friedel-Crafts Arylation Using BF 3SMe 2. ACS OMEGA 2023; 8:4320-4330. [PMID: 36743056 PMCID: PMC9893757 DOI: 10.1021/acsomega.2c07608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Herein, a method for thioacetalation using BF3SMe2 is presented. The method allows for convenient and odor-free transformation of aldehydes to methyl-dithioacetals, a simple but sparsely reported structural moiety, in good yields with a diverse set of aromatic aldehydes. In addition, a thiomethylative Friedel-Crafts reaction was discovered, affording thiomethylated diarylmethanes in good to excellent yields. The resulting diarylmethane core is of interest as it is found in many biologically active compounds, and its utility is further demonstrated as a novel precursor to unsymmetrical triarylmethanes. This work also highlights the usefulness and the synthetic capabilities of the readily available reagent BF3SMe2 beyond its reactivity profile as a dealkylation reagent.
Collapse
|
7
|
Cheng-Sánchez I, Moya-Utrera F, Porras-Alcalá C, López-Romero JM, Sarabia F. Antibody-Drug Conjugates Containing Payloads from Marine Origin. Mar Drugs 2022; 20:md20080494. [PMID: 36005497 PMCID: PMC9410405 DOI: 10.3390/md20080494] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are an important class of therapeutics for the treatment of cancer. Structurally, an ADC comprises an antibody, which serves as the delivery system, a payload drug that is a potent cytotoxin that kills cancer cells, and a chemical linker that connects the payload with the antibody. Unlike conventional chemotherapy methods, an ADC couples the selective targeting and pharmacokinetic characteristics related to the antibody with the potent cytotoxicity of the payload. This results in high specificity and potency by reducing off-target toxicities in patients by limiting the exposure of healthy tissues to the cytotoxic drug. As a consequence of these outstanding features, significant research efforts have been devoted to the design, synthesis, and development of ADCs, and several ADCs have been approved for clinical use. The ADC field not only relies upon biology and biochemistry (antibody) but also upon organic chemistry (linker and payload). In the latter, total synthesis of natural and designed cytotoxic compounds, together with the development of novel synthetic strategies, have been key aspects of the consecution of clinical ADCs. In the case of payloads from marine origin, impressive structural architectures and biological properties are observed, thus making them prime targets for chemical synthesis and the development of ADCs. In this review, we explore the molecular and biological diversity of ADCs, with particular emphasis on those containing marine cytotoxic drugs as the payload.
Collapse
Affiliation(s)
- Iván Cheng-Sánchez
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Correspondence:
| | - Federico Moya-Utrera
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Cristina Porras-Alcalá
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Juan M. López-Romero
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| | - Francisco Sarabia
- Department of Organic Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain; (F.M.-U.); (C.P.-A.); (J.M.L.-R.); (F.S.)
| |
Collapse
|
8
|
de Souza AAN, Bartolomeu ADA, Brocksom TJ, Noël T, de Oliveira KT. Direct Synthesis of α-Sulfenylated Ketones under Electrochemical Conditions. J Org Chem 2022; 87:5856-5865. [PMID: 35417160 DOI: 10.1021/acs.joc.2c00147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigated the electrochemical sulfenylation reaction in both batch and continuous flow regimes, involving thiophenols/thiols and enol-acetates to yield α-sulfenylated ketones, without using additional oxidants or catalysts. Studies with different electrolytes were also performed, revealing that quaternary ammonium salts are the best mediators for this reaction. Notably, during the study of the reaction scope, a Boc-cysteine proved to be extremely tolerant to our protocol, thus increasing its relevance. The methodology also proved to be scalable in both batch and continuous flow conditions, opening up possibilities for further studies since these relevant functional groups are important moieties in organic synthesis.
Collapse
Affiliation(s)
- Aline A N de Souza
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Aloisio de A Bartolomeu
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy J Brocksom
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Timothy Noël
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam (UVA), Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Kleber T de Oliveira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
9
|
Li G, Lou M, Qi X. A brief overview of classical natural product drug synthesis and bioactivity. Org Chem Front 2022. [DOI: 10.1039/d1qo01341f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This manuscript briefly overviewed the total synthesis and structure–activity relationship studies of eight classical natural products, which emphasizes the important role of total synthesis in natural product-based drug development.
Collapse
Affiliation(s)
- Gen Li
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Mingliang Lou
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
| | - Xiangbing Qi
- National Institute of Biological Sciences (NIBS), 7 Science Park Road ZGC Life Science Park, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Wu Z, Pratt DA. A Divergent Strategy for Site-Selective Radical Disulfuration of Carboxylic Acids with Trisulfide-1,1-Dioxides. Angew Chem Int Ed Engl 2021; 60:15598-15605. [PMID: 33929774 DOI: 10.1002/anie.202104595] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Indexed: 12/14/2022]
Abstract
The direct conversion of carboxylic acids into disulfides is described. The approach employs oxidative photocatalysis for base-promoted decarboxylation of the substrate, which yields an alkyl radical that reacts with a trisulfide dioxide through homolytic substitution. The trisulfide dioxides are easily prepared by a newly described approach. 1°, 2°, and 3° carboxylic acids with varied substitution are good substrates, including amino acids and substrates with highly activated C-H bonds. Trisulfide dioxides are also used to achieve the γ-C(sp3 )-H disulfuration of amides through a radical relay sequence. In both reactions, the sulfonyl radical that results from substitution propagates the reaction. Factors governing the selectivity of substitution at S2 versus S3 of the trisulfide dioxides have been explored.
Collapse
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| | - Derek A Pratt
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, K1N 6N5, Canada
| |
Collapse
|
11
|
Wu Z, Pratt DA. A Divergent Strategy for Site‐Selective Radical Disulfuration of Carboxylic Acids with Trisulfide‐1,1‐Dioxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zijun Wu
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| | - Derek A. Pratt
- Department of Chemistry and Biomolecular Sciences University of Ottawa 10 Marie Curie Pvt. Ottawa Ontario K1N 6N5 Canada
| |
Collapse
|
12
|
Hunter R, Ali D, Amer Y, Petersen WF, Kaschula CH. A Review of Heterolytic Synthesis Methodologies for Organotri- and Organotetrasulfane Synthesis. SYNOPEN 2021. [DOI: 10.1055/s-0040-1706018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
AbstractIt has been ten years since the last comprehensive review on polysulfanes, and during the intervening period, organodi-, organotri- and organotetrasulfanes have featured prominently in both the chemistry and biology literature. This timely update presents both a mechanistic and historical account of synthesis methodology available for organotri- and organotetrasulfanes involving heterolytic S–S bond formation.
Collapse
Affiliation(s)
- Roger Hunter
- Department of Chemistry, University of Cape Town
| | - Doaa Ali
- Department of Chemistry, University of Cape Town
- Department of Chemistry and Polymer Science, Stellenbosch University
| | - Yasien Amer
- Department of Chemistry, University of Cape Town
| | | | | |
Collapse
|
13
|
Adhikari A, Shen B, Rader C. Challenges and Opportunities to Develop Enediyne Natural Products as Payloads for Antibody-Drug Conjugates. Antib Ther 2021; 4:1-15. [PMID: 33554043 PMCID: PMC7850032 DOI: 10.1093/abt/tbab001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calicheamicin, the payload of the antibody-drug-conjugates (ADCs) gemtuzumab ozogamicin (Mylotarg®) and inotuzumab ozogamicin (Besponsa®), belongs to the class of enediyne natural products. Since the isolation and structural determination of the neocarzinostatin chromophore in 1985, the enediynes have attracted considerable attention for their value as DNA damaging agents in cancer chemotherapy. Due to their non-discriminatory cytotoxicity towards both cancer and healthy cells, the clinical utilization of enediyne natural products relies on conjugation to an appropriate delivery system, such as an antibody. Here we review the current landscape of enediynes as payloads of first-generation and next-generation ADCs.
Collapse
Affiliation(s)
- Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
14
|
Gao WC, Liu J, Jiang X. Phthalimide-based-SSCF3 reagent for enantioselective dithiotrifluoromethylation. Org Chem Front 2021. [DOI: 10.1039/d1qo00001b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A novel dithiotrifluoromethylation reagent phthN-SSCF3 was designed and prepared for the incorporation of a SSCF3 unit into complex molecules and the stereoselective construction of a SSCF3-tethered quaternary carbon center.
Collapse
Affiliation(s)
- Wen-Chao Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Jianrong Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- P. R. China
| |
Collapse
|
15
|
Nicolaou KC, Rigol S. Perspectives from nearly five decades of total synthesis of natural products and their analogues for biology and medicine. Nat Prod Rep 2020; 37:1404-1435. [PMID: 32319494 PMCID: PMC7578074 DOI: 10.1039/d0np00003e] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: 1970 to 2020By definition total synthesis is the art and science of making the molecules of living Nature in the laboratory, and by extension, their analogues. Although obvious, its application to the synthesis of molecules for biology and medicine was not always the purpose of total synthesis. In recent years, however, the field has acquired momentum as its power to reach higher molecular complexity and diversity is increasing, and as the demand for rare bioactive natural products and their analogues is expanding due to their recognised potential to facilitate biology and drug discovery and development. Today this component of total synthesis endeavors is considered highly desirable, and could be part of interdisciplinary academic and/or industrial partnerships, providing further inspiration and momentum to the field. In this review we provide a brief historical background of the emergence of the field of total synthesis as it relates to making molecules for biology and medicine. We then discuss specific examples of this practice from our laboratories as they developed over the years. The review ends with a conclusion and future perspectives for natural products chemistry and its applications to biology and medicine and other added-value contributions to science and society.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, USA.
| | | |
Collapse
|
16
|
Abstract
An efficient moduling disulfuration was developed for polysulfide construction via a bilateral six-membered thiamine disulfurating reagent. Under the control of energy release of ring strain, diverse unsymmetrical trisulfides and tetrasulfides were generated through the assembly of nucleophiles on both sides of the sulfur-sulfur motif. This strategy exhibits features of high efficiency, mild conditions, and general scope.
Collapse
Affiliation(s)
- Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China.,State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
17
|
Nicolaou KC, Li R, Chen Q, Lu Z, Pitsinos EN, Schammel A, Lin B, Gu C, Sarvaiya H, Tchelepi R, Valdiosera A, Clubb J, Barbour N, Sisodiya V, Sandoval J, Lee C, Aujay M, Gavrilyuk J. Synthesis and Biological Evaluation of Shishijimicin A-Type Linker-Drugs and Antibody–Drug Conjugates. J Am Chem Soc 2020; 142:12890-12899. [DOI: 10.1021/jacs.0c06554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Ruofan Li
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Qifeng Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Zhaoyong Lu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emmanuel N. Pitsinos
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 153 10 Agia Paraskevi, Greece
| | - Alexander Schammel
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Baiwei Lin
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Christine Gu
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Hetal Sarvaiya
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Robert Tchelepi
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Amanda Valdiosera
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Justin Clubb
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Nicole Barbour
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Vikram Sisodiya
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Joseph Sandoval
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Christina Lee
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Monette Aujay
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| | - Julia Gavrilyuk
- AbbVie, Inc., 400 East Jamie Court, South San Francisco, California 94080, United States
| |
Collapse
|
18
|
Danilkina NA, D'yachenko AS, Govdi AI, Khlebnikov AF, Kornyakov IV, Bräse S, Balova IA. Intramolecular Nicholas Reactions in the Synthesis of Heteroenediynes Fused to Indole, Triazole, and Isocoumarin. J Org Chem 2020; 85:9001-9014. [PMID: 32506914 DOI: 10.1021/acs.joc.0c00930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The applicability of an intramolecular Nicholas reaction for the preparation of 10-membered O- and N-enediynes fused to indole, 1,2,3-triazole, and isocoumarin was investigated. The general approach to acyclic enediyne precursors fused to heterocycles includes inter- and intramolecular buta-1,3-diyne cyclizations with the formation of iodoethynylheterocycles, followed by Sonogashira coupling. The nature of both a heterocycle and a nucleophilic group affects the possibility of a 10-membered ring closure by the Nicholas reaction. Among oxacycles, an isocoumarin-fused enediyne was obtained. In the case of O-enediyne annulated with indole, instead of the formation of a 10-membered cycle, BF3-promoted addition of an OH-group to the proximal triple bond at the C3 position afforded dihydrofuryl-substituted indole. For 1,2,3-triazole-fused analogues, using NH-Ts as a nucleophilic functional group allowed obtaining 10-membered azaenediyne, while the substrate with a hydroxyl group gave only traces of the desired 10-membered oxacycle. An improved method for the deprotection of Co-complexes of cyclic enediynes using tetrabutylammonium fluoride in an acetone/water mixture and the investigation of the 10-membered enediynes' reactivity in the Bergman cyclization are also reported. In the solid state, all synthesized iodoethynylheterocycles were found to be involved in halogen bond (XB) formation with either O or N atoms as XB acceptors.
Collapse
Affiliation(s)
- Natalia A Danilkina
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander S D'yachenko
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Anastasia I Govdi
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Alexander F Khlebnikov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Ilya V Kornyakov
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| | - Stefan Bräse
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany.,Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Irina A Balova
- Institute of Chemistry, Saint Petersburg State University (SPbU), Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
19
|
Syntheses of hybrid cyclopeptidyl [n]sulfanes by internal alkyl group exchange. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Lautié E, Russo O, Ducrot P, Boutin JA. Unraveling Plant Natural Chemical Diversity for Drug Discovery Purposes. Front Pharmacol 2020; 11:397. [PMID: 32317969 PMCID: PMC7154113 DOI: 10.3389/fphar.2020.00397] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/16/2020] [Indexed: 12/11/2022] Open
Abstract
The screening and testing of extracts against a variety of pharmacological targets in order to benefit from the immense natural chemical diversity is a concern in many laboratories worldwide. And several successes have been recorded in finding new actives in natural products, some of which have become new drugs or new sources of inspiration for drugs. But in view of the vast amount of research on the subject, it is surprising that not more drug candidates were found. In our view, it is fundamental to reflect upon the approaches of such drug discovery programs and the technical processes that are used, along with their inherent difficulties and biases. Based on an extensive survey of recent publications, we discuss the origin and the variety of natural chemical diversity as well as the strategies to having the potential to embrace this diversity. It seemed to us that some of the difficulties of the area could be related with the technical approaches that are used, so the present review begins with synthetizing some of the more used discovery strategies, exemplifying some key points, in order to address some of their limitations. It appears that one of the challenges of natural product-based drug discovery programs should be an easier access to renewable sources of plant-derived products. Maximizing the use of the data together with the exploration of chemical diversity while working on reasonable supply of natural product-based entities could be a way to answer this challenge. We suggested alternative ways to access and explore part of this chemical diversity with in vitro cultures. We also reinforced how important it was organizing and making available this worldwide knowledge in an "inventory" of natural products and their sources. And finally, we focused on strategies based on synthetic biology and syntheses that allow reaching industrial scale supply. Approaches based on the opportunities lying in untapped natural plant chemical diversity are also considered.
Collapse
Affiliation(s)
- Emmanuelle Lautié
- Centro de Valorização de Compostos Bioativos da Amazônia (CVACBA)-Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, Brazil
| | - Olivier Russo
- Institut de Recherches Internationales SERVIER, Suresnes, France
| | - Pierre Ducrot
- Molecular Modelling Department, 'PEX Biotechnologie, Chimie & Biologie, Institut de Recherches SERVIER, Croissy-sur-Seine, France
| | - Jean A Boutin
- Institut de Recherches Internationales SERVIER, Suresnes, France
| |
Collapse
|
21
|
Gao WC, Tian J, Shang YZ, Jiang X. Steric and stereoscopic disulfide construction for cross-linkage via N-dithiophthalimides. Chem Sci 2020; 11:3903-3908. [PMID: 34122859 PMCID: PMC8152801 DOI: 10.1039/d0sc01060j] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Disulfide bonds are a significant motif in life and drug-delivery systems. In particular, steric hindrance and stereoscopic disulfide linkers are closely associated with the stability of antibody–drug conjugates, which affects the potency, selectivity, and pharmacokinetics of drugs. However, limited availability and diversity of tertiary thiols impede the construction of steric and stereoscopic disulfides for cross-linkage in biochemistry and pharmaceuticals. Through modulating the mask effect of disulfurating reagents, we develop a facile and robust strategy for construction of diverse steric and stereoscopic disulfides via N-dithiophthalimides. The practical cross-linkage of biomolecules including amino acids, saccharides, and nucleosides with different drugs and fluorescent molecules is successfully established through hindered disulfide linkers. A series of steric and stereoscopic disulfides are constructed with N-dithiophthalimides, enabling the cross-linkage of biomolecules, drugs and fluorescent molecules.![]()
Collapse
Affiliation(s)
- Wen-Chao Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University Shanghai 200062 P. R. China .,College of Biomedical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Jun Tian
- College of Biomedical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Yu-Zhu Shang
- College of Biomedical Engineering, Taiyuan University of Technology Taiyuan 030024 P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, Department of Chemistry, East China Normal University Shanghai 200062 P. R. China .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 200032 P. R. China
| |
Collapse
|
22
|
Wang N, Saidhareddy P, Jiang X. Construction of sulfur-containing moieties in the total synthesis of natural products. Nat Prod Rep 2020; 37:246-275. [DOI: 10.1039/c8np00093j] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This review surveys the total syntheses of sulfur-containing natural products where sulfur atoms are introduced with different sulfurization agents to construct related sulfur-containing moieties.
Collapse
Affiliation(s)
- Nengzhong Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Puli Saidhareddy
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|
23
|
Trost BM, Zuo Z. Highly Regio‐, Diastereo‐, and Enantioselective Synthesis of Tetrahydroazepines and Benzo[
b
]oxepines through Palladium‐Catalyzed [4+3] Cycloaddition Reactions. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | - Zhijun Zuo
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
24
|
Trost BM, Zuo Z. Highly Regio‐, Diastereo‐, and Enantioselective Synthesis of Tetrahydroazepines and Benzo[
b
]oxepines through Palladium‐Catalyzed [4+3] Cycloaddition Reactions. Angew Chem Int Ed Engl 2019; 59:1243-1247. [DOI: 10.1002/anie.201911537] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| | - Zhijun Zuo
- Department of Chemistry Stanford University Stanford CA 94305-5080 USA
| |
Collapse
|
25
|
Nicolaou KC, Rigol S. The Role of Organic Synthesis in the Emergence and Development of Antibody–Drug Conjugates as Targeted Cancer Therapies. Angew Chem Int Ed Engl 2019; 58:11206-11241. [DOI: 10.1002/anie.201903498] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- K. C. Nicolaou
- Department of ChemistryBioScience Research CollaborativeRice University 6100 Main Street Houston Texas 77005 USA
| | - Stephan Rigol
- Department of ChemistryBioScience Research CollaborativeRice University 6100 Main Street Houston Texas 77005 USA
| |
Collapse
|
26
|
Nicolaou KC, Rigol S. Die Bedeutung der organischen Synthese bei der Entstehung und Entwicklung von Antikörper‐Wirkstoff‐Konjugaten als gezielte Krebstherapien. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- K. C. Nicolaou
- Department of ChemistryBioScience Research CollaborativeRice University 6100 Main Street Houston TX 77005 USA
| | - Stephan Rigol
- Department of ChemistryBioScience Research CollaborativeRice University 6100 Main Street Houston TX 77005 USA
| |
Collapse
|
27
|
Zhang H, Li R, Ba S, Lu Z, Pitsinos EN, Li T, Nicolaou KC. DNA Binding and Cleavage Modes of Shishijimicin A. J Am Chem Soc 2019; 141:7842-7852. [DOI: 10.1021/jacs.9b01800] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Ruofan Li
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Sai Ba
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Zhaoyong Lu
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Emmanuel N. Pitsinos
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
- Laboratory of Natural Products Synthesis & Bioorganic Chemistry, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, 153 10 Agia Paraskevi, Greece
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - K. C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
28
|
Ali D, Hunter R, Kaschula CH, De Doncker S, Rees-Jones SCM. Unsymmetrical Organotrisulfide Formation via Low-Temperature Disulfanyl Anion Transfer to an Organothiosulfonate. J Org Chem 2019; 84:2862-2869. [PMID: 30712350 DOI: 10.1021/acs.joc.8b03262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New methodology is presented for the formation of unsymmetrical organotrisulfides in a high yield and purity, relatively free of polysulfide byproducts. The highlight of the method is the low-temperature (-78 °C) deprotection of a disulfanyl acetate with sodium methoxide in THF to form a disulfanyl anion, which reacts rapidly in situ with an organothiosulfonate ( S-aryl or S-alkyl) within 30 seconds followed by quenching. The discovery of these new reaction conditions together with the relative greenness of the chemistry overall makes for an efficient protocol, from which a range of organotrisulfides covering aliphatic, aromatic, as well as cysteine and sugar groups can be accessed in a high yield and purity.
Collapse
Affiliation(s)
- Doaa Ali
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa
| | - Roger Hunter
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa
| | - Catherine H Kaschula
- Department of Chemistry and Polymer Science , Stellenbosch University , Stellenbosch 7600 , South Africa
| | - Stephen De Doncker
- Department of Chemistry , University of Cape Town , Rondebosch 7701 , South Africa
| | | |
Collapse
|
29
|
Zou JX, Jiang Y, Lei S, Yin GF, Hu XL, Zhao QY, Wang Z. Synthesis of α-arylthioacetones using TEMPO as the C 3 synthon via a reaction cascade of sequential oxidation, skeletal rearrangement and C-S bond formation. Org Biomol Chem 2019; 17:2341-2345. [PMID: 30758028 DOI: 10.1039/c9ob00018f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we present an unprecedented pathway to α-sulfenylated carbonyl compounds from commercially available thiols and universally employed TEMPO and its analogues, which act as C3 synthons through skeletal rearrangement under simple and metal-free conditions. Mechanism studies suggest that this reaction involves a consecutive radical oxidation and cation coupling process. TEMPO analogues and thiols serve as oxidants and reductive reagents, respectively, along the radical process, while in the coupling process, the former ones afford C3 synthons to couple with related sulfur sources.
Collapse
Affiliation(s)
- Jiao-Xia Zou
- School of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Nicolaou KC, Rigol S. Total Synthesis in Search of Potent Antibody-Drug Conjugate Payloads. From the Fundamentals to the Translational. Acc Chem Res 2019; 52:127-139. [PMID: 30575399 DOI: 10.1021/acs.accounts.8b00537] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The emergence and evolution of antibody-drug conjugates (ADCs) as targeted cancer therapies in recent years is a living example of the "magic bullet" concept of Paul Ehrlich, introduced by him more than a century ago. Consisting of three components, the antibody serving as the delivery system, the payload drug that kills the cancer cell, and the chemical linker through which the payload is attached to the antibody, ADCs represent a currently hotly pursued paradigm of targeted cancer therapies. While the needed monoclonal antibody falls in the domains of biology and biochemistry, the potent payload and the linker belong to the realm of chemistry. Naturally occurring molecules and their derivatives endowed with high cytotoxic properties have proven to be useful payloads for the first approved ADCs (i.e., Mylotarg, Adcetris, Kadcyla, and Besponsa). The latest approaches and intensifying activities in this new paradigm of cancer therapy demands a variety of payloads with different mechanisms of action in order to address the medical needs for the various types of cancers, challenging synthetic organic chemists to enrich the library of potential payloads. Total synthesis of natural and designed molecules not only provides a powerful avenue to replicate rare naturally occurring compounds in the laboratory but also offers a unique opportunity to rationally design and synthesize analogues thereof for biological evaluation and optimization of ADC payloads. In this Account, we describe our efforts in this area highlighting a number of total synthesis endeavors through which we rendered scarce naturally occurring molecules readily available for biological evaluations and, most importantly, employed the developed synthetic strategies and methods to construct, otherwise unavailable or difficult to reach, designed analogues of these molecules. Specifically, we summarize the total syntheses of natural and designed molecules of the calicheamicin, uncialamycin, tubulysin, trioxacarcin, epothilone, shishijimicin, namenamicin, thailanstatin, and disorazole families of compounds and demonstrate how these studies led to the discovery of analogues of higher potencies, yet some of them possessing lower complexities than their parent compounds as potential ADC payloads. The highlighted examples showcase the continuing impact of total synthesis of natural products and their analogues on modern medicine, including the so-called biologics and should prove useful and inspirational in advancing both the fields of total synthesis and biomedical research and the drug discovery and development process.
Collapse
Affiliation(s)
- Kyriacos C. Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Stephan Rigol
- Department of Chemistry, BioScience Research Collaborative, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|