1
|
Fernandes RA, Moharana S, Choudhary P, Ranjan RS. Regioselective Markovnikov hydrothiolation of 1-aryl-1,3-butadienes with dithiocarbamic acid to allyl dithiocarbamates. Chem Commun (Camb) 2024; 60:12561-12564. [PMID: 39381859 DOI: 10.1039/d4cc03882g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A metal, ligand and solvent-free three component reaction of 1-aryl-1,3-butadienes, CS2 and amine has been developed. In this process, readily available CS2 and secondary amines were used for C-N and C-S bonds giving allyl dithiocarbamates with notable Markovnikov selectivity, mild reaction conditions, simple operation and compatibility with various functional groups (37 examples). This is first case of dithiocarbamic acid addition to an unsymmetrical 1,3-diene system.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| | - Sanjita Moharana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| | - Priyanka Choudhary
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| | - Ravikant S Ranjan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India.
| |
Collapse
|
2
|
Yan T, Yang J, Yan K, Wang Z, Li B, Wen J. A General Photoactive H-Bonding EDA Complex Model Drives the Selective Hydrothiolation and Hydroxysulfenylation of Carbonyl Activated Alkenes. Angew Chem Int Ed Engl 2024; 63:e202405186. [PMID: 38953457 DOI: 10.1002/anie.202405186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Excitation of photoactive electron donor-acceptor (EDA) complexes to generate radical is a promising approach in radical chemistry. In this study, we introduce a new model of H-bonding EDA complexes for the selective hydrothiolation and hydroxysulfenylation of carbonyl-activated alkenes with diverse thiols under visible light conditions. The reliability of this H-bonding EDA complex model has been confirmed by meticulous experimental and theoretical calculations. Mechanistic investigations have revealed the significant influence of the solvent in determining whether the excitation of photoactive H-bonding EDA complex leads to charge transfer (CT) or energy-charge transfer (En-CT), thereby controlling Markovnikov and anti-Markovnikov selectivity. Notably, the Quantum Theory of Atoms in Molecules (QTAIM) analysis clearly shows that the excited state of the C=O-H-S EDA complex involves closed-shell partially covalent interactions.
Collapse
Affiliation(s)
- Tingtao Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Zhonglei Wang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, Shandong, China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, Shandong, China
| |
Collapse
|
3
|
Zhang Y, Saha S, Esser YCC, Ting CP. Total Synthesis and Stereochemical Assignment of Enteropeptin A. J Am Chem Soc 2024; 146:17629-17635. [PMID: 38909357 PMCID: PMC11459435 DOI: 10.1021/jacs.4c06126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The total synthesis and structural elucidation of the antimicrobial sactipeptide enteropeptin A is reported. Enteropeptin A contains a thioaminoketal group with an unassigned stereochemical configuration that is embedded in a highly unusual thiomorpholine ring. In this synthesis, a linear peptide containing a dehydroamino acid and a pendant cysteine residue is subjected to Markovnikov hydrothiolation by a dithiophosphoric acid catalyst. This cyclization reaction forms the central thiomorpholine ring found in the enteropeptins. Both diastereomers at the unassigned thioaminoketal stereocenter of enteropeptin A were prepared, and their comparison to an authentic standard allowed for the unambiguous stereochemical assignment of the natural product to be of the D configuration. This inaugural total synthesis of enteropeptin A represents the first total synthesis of a sactipeptide reported to date. Moreover, the strategy disclosed herein serves as a general platform for the synthesis of stereochemically defined thiomorpholine-containing peptides, which may enable the discovery of new cyclic peptide antibiotics.
Collapse
Affiliation(s)
- Yiwei Zhang
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| | - Shuvendu Saha
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| | - Yannik C. C. Esser
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| | - Chi P. Ting
- Brandeis University, Department of Chemistry, 415 South St. Waltham, MA 02453, United States
| |
Collapse
|
4
|
Xie H, Breit B. Nickel-Catalyzed Regioselective Hydrothiolation of Allenes Enabled by Visible-Light Photoredox Catalysis. Org Lett 2024; 26:4438-4442. [PMID: 38767303 DOI: 10.1021/acs.orglett.4c01027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Hydrothiolation presents an attractive way to transform allenes into allylic thioethers. Herein, we described an efficient visible-light photoredox-promoted nickel-catalyzed hydrothiolation of allenes with functionalized aromatic and aliphatic thiols. This synergistic catalytic system exhibits unprecedentedly high reactivities and regiocontrol for the construction of allylic thioethers, representing the unique synthetic utility of the earth-abundant Ni-catalyzed method compared with the related noble-metal-catalyzed allylation reactions.
Collapse
Affiliation(s)
- Hui Xie
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| | - Bernhard Breit
- Institut für Organische Chemie, Albert-Ludwigs-Universität Freiburg, Albertstraße 21, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
5
|
Hikida N, Yoshimi Y, Suzuki H. Amide-Directed Rhodium-Catalyzed Chain-Walking Hydrothiolation of Internal Alkenes. Org Lett 2024. [PMID: 38497767 DOI: 10.1021/acs.orglett.4c00804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We developed a rhodium-catalyzed chain-walking hydrothiolation process for internal alkenes, which offers a novel and efficient alternative for C(sp3)-H bond cleavage, while focusing on thiol incorporation. This method exclusively affords N,S-acetals at 36-90% yields. Regioconvergent hydrothiolation significantly improved the effectiveness of this transformation. Preliminary mechanistic investigations revealed that an amide-directing group is essential for regioselective synthesis, underlining its significance in this process.
Collapse
Affiliation(s)
- Naoki Hikida
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Yasuharu Yoshimi
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| | - Hirotsugu Suzuki
- Tenure-Track Program for Innovative Research, University of Fukui, 3-9-1 Bunkyo, Fukui-shi, Fukui 910-8507, Japan
| |
Collapse
|
6
|
Tian Y, Li XT, Liu JR, Cheng J, Gao A, Yang NY, Li Z, Guo KX, Zhang W, Wen HT, Li ZL, Gu QS, Hong X, Liu XY. A general copper-catalysed enantioconvergent C(sp 3)-S cross-coupling via biomimetic radical homolytic substitution. Nat Chem 2024; 16:466-475. [PMID: 38057367 DOI: 10.1038/s41557-023-01385-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 10/24/2023] [Indexed: 12/08/2023]
Abstract
Although α-chiral C(sp3)-S bonds are of enormous importance in organic synthesis and related areas, the transition-metal-catalysed enantioselective C(sp3)-S bond construction still represents an underdeveloped domain probably due to the difficult heterolytic metal-sulfur bond cleavage and notorious catalyst-poisoning capability of sulfur nucleophiles. Here we demonstrate the use of chiral tridentate anionic ligands in combination with Cu(I) catalysts to enable a biomimetic enantioconvergent radical C(sp3)-S cross-coupling reaction of both racemic secondary and tertiary alkyl halides with highly transformable sulfur nucleophiles. This protocol not only exhibits a broad substrate scope with high enantioselectivity but also provides universal access to a range of useful α-chiral alkyl organosulfur compounds with different sulfur oxidation states, thus providing a complementary approach to known asymmetric C(sp3)-S bond formation methods. Mechanistic results support a biomimetic radical homolytic substitution pathway for the critical C(sp3)-S bond formation step.
Collapse
Affiliation(s)
- Yu Tian
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China
| | - Xi-Tao Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, P. R. China
| | - Ji-Ren Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Jian Cheng
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ang Gao
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Ning-Yuan Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhuang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Kai-Xin Guo
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wei Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Han-Tao Wen
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Shenzhen Key Laboratory of Cross-Coupling Reactions, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Zhang RJ, Li XR, Liang RB, Xiao Y, Tong QX, Zhong JJ, Wu LZ. Thiyl Radical Trapped by Cobalt Catalysis: An Approach to Markovnikov Thiol-Ene Reaction. Org Lett 2024; 26:591-596. [PMID: 38214498 DOI: 10.1021/acs.orglett.3c03740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
In the presence of a thiyl radical species, the catalytic Markovnikov thiol-ene reaction is challenging because it prefers to proceed via a radical pathway, thereby leading to anti-Markovnikov selectivity. In this work, a rare example of thiyl radical engaged in Markovnikov thiol-ene reaction enabled by cobalt catalysis is reported. This protocol features the avoidance of unique oxidants, exclusive regioselectivity, and broad substrate scope. Scalable synthesis and late-stage modification of complex molecules demonstrate the practicability of the protocol.
Collapse
Affiliation(s)
- Rong-Jin Zhang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Xiang-Rui Li
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Rong-Bin Liang
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Yonghong Xiao
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Qing-Xiao Tong
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
| | - Jian-Ji Zhong
- College of Chemistry and Chemical Engineering, and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515063, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
8
|
Li MD, Wang ZH, Zhu H, Wang XR, Wang JR, Lin TY. Copper-Catalyzed Remote Enantioselective Sulfonylation of Yne-Allylic Esters with Sodium Sulfinates. Angew Chem Int Ed Engl 2023; 62:e202313911. [PMID: 37953441 DOI: 10.1002/anie.202313911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Impressive progress has been made in the copper-catalyzed asymmetric propargylic substitution (APS) reaction, but its use in remote asymmetric yne-allylic substitution remains a challenging topic. Herein, we report the first remote enantioselective copper-catalyzed sulfonylation of yne-allylic esters with sodium sulfinates. The reaction is assumed to occur via a copper-vinylvinylidene species as the key reactive intermediate. The use of readily available starting materials, the mild reaction conditions, and the excellent regio-, enantio- and stereoselectivity, as well as broad substrate scope (>70 examples), show the practicality and attractiveness of this method.
Collapse
Affiliation(s)
- Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Han Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Hui Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Xin-Ru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Jia-Run Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
9
|
Yamamoto Y, Ogawa A. Transition-Metal-Catalyzed Addition of Organosulfur Compounds to Alkynes and Alkenes: Catalysis and Catalyst Poisons. Chemistry 2023; 29:e202302432. [PMID: 37661302 DOI: 10.1002/chem.202302432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/05/2023]
Abstract
The addition of heteroatom compounds to alkynes and alkenes is an atom-efficient method of carbon-heteroatom bond formation and is widely used as a fundamental synthetic method for the construction of functional molecules. Nevertheless, examples of transition-metal-catalyzed addition reactions of group 16 heteroatom compounds to carbon-carbon unsaturated bonds have been limited due to the widespread belief that organic sulfur and selenium compounds are representative catalyst poisons. In recent decades, however, several seminal catalytic reactions of sulfur compounds have been developed, providing important insights into catalysis and poisons. Therefore, this paper focuses on the transition-metal-catalyzed addition of organosulfur compounds to alkynes and alkenes, gains comprehensive insights into the catalysis and catalyst poisons, and proposes concepts for the development of transition-metal-catalyzed reactions of group 16 heteroatom compounds.
Collapse
Affiliation(s)
- Yuki Yamamoto
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu, 400-8510, Japan
| | - Akiya Ogawa
- Organization for Research Promotion, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka, 599-8531, Japan
| |
Collapse
|
10
|
Zhang WS, Ji DW, Yang Y, Song TT, Zhang G, Wang XY, Chen QA. Nucleophilic aromatization of monoterpenes from isoprene under nickel/iodine cascade catalysis. Nat Commun 2023; 14:7087. [PMID: 37925506 PMCID: PMC10625535 DOI: 10.1038/s41467-023-42847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
As a large number of organic compounds possessing two isoprene units, monoterpenes and monoterpenoids play important roles in pharmaceutical, cosmetic, agricultural, and food industries. In nature, monoterpenes are constructed from geranyl pyrophosphate (C10) via various transformations. Herein, the bulk C5 chemical-isoprene, is used for the creation of various monoterpenoids via a nucleophilic aromatization of monoterpenes under cascade catalysis of nickel and iodine. Drugs and oil mixtures from conifer and lemon can be convergently transformed to the desired monoterpenoid. Preliminary mechanistic studies are conducted to get insights about reaction pathway. Two types of cyclic monoterpenes can be respectively introduced onto two similar heterocycles via orthogonal C-H functionalization. And various hybrid terpenyl indoles are programmatically assembled from abundant C5 or C10 blocks. This work not only contributes a high chemo-, regio-, and redox-selective transformation of isoprene, but also provides a complementary approach for the creation of unnatural monoterpenoids.
Collapse
Affiliation(s)
- Wei-Song Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Yang Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Ting-Ting Song
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiao-Yu Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
11
|
Gao S, Liu J, Troya D, Chen M. Copper-Catalyzed Asymmetric Acylboration of 1,3-Butadienylboronate with Acyl Fluorides. Angew Chem Int Ed Engl 2023; 62:e202304796. [PMID: 37712934 PMCID: PMC11144059 DOI: 10.1002/anie.202304796] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 09/16/2023]
Abstract
We report herein a Cu-catalyzed regio-, diastereo- and enantioselective acylboration of 1,3-butadienylboronate with acyl fluorides. Under the developed conditions, the reactions provide (Z)-β,γ-unsaturated ketones bearing an α-tertiary stereocenter with high Z-selectivity and excellent enantioselectivities. While direct access to highly enantioenriched E-isomers was not successful, we showed that such molecules can be synthesized with excellent E-selectivity and optical purities via Pd-catalyzed alkene isomerization from the corresponding Z-isomers. The orthogonal chemical reactivities of the functional groups embedded in the ketone products allow for diverse chemoselective transformations, which provides a valuable platform for further derivatization.
Collapse
Affiliation(s)
- Shang Gao
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA); Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, 210009 Nanjing, (China)
| | - Jiaming Liu
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| | - Diego Troya
- Department of Chemistry, Virginia Tech, 24061 Blacksburg, VA (USA)
| | - Ming Chen
- Department of Chemistry and Biochemistry, Auburn University, 36849 Auburn, AL (USA)
| |
Collapse
|
12
|
Tang MQ, Yang ZJ, He ZT. Asymmetric formal sp 2-hydrocarbonations of dienes and alkynes via palladium hydride catalysis. Nat Commun 2023; 14:6303. [PMID: 37813855 PMCID: PMC10562392 DOI: 10.1038/s41467-023-42160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/02/2023] [Indexed: 10/11/2023] Open
Abstract
Transition metal-catalyzed asymmetric hydrofunctionalizations of unsaturated bonds via π-ƞ3 substitution have emerged as a reliable method to construct stereogenic centers, and mainly rely on the use of heteroatom-based or carbon nucleophiles bearing acidic C-H bonds. In comparison, sp2 carbon nucleophiles are generally not under consideration because of enormous challenges in cleaving corresponding inert sp2 C-H bonds. Here, we report a protocol to achieve asymmetric formal sp2 hydrocarbonations, including hydroalkenylation, hydroallenylation and hydroketenimination of both 1,3-dienes and alkynes via hydroalkylation and Wittig reaction cascade. A series of unachievable motifs via hydrofunctionalizations, such as di-, tri- and tetra-substituted alkenes, di-, tri- and tetra-substituted allenes, and tri-substituted ketenimines in allyl skeletons are all facilely constructed in high regio-, diastereo- and enantioselectivities with this cascade design. Stereodivergent synthesis of all four stereoisomers of 1,4-diene bearing a stereocenter and Z/E-controllable olefin unit highlights the power of present protocol. An interesting mechanistic feature is revealed that alkyne actually undergoes hydrocarbonation via the formation of conjugated diene intermediate, different from conventional viewpoint that the hydrofunctionalization of alkynes only involves allene species.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zi-Jiang Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
13
|
Li X, Song H, Yu S, Mi R, Li XX. Rhodium-Catalyzed Enantioselective 1,4-Oxyamination of Conjugated gem-Difluorodienes via Coupling with Carboxylic Acids and Dioxazolones. Angew Chem Int Ed Engl 2023; 62:e202305669. [PMID: 37357836 DOI: 10.1002/anie.202305669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 06/27/2023]
Abstract
The incorporation of fluorine atoms in organics improves their bioactivity and lipophilicity. Catalytic functionalization of gem-difluorodienes represents one of the most straightforward approaches to access fluorinated alkenes. In contrast to the regular 1,3-dienes that undergo diverse asymmetric di/hydrofunctionalizations, the regio- and enantioselective oxyamination of gem-difluorodienes remains untouched. Herein, we report asymmetric 1,4-oxyamination of gem-difluorodiene by chiral rhodium-catalyzed three-component coupling with readily available carboxylic acid and dioxazolone, affording gem-difluorinated 1,4-amino alcohol derivatives. Our asymmetric protocol exhibits high 1,4-regio- and enantioselectivity with utility in the late-stage modification of pharmaceuticals and natural products. Stoichiometric experiments provide evidences for the π-allylrhodium pathway. Related oxyamination was also realized when trifluoroethanol was used as an oxygen nucleophile.
Collapse
Affiliation(s)
- Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| | - Heng Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Songjie Yu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Ruijie Mi
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
14
|
Wang M, Simon JC, Xu M, Corio SA, Hirschi JS, Dong VM. Copper-Catalyzed Hydroamination: Enantioselective Addition of Pyrazoles to Cyclopropenes. J Am Chem Soc 2023; 145:14573-14580. [PMID: 37390403 PMCID: PMC10433791 DOI: 10.1021/jacs.3c02971] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
Chiral N-cyclopropyl pyrazoles and structurally related heterocycles are prepared using an earth-abundant copper catalyst under mild reaction conditions with high regio-, diastereo-, and enantiocontrol. The observed N2:N1 regioselectivity favors the more hindered nitrogen of the pyrazole. Experimental and DFT studies support a unique mechanism that features a five-centered aminocupration.
Collapse
Affiliation(s)
- Minghao Wang
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Julie C Simon
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Mengfei Xu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Stephanie A Corio
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Jennifer S Hirschi
- Department of Chemistry, Binghamton University, Binghamton, New York 13902, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
15
|
Duan S, Zi Y, Du Y, Cong J, Sun X, Jing H, Zhao J, Chen W, Yang X. Radical C(sp 3)-S Coupling for the Synthesis of α-Amino Sulfides. Org Lett 2023; 25:3687-3692. [PMID: 37172304 DOI: 10.1021/acs.orglett.3c01121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A unique transition-metal-free radical thiolation of 2-azaallyl anions has been developed. Easily accessible thiosulfonates and 2-azaallyls undergo the tandem process of single-electron transfer and radical-radical coupling to construct C(sp3)-S bonds. This robust protocol enables a mild and chemoselective coupling between 2-azaallyl anions and thiosulfonates to access α-amino sulfides in 50-92% yields (25 examples). The scalability of this protocol was demonstrated by telescopic gram-scale experiments. Mechanistic studies provide significant evidence for this radical thiolation reaction.
Collapse
Affiliation(s)
- Shengzu Duan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Yujin Zi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Ya Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Jielun Cong
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xiaotong Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Hong Jing
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Jingfeng Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
16
|
Wu KQ, Li H, Zhou A, Yang WR, Yin Q. Palladium-Catalyzed Chemo- and Regioselective C-H Bond Functionalization of Phenols with 1,3-Dienes. J Org Chem 2023; 88:2599-2604. [PMID: 36701645 DOI: 10.1021/acs.joc.2c02697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chemo- and site-selective functionalization of phenols offers a rapid strategy for the synthesis of phenol derivatives with diverse structures. Herein, we report a Pd-catalyzed regioselective C-H bond allylic alkylation of phenols with 1,3-dienes, which has precision reactivity at the ortho C-H bond of 2-naphthols, 1-naphthols, and electron-rich phenols. The reaction is accelerated by a diphosphine ligand, does not need any other additive, and features broad substrate scope and good chemo- and regioselectivity. In addition, we have also investigated the asymmetric variant, and the product could be achieved in up to 55% ee.
Collapse
Affiliation(s)
- Ke-Qin Wu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.,Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui Li
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Ao Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei-Ran Yang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qin Yin
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
17
|
Yang SQ, Han AJ, Liu Y, Tang XY, Lin GQ, He ZT. Catalytic Asymmetric Hydroalkoxylation and Formal Hydration and Hydroaminoxylation of Conjugated Dienes. J Am Chem Soc 2023; 145:3915-3925. [PMID: 36763785 DOI: 10.1021/jacs.2c11843] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The straightforward construction of stereogenic centers bearing unprotected functional groups, as in nature, has been a persistent pursuit in synthetic chemistry. Abundant applications of free enantioenriched allyl alcohol and allyl hydroxylamine motifs have made the asymmetric hydration and hydroaminoxylation of conjugated dienes from water and hydroxylamine, respectively, intriguing and efficient routes that have, however, been unachievable thus far. A fundamental challenge is the failure to realize transition-metal-catalyzed enantioselective C-O bond constructions via hydrofunctionalization of conjugated dienes. Here, we perform a comprehensive study toward the stereoselective formal hydration and hydroaminoxylation of conjugated dienes by synthesizing a set of new P,N-ligands and identifying an aryl-derived oxime as a surrogate for both water and hydroxylamine. Asymmetric hydroalkoxylation with new P,N-ligands is also elucidated. Furthermore, versatile derivatizations following hydration provide indirect but concise routes to formal hydrophenoxylation, hydrofluoroalkoxylation, and hydrocarboxylation of conjugated dienes that have been unreported thus far. Finally, a ligand-to-ligand hydrogen transfer process is proposed based on the results of preliminary mechanistic experiments.
Collapse
Affiliation(s)
- Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ai-Jun Han
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yang Liu
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Yuan Tang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Guo-Qiang Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
18
|
Li Q, Wang Z, Dong VM, Yang XH. Enantioselective Hydroalkoxylation of 1,3-Dienes via Ni-Catalysis. J Am Chem Soc 2023; 145:3909-3914. [PMID: 36763788 PMCID: PMC9951252 DOI: 10.1021/jacs.2c12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 02/12/2023]
Abstract
As an advance in hydrofunctionalization, we herein report that alcohols add to 1,3-dienes with high regio- and enantioselectivity. Using Ni-DuPhos, we access enantioenriched allylic ethers. Through the choice of solvent-free conditions, we control the reversibility of C-O bond formation. This work showcases a rare example of methanol as a reagent in asymmetric synthesis.
Collapse
Affiliation(s)
- Qi Li
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Zhen Wang
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| | - Vy M. Dong
- Department
of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Xiao-Hui Yang
- Advanced
Research Institute of Multidisciplinary Science, School of Chemistry
and Chemical Engineering, Key Laboratory of Medical Molecule Science
and Pharmaceutical Engineering, Ministry of Industry and Information
Technology, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
19
|
Liu XD, Ye AH, Chen ZM. Catalytic Enantioselective Intermolecular Three-Component Sulfenylative Difunctionalizations of 1,3-Dienes. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Xiao-Dong Liu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Ai-Hui Ye
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China
| |
Collapse
|
20
|
Wang YC, Xiao ZX, Wang M, Yang SQ, Liu JB, He ZT. Umpolung Asymmetric 1,5-Conjugate Addition via Palladium Hydride Catalysis. Angew Chem Int Ed Engl 2023; 62:e202215568. [PMID: 36374273 DOI: 10.1002/anie.202215568] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Electronically matched nucleophilic 1,6-conjugate addition has been well studied and widely applied in synthetic areas. In contrast, nucleophilic 1,5-conjugate addition represents an electronically forbidden process and is considered unfeasible. Here, we describe modular protocols for 1,5-conjugate addition reactions via palladium hydride catalysis. Both palladium and synergistic Pd/organocatalyst systems are developed to catalyze 1,5-conjugate reaction, followed by inter- or intramolecular [3+2] cyclization. A migratory 1,5-addition protocol is established to corroborate the feasibility of this umpolung concept. The 1,5-addition products are conveniently transformed into a series of privileged enantioenriched motifs, including polysubstituted tetrahydrofuran, dihydrofuran, cyclopropane, cyclobutane, azetidine, oxetane, thietane, spirocycle and bridged rings. Preliminary mechanistic studies corroborate the involvement of palladium hydride catalysis.
Collapse
Affiliation(s)
- Yu-Chao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhao-Xin Xiao
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Miao Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Shao-Qian Yang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jin-Biao Liu
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Zhi-Tao He
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
21
|
Wang Q, Nilsson T, Eriksson L, Szabó KJ. Sulfenofunctionalization of Chiral α-Trifluoromethyl Allylboronic Acids: Asymmetric Synthesis of SCF 3 , SCF 2 R, SCN and SAr Compounds. Angew Chem Int Ed Engl 2022; 61:e202210509. [PMID: 36152310 PMCID: PMC9828052 DOI: 10.1002/anie.202210509] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 01/12/2023]
Abstract
We report herein a new method for the synthesis of densely functionalized chiral allyl SCF3 , SCF2 R, SCN and SAr species with a separate CF3 functionality. The synthetic approach is based on selenium-catalyzed sulfenofunctionalization of chiral α-CF3 allylboronic acids. The reactions proceeded with remarkably high stereo-, diastereo- and site-selectivity, based on the formation of a stable thiiranium ion followed by rapid deborylative ring opening.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Tomas Nilsson
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Lars Eriksson
- Department of Materials and Environmental ChemistryStockholm UniversitySE-10691StockholmSweden
| | - Kálmán J. Szabó
- Department of Organic ChemistryStockholm UniversitySE-10691StockholmSweden
| |
Collapse
|
22
|
Liao L, Zhang Y, Wu ZW, Ye ZT, Zhang XX, Chen G, Yu JS. Nickel-catalyzed regio- and enantio-selective Markovnikov hydromonofluoroalkylation of 1,3-dienes. Chem Sci 2022; 13:12519-12526. [PMID: 36382272 PMCID: PMC9629049 DOI: 10.1039/d2sc03958c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/13/2022] [Indexed: 12/04/2022] Open
Abstract
A highly enantio- and regio-selective Markovnikov hydromonofluoro(methyl)alkylation of 1,3-dienes was developed using redox-neutral nickel catalysis. It provided a facile strategy to construct diverse monofluoromethyl- or monofluoroalkyl-containing chiral allylic molecules. Notably, this represents the first catalytic asymmetric Markovnikov hydrofluoroalkylation of olefins. The practicability of this methodology is further highlighted by its broad substrate scope, mild base-free conditions, excellent enantio- and regio-selectivity, and diversified product elaborations to access useful fluorinated building blocks.
Collapse
Affiliation(s)
- Ling Liao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Ying Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
| | - Guangying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University Shanghai 200062 China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| |
Collapse
|
23
|
Slocumb HS, Nie S, Dong VM, Yang XH. Enantioselective Selenol-ene Using Rh-Hydride Catalysis. J Am Chem Soc 2022; 144:18246-18250. [PMID: 36162123 DOI: 10.1021/jacs.2c08475] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study showcases the first enantioselective hydroselenation of styrenes. Organoselenium building blocks are accessed with selectivity for the branched isomer. Through a Rh-hydride pathway, C-Se bonds can be forged with excellent regio- and enantiocontrol.
Collapse
Affiliation(s)
- Hannah S Slocumb
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Shaozhen Nie
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Xiao-Hui Yang
- Advanced Research Institute of Multidisciplinary Science, and School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
24
|
Liang Y, Jiao H, Zhang H, Wang YQ, Zhao X. Chiral Chalcogenide-Catalyzed Enantioselective Electrophilic Hydrothiolation of Alkenes. Org Lett 2022; 24:7210-7215. [PMID: 36154012 DOI: 10.1021/acs.orglett.2c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A new strategy for the construction of chiral sulfides by catalytic enantioselective hydrothiolation of alkenes via an electrophilic pathway has been developed. Using this strategy, cyclic and acyclic unactivated alkenes efficiently afforded various chiral products in the presence of electrophilic sulfur reagents and silanes through chiral chalcogenide catalysis. The obtained products were easily transformed into other types of valuable chiral sulfur-containing compounds. Mechanistic studies revealed that the superior construction of chiral thiiranium ion intermediate is the key to achieving such a transformation.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hui Jiao
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Hang Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - You-Qing Wang
- Provincial Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
25
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207202. [DOI: 10.1002/anie.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
26
|
Fernandes RA, Chandra N, Gangani AJ, Khatun GN. Palladium-Catalyzed Regioselective Intermolecular Hydroalkoxylation of 1-Arylbutadienes. J Org Chem 2022. [PMID: 35895934 DOI: 10.1021/acs.joc.2c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient method for the synthesis of (E)-(3-alkoxybut-1-enyl)benzenes by Pd-catalyzed regioselective intermolecular hydroalkoxylation of 1-arylbutadienes has been developed. This method can be executed in a simple operation with no dry reaction conditions required and having tolerance to a wide range of substrates. Chloromethyl methyl ether (MOMCl) as an additive was found to be essential for the success of the reaction.
Collapse
Affiliation(s)
- Rodney A Fernandes
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Naveen Chandra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Ashvin J Gangani
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Gulenur N Khatun
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| |
Collapse
|
27
|
Recent applications of vinylethylene carbonates in Pd-catalyzed allylic substitution and annulation reactions: Synthesis of multifunctional allylic and cyclic structural motifs. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
28
|
Zhao C, Liu Y, Zhang X, He G, Liu H, Ji D, Hu Y, Chen Q. Bioinspired and Ligand‐Regulated Unnatural Prenylation and Geranylation of Oxindoles with Isoprene under Pd Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chao‐Yang Zhao
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ying‐Ying Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Xiang‐Xin Zhang
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Gu‐Cheng He
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Heng Liu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
29
|
Zhang M, Li W, Zhou Z, Zhuo S, Su Z. Green Catalytic Method for Hydrothiolation of Allylamines: An External Electric Field. ACS OMEGA 2022; 7:5782-5790. [PMID: 35224338 PMCID: PMC8867569 DOI: 10.1021/acsomega.1c05741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/31/2022] [Indexed: 05/28/2023]
Abstract
Based on the idea of environmental friendliness, we first studied the hydrothiolation reactions of thiophenol with allylamine using a green catalyst-an external electric field (EEF). The hydrothiolation reactions could occur through Markovnikov addition (path M) and anti-Markovnikov addition (path AM) pathways. The calculation results demonstrated that when the EEF was oriented along F -X , F -Y , and F +Z directions, path M was accelerated. However, it is favorable for path AM only when the EEF is oriented along the +X and -Y-axes. In addition, the introduction of the EEF further increased and lowered the differences of the reaction barrier as the EEF was oriented along F -X , F -Y , and F +X directions. The solvent effects were also considered in this work. Hopefully, this unprecedented and green catalytic method for the hydrothiolation reactions of allylamine may provide guidance in the lab.
Collapse
Affiliation(s)
- Mingxia Zhang
- School
of Chemistry and Chemical Engineering, Shandong
University of Technology, Zibo 255049, Shandong, China
| | - Wenzuo Li
- School
of Chemistry and Chemical Engineering, Yantai
University, Yantai 264005, China
| | - Ziyan Zhou
- School
of Chemistry and Chemical Engineering, Shandong
University of Technology, Zibo 255049, Shandong, China
| | - Shuping Zhuo
- School
of Chemistry and Chemical Engineering, Shandong
University of Technology, Zibo 255049, Shandong, China
| | - Zhongmin Su
- Institute
of Functional Material Chemistry, Department of Chemistry, National
& Local United Engineering Lab for Power Battery, Northeast Normal University, Jilin 130024, China
- Shandong
Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang 262700, China
| |
Collapse
|
30
|
Long J, Li Y, Zhao W, Yin G. Nickel/Brønsted acid dual-catalyzed regio- and enantioselective hydrophosphinylation of 1,3-dienes: access to chiral allylic phosphine oxides. Chem Sci 2022; 13:1390-1397. [PMID: 35222923 PMCID: PMC8809419 DOI: 10.1039/d1sc05651d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/26/2021] [Indexed: 02/04/2023] Open
Abstract
While chiral allylic organophosphorus compounds are widely utilized in asymmetric catalysis and for accessing bioactive molecules, their synthetic methods are still very limited. We report the development of asymmetric nickel/Brønsted acid dual-catalyzed hydrophosphinylation of 1,3-dienes with phosphine oxides. This reaction is characterized by an inexpensive chiral catalyst, broad substrate scope, and high regio- and enantioselectivity. This study allows the construction of chiral allylic phosphine oxides in a highly economic and efficient manner. Preliminary mechanistic investigations suggest that the 1,3-diene insertion into the chiral Ni-H species is a highly regioselective process and the formation of the chiral C-P bond is an irreversible step.
Collapse
Affiliation(s)
- Jiao Long
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Yuqiang Li
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University Shenzhen 518118 China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University Wuhan 430072 China
| |
Collapse
|
31
|
Luo Z, Liu ZQ, Yang TT, Zhuang X, Hong CM, Zou FF, Xue ZY, Li QH, Liu TL. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP)-Assisted Catalyst-Free Sulfonation of Allylic Alcohols with Sulfinyl Amides. Org Lett 2022; 24:741-745. [PMID: 34989575 DOI: 10.1021/acs.orglett.1c04206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly regioselective and catalyst-free sulfonation of allylic alcohols with sulfinyl amides has been realized. Such a mix-and-go procedure provides a convenient approach to synthetically various allylic sulfones under mild reaction conditions. Furthermore, this novel reaction shows ample substrate scope and outstanding functional group tolerance and could also be scaled-up. Meanwhile, it is the first example that sulfinyl amides act as a powerful sulfur nucleophile in the reactions. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) as a solvent plays a critical role in allylic sulfonation.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting-Ting Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi-Yong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
32
|
Zhu D, Chen ZM. Application of Chiral Lewis Base/Brønsted Acid Synergistic Catalysis Strategy in Enantioselective Synthesis of Organic Sulfides. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Sun YT, Rao X, Xu W, Xu MH. Rhodium(I)-catalyzed C-S bond formation via enantioselective carbenoid S-H insertion: catalytic asymmetric synthesis of α-thioesters. Org Chem Front 2022. [DOI: 10.1039/d2qo00164k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric construction of C-S bond through transition-metal catalysis is a challenging subject. By using chiral diene as ligand, we have developed the first rhodium(I)-catalyzed asymmetric carbene insertion approach for C-S...
Collapse
|
34
|
Belal M, Mondal S, Yashmin S, Khan AT. Reactivity switch-over of 4-hydroxydithiocoumarins under various conditions and their application in organic synthesis. Org Biomol Chem 2021; 20:715-726. [PMID: 34950941 DOI: 10.1039/d1ob01357b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
4-Hydroxydithiocoumarin is a valuable organic precursor to architect important heterocycles. The three different reactive nucleophilic sites in 4-hydroxydithiocoumarins display intriguing regioselectivity in their reaction towards various electrophiles. Previously, 4-hydroxydithiocoumarins have been used in the synthesis of heterocycles using Claisen and thio-Claisen reactions. Hetero-Diels-Alder reactions involving 4-hydroxydithiocoumarins have proven to be very convenient in assembling complex molecular organic frameworks from readily available feedstocks. Development of multicomponent reactions employing 4-hydroxydithiocoumarins has given rise to several important reaction protocols to access polycyclic compounds. Recently, this moiety has been used in forging some unusual S-S, S-N and S-O bonds under oxidative conditions which further explores its hidden reactivity in organic synthesis. Besides that, hydrothiolation of various alkynes and alkenes using 4-hydroxydithiocoumarins has led to the synthesis of some potential lead molecules. This mini-review provides an account of the reactivity pattern of 4-hydroxydithiocoumarins and their strategic applications in various reactions for the synthesis of several heterocycles and other important organic syntheses.
Collapse
Affiliation(s)
- Md Belal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Santa Mondal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Sabina Yashmin
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| | - Abu Taleb Khan
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India.
| |
Collapse
|
35
|
Chen Z, Lin H, Han J, Fang D, Wang M, Liao J. Enantioselective Copper-Catalyzed Electrophilic Sulfenylation of Cyclic Imino Esters. Org Lett 2021; 23:9146-9150. [PMID: 34787420 DOI: 10.1021/acs.orglett.1c03464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein we report an enantioselective sulfenylation of cyclic imino esters with the efficient and versatile sulfenylation reagent S-alkyl 4-methylbenzenesulfonothioates. By utilizing the Cu/tBu-Phosferrox catalytic system, we can assemble diverse S-alkyl groups into the cyclic imino esters under mild conditions in good yields and with excellent enantioselectivities. Remarkably, this method demonstrates a high tolerance of diverse functional groups and proves to be applicable in the late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Zhiwei Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huaxin Lin
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Han
- College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Dongmei Fang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Min Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
36
|
Ji K, Lu K, Huang J, Li ZH, Ding TM, Chen ZM. Brønsted acid-catalyzed solvent-controlled regioselective hydrothiolation and diastereoselective cascade cyclization of dienes. Chem Commun (Camb) 2021; 57:12639-12642. [PMID: 34761760 DOI: 10.1039/d1cc05383c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A highly regio- and diastereo-selective Brønsted acid-catalyzed tandem hydrothiolation/Friedel-Crafts reaction of linear 1,3-dienes has been developed for the first time, which provides a metal-free and atom-economic way of constructing thiochromane derivatives. Meanwhile, by changing the solvent, 4,3-addition hydrothiolation of 1,3-dienes was also discovered. The origin of the observed selectivity was explained by density functional theory calculations.
Collapse
Affiliation(s)
- Kai Ji
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jie Huang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Tong-Mei Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China. .,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
37
|
Ji K, Lu K, Huang J, Li ZH, Ke H, Chen ZM. Brønsted Acid-Catalyzed Regioselective Hydrothiolation of Dienes: Solvent-Controlled Divergent Synthesis of Sulfides. Org Lett 2021; 23:8028-8032. [PMID: 34617777 DOI: 10.1021/acs.orglett.1c03043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Brønsted acid-catalyzed 1,4-addition hydrothiolation of branched 1,3-dienes was explored for the first time. A solvent-controlled divergent synthesis of sulfides is also disclosed. Use of acetonitrile as a solvent gave allylic sulfides as hydrothiolation products, while thiochromane derivatives (hydrothiolation/Friedel-Crafts products) were obtained using dichloromethane as the solvent. The origin of the regioselectivity of hydrothiolation was explored through density functional theory calculations.
Collapse
Affiliation(s)
- Kai Ji
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ka Lu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jie Huang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zi-Hao Li
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hua Ke
- Engineering Technology Research Center for Environmental Protection Materials, Pingxiang University, Pingxiang, Jiangxi 337055, P. R. China
| | - Zhi-Min Chen
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.,State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
38
|
Yu X, Shen X, Liu S, Wang W, Wang Q, Liu J, Chen D. Mechanism of regioselectivity of rhodium-catalyzed hydrothiolation of 1,3-dienes: A computational study. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
39
|
Du X, Zhao H, Li X, Zhang L, Dong Y, Wang P, Zhang D, Liu Q, Liu H. Ligand-Regulated Palladium-Catalyzed Regiodivergent Hydroarylation of the Distal Double Bond of Allenamides with Aryl Boronic Acid. J Org Chem 2021; 86:13276-13288. [PMID: 34541854 DOI: 10.1021/acs.joc.1c01303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The ligand-regulated regiodivergent hydroarylation of the distal double bond of allenamides with aryl boronic acid was achieved in the presence of palladium(II) catalysts, delivering a variety of functionalized enamide with excellent E selectivity and Markovnikov/anti-Markovnikov selectivity. Two possible coordination intermediates were proposed to be responsible for the regiodivergent hydroarylation: (1) The coordination Intermediate I, which was proposed to be formed through the coordination of MeCN, distal double bond, phenyl to palladium, led to the aryl group away from the Intermediate I, inducing excellent E selectivity and anti-Markovnikov selectivity. (2) A switch of regioselectivity to 1,2-Markovnikov hydroarylation was obtained using bidentate phosphine ligand (dppf or Xantphos). The formed coordination Intermediate II led to the N-tether away from the Intermediate II and at the trans position of aryl, resulting in excellent E selectivity and Markovnikov selectivity. Meanwhile, tentative investigation on the mechanism proved that the hydron source of this hydroarylation is more likely to be boronic acid. The transmetallation between aryl boronic acid and palladium catalyst was the initial step of this transformation.
Collapse
Affiliation(s)
- Xin Du
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Huan Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Xinling Li
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Lizhi Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Yunhui Dong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Ping Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Daopeng Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Qing Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| | - Hui Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, 266 West Xincun Road, Zibo 255049, People's Republic of China
| |
Collapse
|
40
|
Gao AZ, Chen S. Mechanism and Selectivities in Ru-Catalyzed Anti-Markovnikov Formal Hydroalkylation of 1,3-Dienes and Enynes: A Computational Study. J Org Chem 2021; 86:11895-11904. [PMID: 34406774 DOI: 10.1021/acs.joc.1c01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The mechanism of the Ru(II)-catalyzed anti-Markovnikov formal hydroalkylation of 1,3-dienes and enynes by hydrazones has been elucidated using density functional theory (DFT) calculations. Our results indicate that the C-C bond formation proceeds through a highly polar outer-sphere transition state (TS) stabilized by the THF solvent, not the ordered inner-sphere TS as originally proposed. The regioselectivity for 1,2-anti-Markovnikov addition is primarily due to the formation of an extensively π-conjugated intermediate after the nucleophilic attack on the 1-position of the diene. The stability of this intermediate means that nucleophilic attack at the 1-position is able to utilize the outer-sphere pathway, while attacks on all other positions of the diene must proceed through more crowded and less-favorable inner-sphere TSs. We show that the electronics of substituents on the hydrazone and the diene have a significant impact on the C-C formation barrier, which rationalizes the limitations on the substrate scope. The preferred coordination sphere around Ru(II) and the rigidity of the reacting substrates lead to a sterically demanding TS geometry, which explains the sensitivity of the reaction to the ligand size.
Collapse
Affiliation(s)
- Anthony Z Gao
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| | - Shuming Chen
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, Ohio 44074, United States
| |
Collapse
|
41
|
Scaringi S, Mazet C. Kinetically Controlled Stereoselective Access to Branched 1,3-Dienes by Ru-Catalyzed Remote Conjugative Isomerization. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02144] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Simone Scaringi
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| | - Clément Mazet
- Department of Organic Chemistry, University of Geneva, 30 quai Ernest Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|
42
|
Wen X, Zhou X, Li W, Du C, Ke Z, Zhao C. Mechanism of Counterion-Controlled Regioselective Hydrothiolation of 1,3-Dienes: Insights from a Density Functional Theory Study. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiuling Wen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Xiaoyu Zhou
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Weikang Li
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Du
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuofeng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Cunyuan Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
43
|
Xia J, Hirai T, Katayama S, Nagae H, Zhang W, Mashima K. Mechanistic Study of Ni and Cu Dual Catalyst for Asymmetric C–C Bond Formation; Asymmetric Coupling of 1,3-Dienes with C-nucleophiles to Construct Vicinal Stereocenters. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01626] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingzhao Xia
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Takahiro Hirai
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Shoichiro Katayama
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Haruki Nagae
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People’s Republic of China
| | - Kazushi Mashima
- Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| |
Collapse
|
44
|
Huang C, Ci RN, Qiao J, Wang XZ, Feng K, Chen B, Tung CH, Wu LZ. Direct Allylic C(sp 3 )-H and Vinylic C(sp 2 )-H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angew Chem Int Ed Engl 2021; 60:11779-11783. [PMID: 33660909 DOI: 10.1002/anie.202101947] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Indexed: 01/14/2023]
Abstract
Direct allylic C-H thiolation is straightforward for allylic C(sp3 )-S bond formation. However, strong interactions between thiol and transition metal catalysts lead to deactivation of the catalytic cycle or oxidation of sulfur atom under oxidative condition. Thus, direct allylic C(sp3 )-H thiolation has proved difficult. Represented herein is an exceptional for direct, efficient, atom- and step-economic thiolation of allylic C(sp3 )-H and thiol S-H under visible light irradiation. Radical trapping experiments and electron paramagnetic resonance (EPR) spectroscopy identified the allylic radical and thiyl radical generated on the surface of photocatalyst quantum dots (QDs). The C-S bond formation does not require external oxidants and radical initiators, and hydrogen (H2 ) is produced as byproduct. When vinylic C(sp2 )-H was used instead of allylic C(sp3 )-H bond, the radical-radical cross-coupling of C(sp2 )-H and S-H was achieved with liberation of H2 . Such a unique transformation opens up a door toward direct C-H and S-H coupling for valuable organosulfur chemistry.
Collapse
Affiliation(s)
- Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Rui-Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xu-Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry & University of, Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
45
|
Nie S, Lu A, Kuker EL, Dong VM. Enantioselective Hydrothiolation: Diverging Cyclopropenes through Ligand Control. J Am Chem Soc 2021; 143:6176-6184. [PMID: 33856804 DOI: 10.1021/jacs.1c00939] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In this article, we advance Rh-catalyzed hydrothiolation through the divergent reactivity of cyclopropenes. Cyclopropenes undergo hydrothiolation to provide cyclopropyl sulfides or allylic sulfides. The choice of bisphosphine ligand dictates whether the pathway involves ring-retention or ring-opening. Mechanistic studies reveal the origin for this switchable selectivity. Our results suggest the two pathways share a common cyclopropyl-Rh(III) intermediate. Electron-rich Josiphos ligands promote direct reductive elimination from this intermediate to afford cyclopropyl sulfides in high enantio- and diastereoselectivities. Alternatively, atropisomeric ligands (such as DTBM-BINAP) enable ring-opening from the cyclopropyl-Rh(III) intermediate to generate allylic sulfides with high enantio- and regiocontrol.
Collapse
Affiliation(s)
- Shaozhen Nie
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Alexander Lu
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Erin L Kuker
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
46
|
Liu W, Xu W, Wang J, Lu H, Xu PF, Wei H. Synthesis of Spirocycles via Ni-Catalyzed Intramolecular Coupling of Thioesters and Olefins. Chemistry 2021; 27:7651-7656. [PMID: 33887079 DOI: 10.1002/chem.202100390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Indexed: 12/17/2022]
Abstract
A nickel-catalyzed intramolecular coupling of thioesters and olefins has been developed for the efficient synthesis of spirocycles, a privileged scaffold commonly found in natural products. This transformation is characterized by the simultaneous transfer of both acyl and thiol moieties to the alkene, with the suppression of decarbonylation and β-hydrogen elimination. Initial mechanistic investigations are consistent with an oxidative addition/olefin insertion/reductive elimination mechanism. The incorporated methylene sulfide substituent can undergo a variety of further reactions to increase molecular diversity and complexity. These results demonstrate that thioester derivatives can be used as powerful building blocks for the assembly of complex scaffolds.
Collapse
Affiliation(s)
- Wenfei Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Juanjuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| | - Peng-Fei Xu
- Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, P. R. China
| |
Collapse
|
47
|
Huang C, Ci R, Qiao J, Wang X, Feng K, Chen B, Tung C, Wu L. Direct Allylic C(sp
3
)−H and Vinylic C(sp
2
)−H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Cheng Huang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Rui‐Nan Ci
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jia Qiao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xu‐Zhe Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Future Technology University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
48
|
Pang X, Zhao ZZ, Wei XX, Qi L, Xu GL, Duan J, Liu XY, Shu XZ. Regiocontrolled Reductive Vinylation of Aliphatic 1,3-Dienes with Vinyl Triflates by Nickel Catalysis. J Am Chem Soc 2021; 143:4536-4542. [DOI: 10.1021/jacs.1c00142] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Guang-Li Xu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Jicheng Duan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
49
|
Jiang WS, Ji DW, Zhang WS, Zhang G, Min XT, Hu YC, Jiang XL, Chen QA. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd-Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021; 60:8321-8328. [PMID: 33463001 DOI: 10.1002/anie.202100137] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Depending on the reactant property and reaction mechanism, one major regioisomer can be favored in a reaction that involves multiple active sites. Herein, an orthogonal regulation of nucleophilic and electrophilic sites in the regiodivergent hydroamination of isoprene with indazoles is demonstrated. Under Pd-hydride catalysis, the 1,2- or 4,3-insertion pathway with respect to the electrophilic sites on isoprene could be controlled by the choice of ligands. In terms of the nucleophilic sites on indazoles, the reaction occurs at either the N1 - or N2 -position of indazoles is governed by the acid co-catalysts. Preliminary experimental studies have been performed to rationalize the mechanism and regioselectivity. This study not only contributes a practical tool for selective functionalization of isoprene, but also provides a guide to manipulate the regioselectivity for the N-functionalization of indazoles.
Collapse
Affiliation(s)
- Wen-Shuang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China.,Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Ding-Wei Ji
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Wei-Song Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Gong Zhang
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiang-Ting Min
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Yan-Cheng Hu
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xu-Liang Jiang
- Department of Medicinal Chemistry, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Qing-An Chen
- Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| |
Collapse
|
50
|
Jiang W, Ji D, Zhang W, Zhang G, Min X, Hu Y, Jiang X, Chen Q. Orthogonal Regulation of Nucleophilic and Electrophilic Sites in Pd‐Catalyzed Regiodivergent Couplings between Indazoles and Isoprene. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100137] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wen‐Shuang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Ding‐Wei Ji
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wei‐Song Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Gong Zhang
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xiang‐Ting Min
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Yan‐Cheng Hu
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Xu‐Liang Jiang
- Department of Medicinal Chemistry Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Qing‐An Chen
- Dalian Institute of Chemical Physics University of Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|