1
|
Chen C, Song M, Li K, Yan S, Chen M, Geng J. E. coli outer membrane protein T (OmpT) nanopore for peptide sensing. Biochem Biophys Res Commun 2023; 677:132-140. [PMID: 37586211 DOI: 10.1016/j.bbrc.2023.05.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/31/2023] [Indexed: 08/18/2023]
Abstract
Peptide detection methods with facility and high sensitivity are essential for diagnosing disease associated with peptide biomarkers. Nanopore sensing technology had emerged as a low cost, high-throughput, and scalable tool for peptide detection. The omptins family proteins which can form β-barrel pores have great potentials to be developed as nanopore biosensor. However, there are no study about the channel properties of E. coli OmpT and the development of OmpT as a nanopore biosensor. In this study, the OmpT biological nanopore channel was constructed with a conductance of 1.49 nS in 500 mM NaCl buffer and a three-step gating phenomenon under negative voltage higher than 100 mV and then was developed as a peptide biosensor which can detect peptide without the interfere of ssDNA and dNTPs. The OmpT constructed in this study has potential application in peptide detection, and also provides a new idea for the detection of peptides using the specific binding ability of protease.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China; School of Pharmacy, North Sichuan Medical College, Nanchong, 637000, China
| | - Mengxiao Song
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Kaiju Li
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Shixin Yan
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Mutian Chen
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China
| | - Jia Geng
- Department of Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, 610041, China; Tianfu Jincheng Laboratory, City of Future Medicine, Chengdu 641400, China.
| |
Collapse
|
2
|
Tada A, Takeuchi N, Shoji K, Kawano R. Nanopore Filter: A Method for Counting and Extracting Single DNA Molecules Using a Biological Nanopore. Anal Chem 2023; 95:9805-9812. [PMID: 37279035 PMCID: PMC10797584 DOI: 10.1021/acs.analchem.3c00573] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
This paper describes a method for the real-time counting and extraction of DNA molecules at the single-molecule level by nanopore technology. As a powerful tool for electrochemical single-molecule detection, nanopore technology eliminates the need for labeling or partitioning sample solutions at the femtoliter level. Here, we attempt to develop a DNA filtering system utilizing an α-hemolysin (αHL) nanopore. This system comprises two droplets, one filling with and one emptying DNA molecules, separated by a planar lipid bilayer containing αHL nanopores. The translocation of DNA through the nanopores is observed by measuring the channel current, and the number of translocated molecules can also be verified by quantitative polymerase chain reaction (qPCR). However, we found that the issue of contamination seems to be an almost insolvable problem in single-molecule counting. To tackle this problem, we tried to optimize the experimental environment, reduce the volume of solution containing the target molecule, and use the PCR clamp method. Although further efforts are still needed to achieve a single-molecule filter with electrical counting, our proposed method shows a linear relationship between the electrical counting and qPCR estimation of the number of DNA molecules.
Collapse
Affiliation(s)
- Asuka Tada
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Nanami Takeuchi
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Kan Shoji
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
- Department
of Mechanical Engineering, Nagaoka University
of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan
| | - Ryuji Kawano
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
3
|
Li S, Li X, Wan YJ, Ying YL, Yu RJ, Long YT. SmartImage: A Machine Learning Method for Nanopore Identifying Chemical Modifications on RNA. Chem Asian J 2023; 18:e202201144. [PMID: 36527379 DOI: 10.1002/asia.202201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
RNA modifications modulate essential cellular functions. However, it is challenging to quantitatively identify the differences in RNA modifications. To further improve the single-molecule sensing ability of nanopores, we propose a machine-learning algorithm called SmartImage for identifying and classifying nanopore electrochemical signals based on a combination of improved graph conversion methods and deep neural networks. SmartImage is effective for nearly all ranges of signal duration, which breaks the limitation of the current nanopore algorithm. The overall accuracy (OA) of our proposed recognition strategy exceeded 90% for identifying three types of RNAs. Prediction experiments show that the SmartImage owns the ability to recognize one modified RNA molecule from 1000 normal RNAs with OA >90%. Thus our proposed model and algorithm hold the potential application in clinical applications.
Collapse
Affiliation(s)
- Shijia Li
- School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Xinyi Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Yong-Jing Wan
- School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China.,Chemistry and Biomedicine Innovation Center, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Road, 210023, Nanjing, P. R. China
| |
Collapse
|
4
|
Wang Y, Zhu Z, Yu C, Wu R, Zhu J, Li B. Lego-Like Catalytic Hairpin Assembly Enables Controllable DNA-Oligomer Formation and Spatiotemporal Amplification in Single Molecular Signaling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206283. [PMID: 36436946 DOI: 10.1002/smll.202206283] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Indexed: 06/16/2023]
Abstract
While the solid-state nanopore shows increasing potential during sensitive and label-free single molecular analysis, target concentration and signal amplification method is in urgent need. In this article, a solution via designing a model nucleic acid circuit reaction that can produce "Y" shape-structure three-way DNA oligomers with controllable size and polymerization degree is proposed. Such a so-called lego-like three-way catalytic hairpin assembly (LK-3W-CHA) can provide both concentration amplification (via CHA circuit) and programmable size control (via lego-like building mode) to enhance spatiotemporal resolution in single molecular sensing of solid-state nanopore. Oligomers containing 1-4 DNA three-way junctions (Y monomers, Y1-Y4) are designed in proof-of-concept experiments and applications. When the oligomers are applied to direct translocation measurements, Y2-Y4 can significantly increase the signal resolution and stability than that of Y1. Meanwhile, Y1 to Y4 can be used as the tags on the long DNA carrier to provide very legible secondary signals for specific identification, multiple assays, and information storage. Compared with other possible tags, Y1-Y4 provides higher signal density and amplitude, and quasi-linear "inner reference" for each other, which may provide more systematic, reliable, and controllable experimental results.
Collapse
Affiliation(s)
- Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zhentong Zhu
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinbo Zhu
- Cavendish Lab, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science & Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
5
|
Takeuchi N, Hiratani M, Kawano R. Pattern Recognition of microRNA Expression in Body Fluids Using Nanopore Decoding at Subfemtomolar Concentrations. JACS AU 2022; 2:1829-1838. [PMID: 36032536 PMCID: PMC9400052 DOI: 10.1021/jacsau.2c00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This paper describes a method for detecting microRNA (miRNA) expression patterns using the nanopore-based DNA computing technology. miRNAs have shown promise as markers for cancer diagnosis due to their cancer type specificity, and therefore simple strategies for miRNA pattern recognition are required. We propose a system for pattern recognition of five types of miRNAs overexpressed in bile duct cancer (BDC). The information of miRNAs from BDC is encoded in diagnostic DNAs (dgDNAs) and decoded electrically by nanopore analysis. With this system, we succeeded in the label-free detection of miRNA expression patterns from the plasma of BDC patients. Moreover, our dgDNA-miRNA complexes can be detected at subfemtomolar concentrations, which is a significant improvement compared to previously reported limits of detection (∼10-12 M) for similar analytical platforms. Nanopore decoding of dgDNA-encoded information represents a promising tool for simple and early cancer diagnosis.
Collapse
|
6
|
Recent Advances in Aptamer‐Based Nanopore Sensing at Single‐Molecule Resolution. Chem Asian J 2022; 17:e202200364. [DOI: 10.1002/asia.202200364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/20/2022] [Indexed: 11/07/2022]
|
7
|
Boysen G, Nookaew I. Current and Future Methodology for Quantitation and Site-Specific Mapping the Location of DNA Adducts. TOXICS 2022; 10:toxics10020045. [PMID: 35202232 PMCID: PMC8876591 DOI: 10.3390/toxics10020045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/12/2022] [Accepted: 01/15/2022] [Indexed: 02/01/2023]
Abstract
Formation of DNA adducts is a key event for a genotoxic mode of action, and their presence is often used as a surrogate for mutation and increased cancer risk. Interest in DNA adducts are twofold: first, to demonstrate exposure, and second, to link DNA adduct location to subsequent mutations or altered gene regulation. Methods have been established to quantitate DNA adducts with high chemical specificity and to visualize the location of DNA adducts, and elegant bio-analytical methods have been devised utilizing enzymes, various chemistries, and molecular biology methods. Traditionally, these highly specific methods cannot be combined, and the results are incomparable. Initially developed for single-molecule DNA sequencing, nanopore-type technologies are expected to enable simultaneous quantitation and location of DNA adducts across the genome. Herein, we briefly summarize the current methodologies for state-of-the-art quantitation of DNA adduct levels and mapping of DNA adducts and describe novel single-molecule DNA sequencing technologies to achieve both measures. Emerging technologies are expected to soon provide a comprehensive picture of the exposome and identify gene regions susceptible to DNA adduct formation.
Collapse
Affiliation(s)
- Gunnar Boysen
- Department Environmental and Occupational Health, Fay W. Boozman College of Public Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Correspondence:
| | - Intawat Nookaew
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
8
|
Lv P, Yang Y, Li S, Tan CS, Ming D. Biological nanopore approach for single‐molecule analysis of nucleobase modifications. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Pengrui Lv
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Yongyi Yang
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Cherie S. Tan
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine Tianjin University Tianjin China
- Department of Biomedical Engineering College of Precision Instruments and Optoelectronics Engineering Tianjin University Tianjin China
| |
Collapse
|
9
|
Shorkey SA, Du J, Pham R, Strieter ER, Chen M. Real-Time and Label-Free Measurement of Deubiquitinase Activity with a MspA Nanopore. Chembiochem 2021; 22:2688-2692. [PMID: 34060221 PMCID: PMC8416795 DOI: 10.1002/cbic.202100092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Covalently attaching ubiquitin (Ub) to cellular proteins as a post-translational modification can result in altered function of modified proteins. Enzymes regulating Ub as a post-translational modification, such as ligases and deubiquitinases, are challenging to characterize in part due to the low throughput of in-vitro assays. Single-molecule nanopore based assays have the advantage of detecting proteins with high specificity and resolution, and in a label-free, real-time fashion. Here we demonstrate the use of a MspA nanopore for discriminating and quantifying Ub proteins. We further applied the MspA pore to measure the Ub-chain disassembly activity of UCH37, a proteasome associated deubiquitinase. The implementation of this MspA system into nanopore arrays could enable high throughput characterizations of unknown deubiquitinases as well as drug screening against disease related enzymes.
Collapse
Affiliation(s)
- Spencer A Shorkey
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jiale Du
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ryan Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Eric R Strieter
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Min Chen
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
10
|
Liu X, Feng W, Yao F, Zhang J, Ayesha R, Chen T, Shi X, Qiao X, Ma L, Yu S, Kang XF. Biomimetic Molecular Clamp Nanopores for Simultaneous Quantifications of NAD + and NADH. Anal Chem 2021; 93:7118-7124. [PMID: 33905222 DOI: 10.1021/acs.analchem.1c00986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NADH/NAD+ is pivotal to fundamental biochemistry research and molecular diagnosis, but recognition and detection for them are a big challenge at the single-molecule level. Inspired by the biological system, here, we designed and synthesized a biomimetic NAD+/NADH molecular clamp (MC), octakis-(6-amino-6-deoxy)-γ-cyclomaltooctaose, and harbored in the engineered α-HL(M113R)7 nanopore, forming a novel single-molecule biosensor. The single-molecule measurement possesses high selectivity and a high signal-to-noise ratio, allowing to simultaneously recognize and detect for sensing NADH/NAD+ and their transformations.
Collapse
Affiliation(s)
- Xingtong Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wanyue Feng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Fujun Yao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Jinlei Zhang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Rauf Ayesha
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Tingting Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiaoyu Shi
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xixi Qiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Luping Ma
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Sha Yu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
11
|
Wu R, Wang Y, Zhu Z, Yu C, Li H, Li B, Dong S. Low-Noise Solid-State Nanopore Enhancing Direct Label-Free Analysis for Small Dimensional Assemblies Induced by Specific Molecular Binding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9482-9490. [PMID: 33476120 DOI: 10.1021/acsami.0c20359] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid-state nanopores show special potential as a new single-molecular characterization for nucleic acid assemblies and molecular machines. However, direct recognition of small dimensional species is still quite difficult due the lower resolution compared with biological pores. We recently reported a very efficient noise-reduction and resolution-enhancement mechanism via introducing high-dielectric additives (e.g., formamide) into conical glass nanopore (CGN) test buffer. Based on this advance, here, for the first time, we apply a bare CGN to directly recognize small dimensional assemblies induced by small molecules. Cocaine and its split aptamer (Capt assembly) are chosen as the model set. By introducing 20% formamide into CGN test buffer, high cocaine-specific distinguishing of the 113 nt Capt assembly has been realized without any covalent label or additional signaling strategies. The signal-to-background discrimination is much enhanced compared with control characterizations such as gel electrophoresis and fluorescence resonance energy transfer (FRET). As a further innovation, we verify that low-noise CGN can also enhance the resolution of small conformational/size changes happening on the side chain of large dimensional substrates. Long duplex concatamers generated from the hybridization chain reaction (HCR) are selected as the model substrates. In the presence of cocaine, low-noise CGN has sensitively captured the current changes when the 26 nt aptamer segment is assembled on the side chain of HCR duplexes. This paper proves that the introduction of the low-noise mechanism has significantly improved the resolution of the solid-state nanopore at smaller and finer scales and thus may direct extensive and deeper research in the field of CGN-based analysis at both single-molecular and statistical levels, such as molecular recognition, assembly characterization, structure identification, information storage, and target index.
Collapse
Affiliation(s)
- Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhentong Zhu
- College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P. R. China
| | - Chunmiao Yu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Huan Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shaojun Dong
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
12
|
Nookaew I, Jenjaroenpun P, Du H, Wang P, Wu J, Wongsurawat T, Moon SH, Huang E, Wang Y, Boysen G. Detection and Discrimination of DNA Adducts Differing in Size, Regiochemistry, and Functional Group by Nanopore Sequencing. Chem Res Toxicol 2020; 33:2944-2952. [PMID: 32799528 DOI: 10.1021/acs.chemrestox.0c00202] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Chemically induced DNA adducts can lead to mutations and cancer. Unfortunately, because common analytical methods (e.g., liquid chromatography-mass spectrometry) require adducts to be digested or liberated from DNA before quantification, information about their positions within the DNA sequence is lost. Advances in nanopore sequencing technologies allow individual DNA molecules to be analyzed at single-nucleobase resolution, enabling us to study the dynamic of epigenetic modifications and exposure-induced DNA adducts in their native forms on the DNA strand. We applied and evaluated the commercially available Oxford Nanopore Technology (ONT) sequencing platform for site-specific detection of DNA adducts and for distinguishing individual alkylated DNA adducts. Using ONT and the publicly available ELIGOS software, we analyzed a library of 15 plasmids containing site-specifically inserted O6- or N2-alkyl-2'-deoxyguanosine lesions differing in sizes and regiochemistries. Positions of DNA adducts were correctly located, and individual DNA adducts were clearly distinguished from each other.
Collapse
Affiliation(s)
- Intawat Nookaew
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Piroon Jenjaroenpun
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Hua Du
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Pengcheng Wang
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Jun Wu
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Thidathip Wongsurawat
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Sun Hee Moon
- Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - En Huang
- Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside 501 Big Springs Road, Riverside, California 92521-0403, United States
| | - Gunnar Boysen
- Environmental and Occupational Health, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States.,Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, Arkansas 72205, United States
| |
Collapse
|
13
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
14
|
Muraoka T, Noguchi D, Kasai RS, Sato K, Sasaki R, Tabata KV, Ekimoto T, Ikeguchi M, Kamagata K, Hoshino N, Noji H, Akutagawa T, Ichimura K, Kinbara K. A synthetic ion channel with anisotropic ligand response. Nat Commun 2020; 11:2924. [PMID: 32522996 PMCID: PMC7287108 DOI: 10.1038/s41467-020-16770-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 05/26/2020] [Indexed: 12/04/2022] Open
Abstract
Biological membranes play pivotal roles in the cellular activities. Transmembrane proteins are the central molecules that conduct membrane-mediated biochemical functions such as signal transduction and substance transportation. Not only the molecular functions but also the supramolecular properties of the transmembrane proteins such as self-assembly, delocalization, orientation and signal response are essential for controlling cellular activities. Here we report anisotropic ligand responses of a synthetic multipass transmembrane ion channel. An unsymmetrical molecular structure allows for oriented insertion of the synthetic amphiphile to a bilayer by addition to a pre-formed membrane. Complexation with a ligand prompts ion transportation by forming a supramolecular channel, and removal of the ligand deactivates the transportation function. Biomimetic regulation of the synthetic channel by agonistic and antagonistic ligands is also demonstrated not only in an artificial membrane but also in a biological membrane of a living cell. Transmembrane proteins are important for cellular functions and synthetic analogues are of interest. Here the authors report on the design and testing of a synthetic multipass transmembrane channel which shows anisotropic responses to agonistic and antagonistic ligands.
Collapse
Affiliation(s)
- Takahiro Muraoka
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Daiki Noguchi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Shougoin, Kyoto, 606-8507, Japan
| | - Kohei Sato
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Ryo Sasaki
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazuhito V Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.,Medical Sciences Innovation Hub Program RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kiyoto Kamagata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Norihisa Hoshino
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Tomoyuki Akutagawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Kazuaki Ichimura
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazushi Kinbara
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan. .,Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan.
| |
Collapse
|
15
|
Zhu Z, Duan X, Li Q, Wu R, Wang Y, Li B. Low-Noise Nanopore Enables In-Situ and Label-Free Tracking of a Trigger-Induced DNA Molecular Machine at the Single-Molecular Level. J Am Chem Soc 2020; 142:4481-4492. [PMID: 32069050 DOI: 10.1021/jacs.0c00029] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solid-state nanopores have shown special high potential in a label-free molecular assay, structure identification, and target-index at the single-molecular level, even though frustrating electrical baseline noise is still one of the major factors that limit the spatial resolution and signaling reliability of solid-state nanopores, especially in small target detection. Here we develop a significant and easy-operating noise-reduction approach via mixing organic solvents with high dielectric constants into a traditional aqueous electrolyte. The strategy is generally effective for pores made of different materials, such as the most commonly used conical glass (CGN) or SiNx. While the mechanism should be multisourced, MD simulations suggest the noise reduction may partially arise from the even ionic distribution caused by the addition of higher dielectric species. Among all solvents experimentally tested, the two with the highest dielectric constants, formamide and methylformamide, exhibit the best noise reduction effect for target detection of CGN. The power spectral density at the low-frequency limit is reduced by nearly 3 orders with the addition of 20% formamide. Our work qualifies the reliability of solid-state nanopores into much subtler scales of detection, such as dsDNAs under 100 bp. As a practical example, bare CGN is innovatively employed to perform in-situ tracking of trigger-responsive DNA machine forming oligomers.
Collapse
Affiliation(s)
- Zhentong Zhu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaozheng Duan
- State Key Lab of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
| | - Qiao Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ruiping Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yesheng Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Bingling Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China.,University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
16
|
Ionophore constructed from non-covalent assembly of a G-quadruplex and liponucleoside transports K +-ion across biological membranes. Nat Commun 2020; 11:469. [PMID: 31980608 PMCID: PMC6981123 DOI: 10.1038/s41467-019-13834-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
The selective transport of ions across cell membranes, controlled by membrane proteins, is critical for a living organism. DNA-based systems have emerged as promising artificial ion transporters. However, the development of stable and selective artificial ion transporters remains a formidable task. We herein delineate the construction of an artificial ionophore using a telomeric DNA G-quadruplex (h-TELO) and a lipophilic guanosine (MG). MG stabilizes h-TELO by non-covalent interactions and, along with the lipophilic side chain, promotes the insertion of h-TELO within the hydrophobic lipid membrane. Fluorescence assays, electrophysiology measurements and molecular dynamics simulations reveal that MG/h-TELO preferentially transports K+-ions in a stimuli-responsive manner. The preferential K+-ion transport is presumably due to conformational changes of the ionophore in response to different ions. Moreover, the ionophore transports K+-ions across CHO and K-562 cell membranes. This study may serve as a design principle to generate selective DNA-based artificial transporters for therapeutic applications.
Collapse
|
17
|
Su Z, Wei Y, Kang XF. Simultaneous High-Resolution Detection of Bioenergetic Molecules using Biomimetic-Receptor Nanopore. Anal Chem 2019; 91:15255-15259. [PMID: 31665602 DOI: 10.1021/acs.analchem.9b04268] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel artificial receptor, heptakis-[6-deoxy-6-(2-hydroxy-3-trimethylammonion-propyl) amino]-beta-cyclomaltoheptaose, with similar functions of mitochondrial ADP/ATP carrier protein, was synthesized and harbored in the engineered α-HL (M113R)7 nanopore, forming a single-molecule biosensor for sensing bioenergetic molecules and their transformations. The strategy significantly elevates both selectivity and signal-to-noise, which enables simultaneous recognition and detection of ATP, ADP, and AMP by real-time single-molecule measurement.
Collapse
Affiliation(s)
- Zhuoqun Su
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Yongfeng Wei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , P. R. China
| | - Xiao-Feng Kang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science , Northwest University , Xi'an 710069 , P. R. China
| |
Collapse
|
18
|
Tian L, Wang Y, Kang XF. Target-controlled liposome amplification for versatile nanopore analysis. Chem Commun (Camb) 2019; 55:5159-5162. [PMID: 30984931 DOI: 10.1039/c9cc00285e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We have reported a versatile nanopore method based on the combination of analyte-controlled liposome signal amplification and the nanopore detection of a reporter molecule, which largely extends the nanopore application range, and easily elevates the nanopore sensitivity to the fM level from the μM level.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, P. R. China.
| | | | | |
Collapse
|
19
|
Luchian T, Park Y, Asandei A, Schiopu I, Mereuta L, Apetrei A. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids. Acc Chem Res 2019; 52:267-276. [PMID: 30605305 DOI: 10.1021/acs.accounts.8b00565] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The decades long advances in nanotechnology, biomolecular sciences, and protein engineering ushered the introduction of groundbreaking technologies devoted to understanding how matter behaves at single particle level. Arguably, one of the simplest in concept is the nanopore-based paradigm, with deep roots in what is originally known as the Coulter counter, resistive-pulse technique. Historically, a nanopore system comprising the oligomeric protein generated by Staphylococcus aureus toxin α-hemolysin (α-HL) was first applied to detecting polynucleotides, as revealed in 1996 by John J. Kasianowicz, Eric Brandin, Daniel Branton, and David W. Deamer, in the Proceedings of the National Academy of Sciences. Nowadays, a wide variety of other solid-state or protein-based nanopores have emerged as efficient tools for stochastic sensing of analytes as small as single metal ions, handling single molecules, or real-time, label-free probing of chemical reactions at single-molecule level. In this Account, we demonstrate the usefulness of the α-HL nanopore on probing metal-induced folding of peptides, and to investigating the reversible binding of various metals to physiologically relevant amyloid fragments. The widely recognized Achilles heel of the approach, is the relatively short dwell time of the analytes inside the nanopore. This hinders the collection of sufficient data required to infer statistically meaningful conclusions about the physical or chemical state of the studied analyte. To mitigate this, various approaches were successfully applied in particular experiments, including but not restricted to altering physical parameters of the aqueous solution, downsizing the nanopore geometry, the controlled tuning of the balance between the electrostatic and electro-osmotic forces, coating nanopores with a fluid lipid bilayer, employing a pressure-voltage biased pore. From our perspective, in this Account, we will present two strategies aimed at controlling the analyte passage across the α-HL. First, we will reveal how the electroosmotic flow can be harnessed to control residence time, direction, and the sequence of spatiotemporal dynamics of a single peptide along the nanopore. This also allows one to identify the mesoscopic trajectory of a peptide exiting the nanopore through either the vestibule or β-barrel moiety. Second, we lay out the principles of an approach dubbed "nanopore tweezing", enabling simultaneous capture rate increase and escape rate decrease of a peptide from the α-HL, with the applied voltage. At its core, this method requires the creation of an electrical dipole on the peptide under study, via engineering positive and negative amino acid residues at the two ends of the peptide. Concise applications of this approach are being demonstrated, as in proof-of-concept experiments we probed the primary structure exploration of polypeptides, via discrimination between selected neutral amino acid residues. Another useful venue provided by the nanopores is represented by single-molecule force experiments on captured analytes inside the nanopore, which proved useful in exploring force-induced rupture of nucleic acids duplexes, hairpins, or various nucleic acids-ligand conjugates. We will show that when applied to oppositely charged, polypeptide-functionalized PNA-DNA duplexes, the nanopore tweezing introduces a new generation of force-spectroscopy nanopore-based platforms, facilitating unzipping of a captured duplex and enabling the duplex hybridization energy estimation.
Collapse
Affiliation(s)
- Tudor Luchian
- Department of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Yoonkyung Park
- Department of Biomedical Science and Research Center for Proteinaceous Materials (RCPM), Chosun University, Gwangju, Republic of Korea 61452
| | - Alina Asandei
- Interdisciplinary Research Institute, Sciences Department, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Irina Schiopu
- Interdisciplinary Research Institute, Sciences Department, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Loredana Mereuta
- Department of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| | - Aurelia Apetrei
- Department of Physics, ‘Alexandru I. Cuza’ University, Iasi, Romania 700506
| |
Collapse
|